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TRANSIENT SCHEMES FOR CAPTURING INTERFACES
OF FREE-SURFACE FLOWS
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Mechanical Engineering Department, Faculty of Engineering & Architecture,
American University of Beirut, Beirut, Lebanon

This article presents a new methodology for the development of Transient Interpolation for
Capturing of Surfaces schemes suitable for the simulation of free-surface flows, which is
given the acronym TICS. The newly developed approach is based on a switching strategy
that combines a bounded high-order transient scheme with a bounded compressive transient
scheme. Bounded high-order and compressive transient schemes are constructed by discre-
tizing the transient term in the volume-of-fluid (r) equation over a temporal control-volume
in a way similar to the discretization of the convection term over a spatial control-volume,
allowing advances in building convective schemes to be exploited in the development of
bounded high-order and compressive transient schemes. Following that approach, a bounded
version of the second-ovder upwind Euler scheme is constructed (B-SOUE). The B-SOUE
is used to develop a family of temporal compressive schemes that is denoted by the B-CE™
Sfamily, where “m” refers to the slope of the scheme on a temporal normalized variable dia-
gram. The TICS methodology is then applied to the B-SOUE scheme and the B-CE™ family
of schemes to create a new family of transient interface-capturing schemes that is desig-
nated by TICS™. The virtues of the TICS™ family, in producing a steep interface for the
volume-of-fluid (v) field that defines the volume fiaction occupied by the different fluids
in a computational domain, are demonstrated through results generated using two schemes
of the family (TICS™” and TICS*’). The accuracy of the new transient TICS schemes is
compared to the first-order Euler scheme, the Crank-Nicolson scheme, and the B-SOUE
scheme by solving four pure advection test problems (advection of hollow shapes in an obli-
que flow field and advection of a solid body in a rotational flow field) and one flow problem
(the break of a dam) using both the SMART and the STACS convective schemes. Results,
displayed in the form of interface contours, demonstrate that predictions obtained with
TICS"” and TICS*® are far more accurate and less diffusive, preserving interface sharp-
ness and boundedness at all Courant ber values considered.

INTRODUCTION

The growing need in a number of industries (e.g., automotive, chemical
processing, aeronautic, etc.) for numerical simulation tools to help engineers tackle
problems of continuously increasing complexity has been the major driver behind the
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NOMENCLATURE

B body force per unit volume 0 angle between interface and velocity

Co Courant number vector

£(0) blending function that varies between i, p® average and kth fluid dynamic
0 and 1 viscosity

F(r) advection term in r equation p, p®© average and kth fluid density

m slope in r functional relationship T shear stress tensor

n total number of fluids ® angular velocity

P pressure or main grid point .

r volume fraction Subscripts .

S surface vector C refers to compressive scheme

. time HR refers to high-resolution scheme

v velocity vector shared by all fluids f refers to control-volume face

vV cell volume Superscripts

o parameter varying between 0 and 1 (k) refers to kth fluid

At time step n refers to current time step

Ax, Ay mesh size in x and y directions for n—1 refers to previous time step
Cartesian grid n+1 refers to next time step

sustained research effort in the area of computational fluid dynamics (CFD). Specifi-
cally the use of CFD in ship design and metal casting [1, 2] has put a renewed focus
on the development of numerical techniques for the simulation of free-surface flows
[3]. The proper simulation of these types of flows requires, among other things, a
special set of transient and spatial schemes for the advection of sharp fluid—fluid
interfaces.

In solving free-surface flow problems it is essential to preserve the sharpness of
the interface between the two fluids. This has usually been achieved using two gen-
eral methods denoted in the literature as interface-tracking methods and interface-
capturing methods. In interface-tracking methods the interface is explicitly
reconstructed and used in the evaluation of the advection scheme [4-12]. In
interface-capturing methods, the interface is algebraically determined without recon-
struction [13-23]. A powerful interface-capturing method is the volume-of-fluid
(VOF) method [13-15]. In this method a scalar field (volume-of-fluid field, designa-
ted in this work by the r field) is introduced in the discretized governing equations to
describe the volume fraction of a fluid in a cell. As such, information about interfaces
is not readily available and is reconstructed when needed from the r field values.

