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A NEW HIGH-RESOLUTION SCHEME BASED
ON THE NORMALIZED VARIABLE
FORMULATION

M. S. Darwish
American University of Beirut, Faculty of Engineering & Architecture,
Mechanical Engineering Department, Beirut, Lebanon

A high-resolution (HR) discretization scheme is proposed for the caiculation of incompress-
ible steady-state convective flow with finite-volume methods. The basic algorithm combines
a second- and third-order interpolation profile applied in the context of the normalized
variable formulation (NVF). The new scheme is tested by solving three problems: (1) a
two-dimensional pure convection of a scalar involving a step profile in an oblique velocity
Jield; (2) a two-dimensional pure convection of a scalar involving an elliptic profile in an
oblique velocity field; (3) the Smith-Hutton [1] problem involving pure convection of a step
profile in a rotational velocity field. The computational results obtained are conpared with
the results of six HR schemes: Leonard’s EULER scheme, Gaskell and Lau's SMART
scheme, Van Leer’s CLAM and MUSCL schemes, Chakravarthy and Osher’s OSHER
scheme, Roe’s MINMOD scheme, and the exact solution. The results for the new scheme,
STOIC demonstrate its capability in capturing steep gradients while maintaining the
boundedness of solutions. Furthermore, the comparison with other HR schemes shows that
the STOIC scheme yields the most accurate results without undue physical oscillations or
numerical smearing.

INTRODUCTION

The accurate simulation of convection continues to attract a large number of
workers due to the many challenges it still offers. The difficulty in devising
a high-accuracy bounded scheme lies in the conflicting requirements of accuracy
on one hand, and stability and boundedness on the other. While stability and
boundedness require some kind of diffusive smoothing mechanism, accuracy relies
precisely on the opposite. In recent years, a variety of so-called higher-order
schemes have been presented, such as the QUICK scheme of Leonard [2], the
third-order scheme of Agarwal [3], and the second-order upwind scheme of Fromm
[4]. These higher-order schemes certainly yield more accurate results than the
highly diffusive first-order upwind scheme, and are certainly more stable than
the second-order central difference scheme, but it is now well known that they
suffer from a lack of boundedness, that is, they tend to give rise to oscillations or
under /overshoots, especially in regions of strong gradients, as is mentioned in [5,
6]. These under /overshoots can induce large errors and lead to unphysical results,
and in some cases prevent convergence of calculation when nonnegative scalars
(e.g., concentrations or turbulent quantities such as k and €) become negative.
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NOMENCLATURE
a coefficients of the discretized Superscripts
equation
b source term in the discretized C convection contribution
equation D diffusion contribution
B volume integral of 2 U upwind formulation
C convective flux coefficient - refers to normalized variable
e functional relationship
J 1otal scalar flux across cell face Subscripts
Q source term in the transport
equation C central grid point
RE residual error D downstream grid point
S surface area of control volume de deferred correction
face or source term €, W, 1,8 refers to control volume faces
u,v velocity components in the x E,W,N,S refers to neighbors of grid
and y directions point P
r diffusion f refers to any of the control
€ quantitative indicator of error volume face
p density nb refers to neighbors
¢ general dependent variable P main grid point
u upstream grid point

For the suppression of these oscillations, a variety of procedures have been
developed. These procedures can be grouped along two lines. One approach is to
follow a blending strategy, where one either adds a limited antidiffusive flux to a
first-order upwind scheme in such a way as to ensure that the resulting scheme is
capable of resolving sharp gradients without undue under/overshoots; or, on the
contrary, one introduces some kind of smoothing diffusive agencies into an
unbounded or higher-order scheme to damp oscillations. The flux-corrected trans-
port (FCT) method of Zalesak [7] is an example of the first type of flux-blending
technique, while examples of the second type are the filtering remedy and method-
ology (FRAM) of Chapman [8], and the flux-blending methods of Peric [9] and Zhu
and Leschziner [10]. The determination of the blending factor, usually based on the
local solution behavior, is critical to the successful application of such methods.
Also, because of their multistep nature, flux-blending techniques tend to be very
expensive computationally and/or they are often unable to provide the desired
“optimum blend” between accuracy and boundedness. Hence, although flux-
blending methods are much more accurate than the first-order upwind scheme,
these methods still generate an unnecessary degree of numerical diffusion when
attempting to simulate sharp gradients, It should be pointed out that the hybrid
scheme of Spalding [11], and the power law scheme of Patankar [12], can be
classified as flux-blending schemes, where the blending criterion is based on the
local Peclet number rather than on the local solution behavior. The simplicity of
these schemes is, however, more than offset by the level of overdamping added to
the solution,