It has been shown that in order to preserve the sharpness of interfaces, the dis-
cretization of the r equations in both the transient and spatial domains has to be
accurate enough to prevent the smearing associated with numerical diffusion. In a
recent article, Darwish and Moukalled [3] presented a new treatment for spatial
schemes within the context of the VOF method [13-15].

Little work has been done on devising transient schemes suitable for predicting
free-surface flows, and usually the Euler [24], the Crank-Nicolson [25], or the
second-order upwind Euler [26] scheme has been used. The numerical diffusion pro-
duced by the first-order Euler scheme [24] is akin to that of the first-order-upwind
scheme used in spatial discretization and thus should be avoided in order to
preserve the sharpness of the interface. On the other hand, while the second-order
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Crank-Nicolson and the second-order upwind Euler schemes are less diffusive their
degree of success is highly dependent on the value of the Courant number.

In this article, a new approach for developing finite-volume-based transient
schemes for the discretization of the r field, denoted by TICS (Transient Interp-
olation for Capturing of Surfaces), is developed. The new methodology exploits
for its formulation the similarity between advection discretization in space and
transient discretization in time. The new methodology is used to construct two
new schemes that are compared in terms of accuracy to the Euler scheme, the
well-known crank-Nicolson [25] scheme, and to a newly developed bounded
version of the second-order upwind Euler scheme; and it is shown to be superior
in producing lower numerical diffusion while preserving interface sharpness and
boundedness.

In the remainder of this article, after a brief description of the VOF method,
applying the finite-volume principles to the transient discretization approach is
described. This is followed by a demonstration of the similarity between transient
and spatial schemes. Then a number of transient schemes are reformulated following
the finite-volume approach and the new TICS approach is detailed. Finally, results
related to the advection of three hollow shapes in an oblique velocity field and a slot-
ted circle in a rotational flow field in addition to the well-known dam-break problem
are presented and discussed. Predictions are obtained using the upwind [27], Crank-
Nicolson [25], bounded second-order upwind Euler, and the two new TICS-based
transient schemes with either the SMART [28, 29] or the STACS [3] convective
scheme.

THE VOLUME-OF-FLUID METHOD

The volume-of-fluid method [13], depicted schematically in Figure la, is a
surface-capturing method for predicting flows composed of multiple immiscible
fluids. The various fluids are assumed to share a common velocity field, and solutions
are obtained by solving the averaged Navier-Stokes equations given by

a(p)

P (v =0
a(pv) _
o +V-(pw)=V-1—VP+B

with density and viscosity evaluated using the following mixture relations:
n n
p= Z rBp®) and p= Z PO = number of fluids (2)
=1 k=1

where r® represents the volume fraction of the kth fluid. These r™® fields are

computed by solving scalar convection equations defined as

ortk)
ot

+v.- V9 =0 fork=1,2,...,(n—1) n=number of fluids (3)
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(b)

Figure 1. (@) Schematic of the volume-of-fluid method. (b) Discretization of the physical domain into
spatial control-volumes (color figure available online).

and constrained by a conservation-of-volume equation given by

n
Zr(k)zl for k=1,2,...,n n=number of fluids (4)
k=1

For the case of incompressible fluids, the continuity equation can be simpli-
fied to
V.v=0 (5)

It is this form of the continuity equation [Eq. (5)] that is used in the derivation of the
pressure-correction equation in order to avoid numerical difficulties that arise when
large disparities in fluid densities exist.

FINITE-VOLUME DISCRETIZATION OF THE TRANSIENT TERM IN THE r
FIELD EQUATION

In the finite-volume method [30-44], solutions are obtained by subdividing the
physical domain under consideration into a finite number of control-volumes, where
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each is associated with a grid point placed at its geometric center (Figure 15). The
partial differential equations mathematically describing the conservation laws [e.g.,
Egs. (1) and (3)] are integrated over each control-volume, and profile approxima-
tions for the diffusion and convection terms are made in each coordinate direction
to replace the derivatives with algebraic expressions. The integral value of the source
term (and usually the transient term) over a control-volume is normally evaluated by
assuming the source at the control-volume center to be equal to the mean value over
the whole control-volume. The resulting system of algebraic equations is then solved
using a line-by-line tridiagonal matrix algorithm [27] to obtain the solution.