A better way to remove unphysical oscillation is to use a composite flux
limiter approach. In composite high-resolution (HR) schemes, the numerical flux at
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the interface of the computational cell is modified by the use of a flux limiter that
enforces a monotonicity (boundedness) criterion, The family of “shock-capturing”
schemes based on the total variational diminishing flux limiters (TVD) [13], widely
used in compressible flow simulations, is a well-known example of composite
schemes. A more recent formulation for high-resolution flux limiters has been
developed by Leonard based on the normalized variables formulation (NVF) [14],
which since its introduction in 1981 [15] has attracted a growing number of workers
such as Zhu and Rodi [16], Gaskell and Lau [17], Zhu [18], and Lin and Chieng [19]
to cite a few.

In this article a composite high-resolution scheme, based on the NVF
methodology, is proposed for approximating the convection terms of steady-state
incompressible transport equations within the framework of finite-volume calcu-
lations. This scheme will be compared with six other composite schemes. The
schemes are Van Leer’s MUSCL [20] and CLAM (curved line advection method)
[21], Chakravarthy and Osher’'s OSHER [22], the MINMOD (minimum modulus)
of Roe [23], Leonard’s EULER [24], and Gaskell and Lau’s SMART [17]. (It
was found that the SOQOUCOUP scheme of Zhu and Rodi [16] is similar to the
MINMOD scheme of Roe, and the HLPA of Zhu [18] is similar to Van Leer’s
CLAM scheme.) All the tested schemes are expressed using the normalized
variable formulation [14, 25], so after the introduction of the governing equations,
the normalized variable is presented along with the convection boundedness
criteria (CBC) [17], which forms the monotonicity criterion for NVF-based flux
limiters.

NUMERICAL DISCRETIZATION OF THE TRANSPORT
EQUATION

The transport equation governing two-dimensional incompressible steady
flows may be expressed in the following general form:

d a4 ad d
—[pu¢~F—¢]+———[pv¢—F—¢]=Q %))
ax ox y y

where ¢ is any dependent variable, « and v are the x and y components of the
velocity vector, and p, I', and Q are the density, diffusivity, and source terms,
respectively. Integrating the above equation over the control velume shown in
Fig. 1 and using the divergence theorem, we get, for a Cartesian coordinate system,
the following discretized equation:

J,-J, +J, —-J =8B (2)
where J; represent the total flux of ¢ across face f (f = e, w, n, or s), and B is the

volume integral of the source term Q. Each of the surface fluxes J; contains a
convective contribution, J<, and a diffusive contribution, JP, hence

Je=JF+JP (3)
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Fig. 1 Typical grid-point cluster and control volume.

For a purely convective scalar flow, the diffusion flux J” is zero, while the
convective flux is given by

JE = (pu- 8k, = C by | )

where §; is the surface of cell face f, and C; is the convective flux coefficient of cell
face f. As can be seen from Eq. (4), the accuracy of the control-volume solution for
the convective scalar flux depends on the proper estimation of the face value of ¢
as a function of the neighboring ¢ node values. Using some assumed interpolation
profile, ¢, can be formulated explicitly in terms of its neighboring node values by a
functional relationship of the form

b = fl ) (5)

where ¢, denotes the neighboring node ¢ values. After substituting Eq. (5) into
Eq. (4) for each cell face, Eq. (2) is transformed after some algebraic manipulations
into the following discretization equation:

apdp = Z(anb¢nb) + by (6)
nb

where the coefficients ap, ag,... depend on the selected scheme and b, is the
source term of the discretized equation.