For unsteady problems, the r field equation [Eq. (3)] may generally be written as

or
== F() (©

in which the superscript (k) is dropped for convenience and F(r) represents the advec-
tion term. The usual practice followed in the transient discretization of Eq. (6) is to
integrate both sides of the equation over the time interval [z, 74Af] to yield

t+At a}" t+At
/ Py dt = / F(r) dt = [temporal average of F(r)] At (7)
Jt t

Then, the discretized form is obtained as

FEA = L F(r) At (8)

This formulation yields exact integral value of the term (0r/0¢), however, the value of

F(r) is highly dependent on the scheme used. In general, F(r) is written as

F(r)=aF(") + (1 - oc)F(r’*A’) 9)

Different schemes are obtained depending on the value of a. Specifically, the
explicit Euler, fully implicit Euler, and Crank-Nicolson schemes are obtained by set-
ting o to 1, 0, and 1/2, respectively. The only unconditionally stable discretization
[27] is the one obtained using the fully implicit scheme, which is first-order-accurate,
highly diffusive, and consequently not suitable as an interface-capturing-scheme.
Even though the Crank-Nicolson scheme is second-order-accurate, it suffers from
oscillation at values of Courant number greater than 2 in one-dimensional space.

A Dbetter approach, followed in this work, is to apply the finite-volume
principles to the transient discretization. For that purpose, similar to the spatial dis-
cretization of the convective term, time integration is performed over a temporal
control-volume, as shown in Figure 2a. Unlike the previous method, integration
of Eq. (5) is performed over the time period [f — Az/2, t + At/2], yielding

t+At/2 or 1+At/2
/ — dt :/ F(r) dt (10)
t t

_atj2 Of —At/2
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t+At n+1
O O
—— t+At/2 Ptz ——{n+1/2
time t n
o F(rm) ®
—El—t-At/2 ni12 —E—n-122
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O O
t-2At n-2
O @)
(a) (®)
More Compressive
Sou vr

34 — —f—

/>

Interface &
P

Y

"7,

(©) (@

Figure 2. (a) Temporal control-volumes. (b) Normalized variables diagram of compressive transient
schemes. (¢) Angle between interface and velocity vector at the center of a spatial control-volume.

The discretized form of Eq. (10) may be written as

P2 =2 LR A (11)

or, equivalently as

rz1+l/2 — },,1171/2 —|—F(V) At (12)

It is worth noting that the source term F(r) evaluated implicitly at time 7 (i.e.,
F(r) = F(/") with a=0) is second-order-accurate over the interval [r—Az/2, ¢+
At/2]. The onus of the discretization is now moved to the transient term on the
left-hand side (i.e., the term 0r/0f). The resemblance of the transient term to the
advection term can be used advantageously to develop new transient schemes. In
what follows several known transient schemes are reconstructed following the

reasoning used to develop advection schemes in setting the ground for the
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development of the newly suggested transient scheme in the context of a temporal
control-volume.

First-Order Transient Euler Schemes

The transient first-order implicit Euler scheme is obtained by using a first-order
transient “upwind’ interpolation profile. That is, the value of r at the temporal
control-volume face is set equal to the value at the upwind control-volume center.

rn+1/2 — " and rnfl/2 _ rnfl (13)
Using Eq. (13), Eq. (12) becomes

M rn—l

=F(r" 14
= F() (14)
which is the first-order implicit Euler scheme.

The transient first-order explicit Euler scheme is obtained by using a first-order
transient “downwind” interpolation profile. That is, the value of r at the temporal
control-volume face is set equal to the value at the downwind control-volume center.

rn+1/2 — rn+1 and rnfl/2 — (15)
Using Eq. (15), Eq. (12) becomes
n+l _ n
it S ) (16)

At

which is the first-order explicit Euler scheme.

Second-Order Central Scheme (Crank-Nicolson)
The Crank-Nicolson (CN) scheme is obtained by calculating the value of r at an
interface as the average of the r values at the main points straddling the interface, i.e.,

1 1 1 1
n+l/2 _ = n+l | = on n—1/2 _ > .n | ~ n—1
r —2r +2r and r —2r +2r (17)

Substituting in Eq. (12), the discretized r field equation is obtained as

—r

2 At

;,n+1 n—1

=F(") (18)

As shown below, the Crank-Nicolson scheme can also be obtained as the sum
of the upwind and downwind transient schemes.
- rnfl

——=F(") (19)

Upwind —
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rn+l .
Downwind — A = F(r") (20)
. . L L L L ., )
Upwind + downwind — + =F(") + F(r")
At At
rn+1 _ },.nfl
— F n
2 Al ")
— Crank — Nicolson (21)

This formulation enables the implementation of the Crank-Nicolson scheme within
an implicit scheme framework as a two-step procedure. In the first step, an implicit
Euler formulation is used to find 7" from

7= A F() (22)

while in the second step the Crank-Nicolson value at time n + 1 is found explicitly as

rn+l — P rnfl

Y _ F(}’n) _ Y = ’,n+l — rn—l (23)

In terms of implementation, to find the solution at time 7 + A¢, the time step for
the Crank-Nicolson scheme is chosen to be half Az, i.e., Afcrank Nicolson = AZ/2. In
this work, the Crank-Nicolson scheme is implemented using the two-step procedure
described above.

Second-Order Upwind Euler (SOUE) Scheme

Using a second-order “‘upwind” interpolation profile [26], the interface r values
are approximated as

== and ==/ —=r

3 3 1
n+1/2 _ < n n—1/2 n—1 n—2
' 2" 2 2 2 (24)

Substituting in Eq. (12), the discretized r field equation is obtained as

31— 4}’"_1 + rn—2
2 At

= F(") (25)

which is the second-order upwind Euler (SOUE) scheme.

Bounded Second-Order Upwind Euler (B-SOUE) Scheme

The second-order transient “upwind’ interpolation, like its spatial counter-
part, is not a bounded scheme in that it can yield values for r that are above or below
the local maximum or minimum, respectively. In the volume fraction equation this
would lead to unacceptable values above 1 or below 0. To resolve this problem a
bounded version of the scheme is used in order for r to be in the range 0 to 1.
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The implementation of the bounding is similar to that of the convection bounded-
ness criterion (CBC) [29]. Mathematically, the bounded second-order upwind Euler
(B-SOUE) scheme is given by

. (3 1
P2 = Max[Mm(zr” —EV”’I, 1>, 0} and

P12 = Max [Min (é Pl lr”_z, 1), 0] (26)
2 2
Note that the values for /'~ /2 are already bounded between (0, 1).

It is important to mention here that implicit bounding of the Crank-Nicolson
scheme is not achievable, as its implementation involves an explicit step [Eq. (23)].
Definitely, explicit bounding of Eq. (23) is possible; however, it causes nonconserva-
tion of the r field as time progresses (i.e., due to explicit clipping of the r values, the
total initial value of r is not conserved). For this reason, attention in this work is
focused on conservative implicit bounding.

Compressive Euler Schemes

For interface capturing, a compressive transient scheme is required [3], which
can be built in a way similar to spatial compressive schemes. Considering the nor-
malized variable diagram (NVD) [45] of the second-order upwind Euler (SOUE)
scheme [46] shown in Figure 2b, a more compressive scheme can be developed by
using a steeper slope than for the SOUE scheme and bounding the resulting value
between 0 and 1. Mathematically, this is equivalent to having a base scheme of

P2 = g — (m— l)r"’1 and 72 = — (m— l)r”’2 (27)

Moreover, it is to be noted that for the SOUE scheme, m = 3/2; taking a value
for m>3/2 yields a more compressive scheme, but the accuracy decreases to
first-order.