Since the functional derivative can involve a large number of neighboring
points, especially when using higher-order schemes, the solution of Eq. (6) can
become very expensive computationally, hence the use of a compacting procedure
is most welcome. In the present work the deferred correction procedure of Khosla
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et al. [26] is used. In this procedure Eq. (2) is rewritten as

JE =00+l =l

=B+ [C(dY — @) — C (Y — ¢,) + C (DY — &,) — C (Y — ¢)]
(D

where ¢! is the face value, JU is the total flux of ¢, both calculated using
the first-order upwind scheme, ¢; is the face value calculated using the chosen
high-resolution scheme, and the terms in square brackets represent the extra
source term due to the deferred correction. Substituting the value of the cell flux
obtained from the functional relationship of the upwind and high-resolution
scheme at hand, the deferred correction results in an equation similar in form to
Eq. (6), but where the coefficient matrix is pentadiagonal (for 2D) and always
diagonally dominant, since it is formed using the first-order upwind scheme. The
discretized equation, Eq. (6), becomes

aF¢P = Z(anb¢nb) + bP + bdc (8)
nb
where now the coefficients ap,4g,... are obtained from a first-order upwind

discretization, nb = (E, W, 8, N}, and b,, is the extra deferred correction source
term. This compacting procedure is simple to implement and effective when using
higher-order or high-resolution schemes.

THE NORMALIZED VARIABLE FORMULATION

The Normalized Variable

The proposed scheme is formulated on the basis of the normalized variable
proposed by Leonard [12]. Considering face f of a control volume (see Fig. 2a),
defining ¢, ¢p, @¢, and ¢; as the upstream (U), downstream (D), central nodal
values (C), and face value (f) for each cell face (see Fig. 2b), the normalized
variable is defined as

- ¢_¢’U
=— C)]
d) ¢D_¢U

Note that with this normalization ¢, = 1 and ¢, = 0. The use of the normalized
variable simplifies the definition of the functional relationships of HR schemes and
will be helpful in defining the conditions that the functional relationships should
satisfy in order to have the property of boundedness and stability.
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Fig. 2 (a) Original and normalized variables and profiles and
(b) the interpolation points used in calculating ¢;.

For example, the functional relations'hip for Van Leer’s CLAM scheme for
steady flow is given by

d’r = f(‘;bu, ¢’C7 ‘ibl))

¢ if |¢p — 2¢¢ + byl > [¢p — @yl
= (¢'D - ¢’c)(¢c - ‘ibu)

dc + otherwise

(¢D - ¢U)

(10)

Using the normalized variable, Eq. (10) becomes

de if g <0orde > 1

= . (1n
b (2 - qbc) otherwise

J’f = f(‘f’c)

A number of schemes written using the normalized variable formulation
are given in Table 1, including the QUICK scheme of Leonard [2], the central
difference scheme, Fromm’s scheme [4], the second-order upwind scheme, and the
first-order upwind scheme. Note that the functional relationships for these schemes
are all linear functions of ¢.

The functional relationship of any scheme can be plotted in a normalized
variable diagram (NVD), that is, by plotting ¢; versus ¢c. Figure 3 shows the
normalized variable diagram for the schemes of Table 1. The NVD can be
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Table 1 Functional Relationships for the Different Linear Schemes

Functional relationship

Scheme Functional relationship (NVF)
First-order upwinding (T.1) ¢ = d¢ & = de
Second-order upwinding (T.2)
(extrapolation of linear fit 3 — dy 3
through ¢¢ and ) ¢ = 5 ¢ = 5‘?5(:

Lax-Wendroff method (T.3)
(interpolation of linear

linear fit through ¢¢ &y + 1

and ¢p) & = DTC ¢ = 5(1 + ¢c)
Fromm’s method (T.4) [arithmetic b — by ) 1 )

mean of (T.2) and (T.3)] b= ¢ + — ¢ = 3 + ¢
QUICK (T.5) (interpolation of

quadratic fit through ¢y, bo+dp by — 2¢c + by 3 3

$c,and ¢p) ¢ = 3 - P b = 3 + Z‘Pc

an effective tool in assessing the accuracy and relative diffusivity of schemes.
For example, Leonard has shown in [14] that any scheme that has a functional
relationship passing through point Q in Fig. 3 is at least second order, and that if
the slope at point Q is equal to 0.75, then the scheme is third-order accurate. Also,
schemes that have an NVD plot that is near to the first-order upwind NVD plot

0
'
1.5 4
Q(05,0.75) . /
1.0 -
_ Q
W R (i} first order upwind
(ii) second order upwind
2 (iii) Lax-Wendroff
%)) {iv) Fromm
/ () QUICK
5 M T T T T
7/ / 05 L 1.5 $C

Fig.3 NVD plots for several linear schemes.
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tend to be highly diffusive, while schemes whose NVD plot is near the first-order
downwind NVD plot (the line ¢; = 1) tend to be highly compressive.

The Convective Boundedness Criteria (CBC)

Based on the normalized variable analysis, Gaskell and Lau [17] formulated a
convection boundedness criterion (CBC) for implicit steady-state flow calculation,
which states that for a scheme to have boundedness property, its functional
relationship should be continuous, should be bounded from below by ¢; = ¢,
and from above by unity, and should pass through the points (0,0) and (1, 1),
in the monoton_ic range (0 < J’c < 1), and for 1 < ¢~>c or ¢ < 0, the functional
relationship f(¢c) should equal .

The above conditions, illustrated in Fig. 4, can be formulated as

f( ¢ ) is continuous

f(de) =0 for ¢ = 0

f(dc) = 1 for ¢ = 1 (12)
f(dc) < 1and f(de) > e for0 < ¢ < 1

f(d;C)= b for ¢c < Dor ¢ > 1

It is evident from Table 1 and Fig. 3 that none of the five linear schemes can
achieve monotonicity and high accuracy simultaneously, the UPWIND scheme
being the only linear scheme that satisfies the boundedness criteria. In order to
construct a high-resolution bounded scheme, the use of a nonlinear functional
relationship is unavoidable.

The STOIC Scheme

The present work assumes that the normalized variable at the cell face, d;f,
can be related to the normalized variable at the center, ¢, by a combination of

0

IR e

Cl:C

Fig. 4 Convective boundedness criterion
(CBQ).
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Fig. § NVD plots for the STOIC high-
resolutien schemes.

linear functions. In the monotonic range, the second-order central difference
scheme and the third-order QUICK scheme are combined in the manner shown in
Fig. 3, to form a second- and third-order interpolation for convection (STOIC)
scheme. An ad-hoc linear function is used in the [0-0.2] segment of the NVD
diagram to enforce the CBC condition f(0) = 0. The functional relationship of the
STOIC scheme passes through points (0,0) and (1,1) and satisfy the rest of
the CBC conditions. This functional relationship is illustrated in Fig. 5 and is given
by

é; = 3¢ for 0 < ¢ < 0.2
d = 3(1 + é¢) for 0.2 < ¢ < 0.5
b= t(dc) = { b =2 + 2 for0.5 < ¢ < 2 (13)
$e =1 for i < e <1
¢ = ¢ elsewhere

The functional relationships for the rest of the tested high-resolution schemes are
given in Table 2, while their NVD plots are given in Fig. 6. It is seen that the
functional relationships in Table 2 are nonlinear; this is generally true of all HR
schemes.