The equivalent bounded form of Eq. (27) becomes

P12 Max{Min [mr” —(m— l)r"_l, 1]7 0}

28

P12 = Max{Min[mr"" — (m — 1), 1], 0} (28)
The resulting family of schemes whose functional relationships are given by Eq. (28)
is denoted in this work by B-CE™, where “m’ changes depending on the value used.
The implementation of the above scheme is done via the deferred correction
procedure [28], whereby the discretization of " !/? is written as

P2 = (Max{Min[mr" — (m — 1), 1], 0} — ")

29
P12 = Max{Min [mr"~' — (m — 1)r""%, 1], 0} (29)

where " is evaluated implicitly at the current iteration while other terms are evalu-
ated explicitly using values from the previous time steps and/or previous iteration.
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Transient Interpolation for Capturing of Surfaces (TICS)

In [3] it was shown that the best approach for developing an advection
interface-capturing scheme is through a switching strategy [17, 48], whereby the
values of a compressive and a high-resolution (i.e., a bounded high-order) advection
scheme are blended together, with the blending factor depending on the angle
between the flow direction and the grid lines. In the context of a transient finite-
volume discretization, a similar argument is projected to hold for the transient term.
Therefore, a transient scheme for capturing interfaces of free-surface flows should be
based on a combination of a compressive (C) and a high-resolution (HR) transient
scheme, with the blending parameter being function of the angle 6 between the inter-
face direction and the velocity vector. The angle can be determined at the spatial
control-volume center using the velocity vector and the gradient of the r field, whose
unit vector represents the direction normal to the interface (see Figure 3b).
Mathematically, 0 is calculated as

Vr-v
cos(0) = = (30)
V(v
With TICS the value of r at a temporal control-volume face is given by
P = T 2 (0) 4 A0 = £ (0)] 31)

rnfl/Z _ rg—l/z = rnc—l/Zf(e) + ranR1/2[l _f(e)]

In Eq. (31), f(9) is a blending function that varies between 0 and 1.

(©) (@)

Figure 3. Schematics of the advected (@) hollow square, (b) rotated hollow square, (¢) hollow circle, and
(d) slotted circle problems.
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In the newly suggested TICS methodology, the HR scheme selected is the
bounded second-order Upwind Euler scheme, while the compressive scheme is the
previously presented bounded compressive Euler scheme. Moreover, in order to
minimize the stepping behavior of the compressive Euler scheme, the blending
between the two schemes is performed using Eq. (31) with £(6) set to [cos(0)]*, which
enables a rapid but smooth switching away from the compressive scheme. The family
of schemes that can be developed following the TICS approach, based on the pre-
viously presented compressive Euler and bounded second-order Euler schemes, is
denoted as the TICS™ family of schemes. It should be obvious that the TICS strategy
is not limited to the above schemes and can be used to devise a family of free-surface
transient schemes by using different combinations of C/HR transient schemes.

The functional relationship for the TICS™ family of schemes is given by

r"TJ,ré/Sz = Max{Min[mr" — (m — 1)"~", 1], 0}[cos(0)]*+
: 3 n 1 n—1 4
Max [Mln(zr -5, 1),0} {1~ [cos(o)]*}

r'}}ééz = Max{Min[mr"~" — (m — 1)7"72, 1], 0}[cos(0)]*+
: 3 n—1 _ 1 n—2 _ 4
Max [Mm(zr 37 1), 0}{1 [cos(0)] }

In this work the TICS methodology is used to develop and test two new schemes,
denoted by TICS'7® and TICS*?, which are obtained by assigning m the values of
1.75 and 2.5, respectively.

(32)

RESULTS AND DISCUSSION

In this section, the performance of the newly developed transient interface-
capturing schemes TICS'”> and TICS*® in solving four advection test problems
(Figures 3a-3d) and one flow problem is compared to that of the first-order Euler,
the bounded second-order Euler, and the Crank-Nicolson transient schemes. Results
generated using both the SMART and STACS convective schemes are reported in
the form of r-contour plots for three values of Courant number (Co), defined at a
control-volume face as

_ \/ Sf At

Co f Vf‘

(33)
Moreover, all calculations were performed assuming that surface-tension
effects are negligible.