Because these HR schemes involve two upstream nodes for each cell face, it
is necessary to follow special practices for the near-boundary control volumes. In
the present work, the UPWIND scheme is used whenever an upstream node lies
outside the computational domain,

APPLICATIONS

In what follows, we present the results of calculations for three test situations
that are linear problems involving purely convective transports of scalars contain-
ing discontinuities or large gradients. In all tests, the computational results were
considered “converged” when the residual error given by Eq. (14) became smaller
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Fig. 6 NVD plots for various high-resolution schemes.
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Table 2 Functional Relationships for the Different High-Resoclution Schemes

Scheme Functional relationship [ & = f($¢)]
.3 . 1
(,5[3541)0 f0r0<¢c<5
.1 . | S
MINMOD or SOUCOUP & = 5(1 — $e) for 5 <de <1
cf:r = cf:c elsewhere
. 3. - 2
¢’r=5¢’c f0r0<q5c<—3—
_ 2 -
OSHER $=1 for < < dc < 1
& = dc elsewhere
- . 1
¢ = 2¢¢ f°T0<¢c<z
J) 1 03 ; 1 q; 3
==+ or — < < —
MUSCL e 4 "7 T4
- 3.
¢r=1 forz<qbc<1
& = b elsewhere
e = dc(2 ~ dc)  for0 < e <1
CLAM or HLPA b= deldmde b
¢ = ¢ elsewhere
- - - 1
¢ = 3¢ for0<¢c<g
- 3 3 ; ] 1 ; 5
=— 4+ — or — < ¢ < —
SMART b gt 5 <% <%
. 5 -
¢ = for g <o <1
& = b elsewhere
z 3
Vool — dc) — 82 ]
= for0 < ¢ < 1
EULER (1= 24¢)
0.75 for g = 0.5
de elsewhere
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than 0.08%,

RES = 3 (14)

apd’P - (Eanb(bnb - bP + bdc)
nb

and the quantitative indication of the error was calculated from Eq. (15),

€= E"ﬁcompulcd - ‘»bcxacti (15)

summed over all computed grid points.

Convection of a Step Profile in an Oblique Velocity Field

Figure 7 shows the well-known benchmark test problem consisting of a pure
convection of a transverse step profile imposed at the inflow boundaries of a
square computational domain; a 25 X 25 mesh was used, giving in this case
Ax = Ay = 5. The location of the boundary step was chosen so that the exact
convected step passes through the midpoint of the grid. The angle 8 was chosen to
be 30.92° and [V| = 1, so as to have the analytical profile coincide with grid nodes
in the last grid column.

A comparison of the numerical solution obtained with the different HR
schemes and the upwind scheme is shown in Figs. 8 and 9 along with the exact
solution. It can be seen very clearly that the upwind scheme results in a very diffuse
¢ profile, while the HR schemes except for MINMOD scheme result in an
adequate ¢ profile. However, looking at Table 3, we can assess the performance of
the different schemes more accurately. It is clear that the STOIC scheme gives
the least error, followed by the SMART, MUSCL, and EULER schemes. The
MINMOD is relatively very diffusive, resulting in an error twice that of the STOIC
scheme.

Convection of an Elliptic Profile in an Oblique Velocity Field

An elliptic profile was also used for the same geometric situation. This
second probiem, also illustrated in Fig. 7, was used in order to test the resolution of

1 ]W_.
¢=0 ¢=0
$= L
/ -
=0 =0
1 1) $=0 1
Test 1 ‘Fest 2

Fig.7 Pure convection of a scalar discontinuity and an elliptic profile by a
uniform velocity field.
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STOIC (Error=17.9) UPWIND (Error=65.5)

Fig. 8 Projections of ¢ field for test 1.

the different schemes for a profile involving a gradually decreasing gradient. The
elliptic profile is generated using the following equation:

for2 <j <12 (16)

The same mesh was used as for test 1.

As before, the computational results for the HR schemes, the UPWIND
scheme, and the exact solution are shown in Figs. 10 and 11. The ¢ profiles of the
UPWIND and MINMOD schemes are clearly very diffuse. It is worth noting that,
as indicated in Table 3, the range of error is greater than that for test 1, the
UPWIND scheme giving an error of 933 as compared to 65.5. However, the
STOIC still presents the least error. This can also be noticed in Fig. 10 by the close
resemblance of its ¢ profile with the exact solution profile; however, a slight
flattening of the profile can also be observed.