Advection of Hollow Shapes in an Oblique Velocity Field

Three different hollow shapes [49, 50] are convected in an oblique velocity field
defined by v[2, 1]. The computational domain is a square with sides of length 1 m,
subdivided into 200 x 200 (40,000) square control-volumes. The following three
shapes, depicted in Figures 3a-3c¢, are considered: a hollow square (Figure 3a)
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aligned with the coordinate axes of the outer and inner sides with values of 0.3 m and
0.2 m, respectively; a hollow square rotated through an angle of 26.57° with respect
to the x axis (Figure 3b) of dimensions similar to those of the above hollow square;
and a hollow circle (Figure 3¢) with outer and inner diameters with values of 0.3 m
and 0.2 m, respectively.

All shapes are initially centered at (0.2, 0.2) m, with their exact positions
centered at (0.8, 0.5) m after 0.3s. Computations using the various schemes were
performed for three different time steps, Az=6.25 x 107%s, 1.25x 1035, and 2.5 x
1073, yielding Courant number values of 0.25, 0.5, and 1, respectively. Computa-
tions at any time step were terminated when the maximum absolute residual dropped
below a very small number &, which was set at 5 x 107>, The exact solutions for the
problems considered are presented in Figures 3a—3c. In all calculations, the densities
of the fluid and convected shape are equal.

Results for the various shapes are depicted in Figures 4-9. The SMART convec-
tive scheme results are displayed in Figures 4, 6, and 8, while the STACS scheme results
are shown in Figures 5, 7, and 9. For both convective schemes, the r fields obtained
using the various transient schemes at different Co values after the lapse of 0.3 s are pre-
sented. As depicted, the trend is the same for all shapes. The SMART scheme profiles
(Figures 4, 6, and 8) obtained using the various transient schemes are more diffusive
than the corresponding profiles generated using the STACS convective scheme
(Figures 5, 7, and 9), for reasons detailed by Darwish and Moukalled [3]. The first-order
Euler scheme profiles obtained with SMART (Figures 4a, 6a, and 8a are highly diffus-
ive at all Co value considered, with false diffusion effects increasing as the Co value
increases. This is expected, as numerical diffusion resulting from temporal discretiza-
tion of the implicit Euler scheme is directly proportional to the Co value [3, 51].

Euler profiles generated using STACS are less diffusive but are associated with
the formation of wiggles along interfaces normal to the flow direction. The ampli-
tude of these wiggles increases as Co increases (Figures 5«4, 7a, and 9a). Profiles gen-
erated with the second-order Crank-Nicolson scheme (Figures 4h-9b) are much less
diffusive than the Euler (upwind) profiles, and at low Co are of quality equivalent to,
if not better than the ones obtained with the B-SOUE scheme. The CN profiles
obtained with STACS (Figures 4b, 6b, and 8b) are sharper than those obtained with
SMART (Figures 5b, 7b, and 9b). The major problem with the CN scheme, however,
is its boundedness at higher values of Co. As depicted in Figures 4b-9b, unphysical
values of r, below 0 and above 1, are obtained for Co > 0.5, with the range of values
becoming larger as Co increases. This limits the usefulness of the CN to low Co
values, which is a major constraint. Results obtained with the B-SOUE scheme
(Figures 4¢-9c¢) are slightly more diffusive than the ones obtained with the CN
scheme; however, the r values are all bounded in the range between 0 and 1. With
the SMART convective scheme, the B-SOUE (Figures 4¢, 6¢, and 8c¢) transient
scheme is not capable of sharply resolving the interfaces. Similar to the CN scheme,
sharper interfaces are obtained with the B-SOUE scheme when using STACS
(Figures 5c¢, 7¢, and 9¢) in comparison with those obtained with the SMART convec-
tive scheme (Figures 4c¢, 6¢, and 8¢). With the STACS convective scheme, however,
wiggles along the interfaces in the direction of the flow are generated at Co=1 for
the rotated hollow square and hollow circle problems. Interfaces predicted by the
newly developed TICS'” (Figures 4d-9d) and TICS>® (Figures 4e-9¢) transient
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Figure 4. Contour plots of the r field for the advection in an oblique flow field of the hollow square
problem computed using the SMART advection scheme.

schemes are sharper than those produced by the previously predicted schemes, with
profiles generated by TICS®® being the sharpest. This is a clear indication of the
superiority of the TICS approach.

When using the STACS convective scheme, similar to results obtained with the
B-SOUE scheme, profiles for the rotated hollow square and hollow circle problems
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Figure 5. Contour plots of the r field for the advection in an oblique flow field of the hollow square
problem computed using the STACS advection scheme.

predicted by TICS'7°, even though sharp, show wiggles along interfaces in the direc-
tion of the flow at Co=1. The amplitude of these wiggles is lower than the ones
obtained with the B-SOUE transient scheme. On the other hand, profiles obtained
with TIC?? are free of wiggles.



INTERFACES OF FREE-SURFACE FLOWS 185

Euler

I F,

‘min > " max

CN

Voins i

‘min > " max

(b

B-SOUE

Tlcsl.75

Trin st

‘min 2" max

TICS*®

Piin > Pnax 0,1 0,1
(e

Figure 6. Contour plots of the r field for the advection in an oblique flow field of the rotated hollow square
problem computed using the SMART advection scheme.

To understand the cause of these wiggles, additional computations for the
rotated hollow square and hollow circle problems were performed; the results are
displayed in Figures 10 and 11, respectively. Contours presented in Figure 10 are
computed for Co values of 1.5, 2, and 2.67. Contours predicted by the B-SOUE
scheme and displayed in Figure 10a show wiggles along interfaces normal to the flow
direction. The amplitude of these wiggles increases as the Co value increases. As
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Figure 7. Contour plots of the r field for the advection in an oblique flow field of the rotated hollow square
problem computed using the STACS advection scheme.

shown in Figure 10b, the use of the TICS'”° scheme reduces the amplitude of these
wiggles but does not eliminate them. The value of slope m in TICS'" is only 0.25
higher than the value of m in the B-SOUE, which indicates that the scheme is still
diffusive. However, the use of the TIC?*® greatly improves results, with the wiggles
almost nonexistent at Co=1.5, barely apparent at Co=2, and of low amplitude



INTERFACES OF FREE-SURFACE FLOWS 187

Euler

Voino T

min * " max

CN

FoinoTh

‘min > " max

B-SOUE

in o7, 0.00055,1 0.00013,1

min > "max

TICSIJS

Fin > Tinax

TICS*®

Voino T

‘min > " max

Figure 8. Contour plots of the r field for the advection in an oblique flow field of the hollow circle problem
computed using the SMART advection scheme.

at the highest Co considered (Co=2.67). To check continuation of the trend as m
increases, a value of 3 was assigned to m and results were generated using a third
scheme (TICS?). Contours generated with TICS® are displayed in Figure 10d. As



188 F. MOUKALLED AND M. DARWISH

)5
g

=
Euler (70 “717 3
s RS ST
P Fo 0.00048,1 0.0178,1
CN
Proin > Ponax —0.0243,1.016
(0)
B-SOUE
Frnin > Pnax
(©
TICS"” .
Finin > Vnax 0,1
(d)
TICS*® ‘
Priin > Ve 0,1 0,1
(e

Figure 9. Contour plots of the r field for the advection in an oblique flow field of the hollow circle problem
computed using the STACS advection scheme.

shown, wiggles at interfaces are almost nonexistent at all Co values considered. This
is a clear demonstration that the use of a compressive transient scheme reduces the
amplitude of wiggles and, depending on the Co values considered, may completely
eliminate them. The results presented, and others not presented for compactness,
indicate that wiggles appear only with STACS. No wiggles were generated when
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Figure 10. Comparison of the r-contour plots computed using the STACS advection scheme and a variety
of transient schemes at high Co values for the advection in an oblique flow field of the rotated hollow
square problem.
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using the SMART convective scheme. Based on this, it can safely be stated that
wiggles appear due to the dispersive effect of the convective STACS scheme, which
switches to the highly compressive SUPERBEE scheme [52] when the normal to the
interface is in the direction of the flow [3] and are eliminated (minimized) with the use
of a transient compressive scheme.

The drawback of using a highly compressive transient scheme, however, is the
clipping problem that deteriorates the convected shape (e.g., Figure 10d at Co =2.67).
To further investigate this issue, computations were performed using a purely com-
pressive transient scheme; results are depicted in Figures 10e and 10f. Contours of
the r-field shown in Figure 10e, obtained using the B-CE'’> scheme, are close to
those predicted by the B-SOUE scheme. This is expected, for the reasons mentioned
earlier. The difference between the two results is a reduction in the amplitude of
wiggles and the splitting of the convected profile. This issue is further revealed by
plots displayed in Figure 10/ where the wiggles are almost nonexistent and shape
splitting occurs at all Co values.