Smith-Hutton Problem

In the third test problem, shown in Fig. 12, a step discontinuity at x = —0.5
is convected clockwise from the inlet plane (x < 0,y = 0) to the outlet plane
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Fig.  Projections of ¢ field for test 1.

(x > 0,y = 0) by a rotational velocity field given by
=2y —x?)
an

v=—2x(1 —-y?)

This test was devised for evaluating a number of numerical models of convection at
the third meeting of the International Association for Hydraulic Research Working
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Table 3 ERROR for the Different Schemes and the Different Tests

Scheme ERROR (test 1) ERROR (test 2) ERROR (test 3)
UPWIND 65.5 93.3 41.3
MINMOD 33.8 40.6 24.7
{SOUCOUP)

OSHER 269 30.2 20.0
CLAM (HLPA) 26.1 27.5 203
EULER 23.6 22,5 225
MUSCL 235 233 18.4
SMART 21.6 20.0 17.0

STOIC 17.9 16.2 15.1

Group on Refined Modelling of Flow [1], but in this problem we have

Ofor —05<x<0 y=0
2for -1 <x< ~0.5 y=20
¢=<2for -1<x<l y=1 (18)
Zforx = —1 D<y<l1
2forx =1 0<y<1

STOIC (Error=16.2) UPWIND (Error=93.0)

Fig. 10 Projections of ¢ field for test 2.
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OSHER (ERROR=26.9) EULER (ERROR=22.5)

Fig. 11 Projections of ¢ field for test 2.

$=0
0=0

Fig. 12 Test 3, purc convection by a
0 0.5 1 rotational velocity field.
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ANALYTICAL
UPWIND
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{ e MUSCL
06 — - ... OSHER
| — - % —- STOIC
02+ ANALYTICAL
— " — ' ¥ ' 4 I 4 1 }
1 2 3 4 5 6 7 8 9 10

Fig, 13 Comparison of ¢ profiles at exit for test 3.

In this test no physical diffusion was set, and a 20 X 10 mesh was used, yielding
Ax = Ay = 5. The results for this test are shown in Fig. 13. The STOIC scheme
still gives the most accurate protfile as in the previous tests.

In all three tests, the computational time for the HR schemes on the average
of the order of four to five times the computation time of the UPWIND schemes,
with schemes involving more than one breakpoint, such as the SMART and
STOIC, being the most expensive in computational time. All the HR schemes do
not exhibit any undue over /undershoot, in all tests the MINMOD is shown to be
the most diffusive as can be expected from its NVD plot, while the STOIC and
SMART give the most accurate results, the STOIC being slightly more accurate.
Table 3 shows the errors for all the test problems quantitatively.

The increase of accuracy of the STOIC scheme over the SMART scheme is
due to the more compressive linear function used in the interval [0.2,0.5] of the
NVD plot. Other, more compressive schemes can be devised, such as Roe’s
SuperBee scheme [27], but it would be expected that these schemes will yield less
accurate results than the STOIC (or SMART) scheme, due to substantial false
compression, that is, the tendency to flatten round profiles.
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CONCLUSION

In this article, 2 number of schemes formulated using the NVF methodology
have been tested. Furthermore, a composite convection scheme, based on the
normalized variable formulation (NVF) of Leonard, has been proposed for finite-
volume calculations of incompressible steady flows. The scheme, involving a
second- and third-order interpolation profile in the monotonic region, is relatively
simple to implement and is stable, bounded, and highly accurate. The scheme was
tested for three situations involving large gradients, and in all three tests the
accuracy of the computed results by the present method was found to be superior
to that of the CLAM, MUSCL, EULER, MINMOD, and OSHER schemes, and
better than the SMART scheme. All these desired features, combined with ease of
implementation due to the deferred correction procedure, make the present
scheme a good alternative to many existing schemes, specifically to the first-order
upwind scheme that is unfortunately still widely used in the CFD community.
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