To demonstrate the need for TICS, contours of the convected hollow circle
problem obtained with TICS and compressive schemes for Co=0.5, 1, and 1.5 are
displayed in Figure 11. Whereas profiles generated with TICS'”* (Figure 11a) and

B-CE'”

TICS*®

B_CEZ.S

Figure 11. Comparison of the r-contour plots computed using the STACS advection scheme and either a
TICS or a bounded compressive transient scheme for the advection in an oblique flow field of the hollow
circle problem.
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B_CE'” (Figure 11b) are of comparable quality, those obtained with TICS*®
(Figure 11¢) and B_CE?*® (Figure 11d) are very different. The highly compressive
B-CE** scheme causes splitting of the convected shape, as shown in Figure 11d. On
the other hand, results shown in Figure 11¢ generated by TICS*® are very smooth
and sharply resolves the interfaces. This is a clear indication of the need for the TICS
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Figure 12. Contour plots of the r field at high Co values for the advection in an oblique flow field of the
hollow circle problem computed using the STACS advection scheme.
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approach to develop schemes that are capable of switching from a compressive to a
high-resolution mode or to a combination of the two when needed.

By comparing contours obtained with the various schemes (Figures 4-11), it is
clear that the performance of TICS®? is superior to all other schemes, preserving
sharp interfaces without noticeably altering the convected shapes.
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Figure 13. Contour plots of the r field for the advection in a rotational flow field of the slotted circle
problem computed using the STACS advection scheme.
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Advection of a Slotted Circle in a Rotational Flow Field

The rotation of a slotted circle around an external point is a difficult problem
for advection schemes to solve, even though its exact solution is trivial [53, 54]. The
computational domain considered here is a square with sides of length 4 m discre-
tized into 200 x 200 (40,000) square computational cells, giving a control-volume
of size Ax=Ay=5x 10> m. The circle of diameter 1 m has its center at (2, 2.65)
m and is cut by a slot of width 0.12m. The rotation of the slotted circle is driven
by a vortex flow centered at the middle of the domain (2, 2) of angular velocity
®=0.5rad/s. The time required by the slotted circle to complete a revolution is
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Figure 14. (a) Physical model of dam-break problem. () Comparison between numerical solutions and
experimental results of the water column height and front position of the leading water for the broken-
dam problem.
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2n/o s. With the geometry considered, the Courant number varies from a minimum
(equal to 0.15 x o x At/Ax) at point (2, 2.15) m to a maximum (equal to 1.15 x
® X At/Ax) at (2, 2.65) m. The problem is solved for three different local Courant
number values such that the total period required for a revolution is subdivided into
840, 420, and 210 time steps, respectively. The exact solution for the problem is dis-
played in Figure 3d.

Contour plots for the r field generated using the SMART and STACS convec-
tive schemes with the various transient schemes are presented in Figures 12 and 13.
As shown, the trend of results is similar to those presented earlier, with the sharper
interfaces predicted when using the STACS convective scheme. The first-order Euler
scheme profiles obtained with SMART (Figure 12a) are highly diffusive, whereas

Co,,. =0.852 Co,,. =1.704 Co,,, =2.556
Euler
(a)
B-SOUE
(0)
TICS1.75
(©
TICS™

C)

Figure 15. Contour plots of the r field for the collapse of a liquid column at time 7* = 1.278 computed
using the SMART advection scheme.
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profiles obtained with STACS are wiggly. Again, r values generated with the second-
order CN scheme are unbounded (Figures 125 and 135) at high values of Co, which
limits the usefulness of the scheme to low Co values. Interfaces generated by the
B-SOUE scheme (Figures 12¢ and 13c¢) are slightly more diffusive than the one
obtained with the CN, however they are bounded at all Co values. This slight
decrease in sharpness is the price that has to be paid for the scheme to remain
bounded. The wiggles appearing at high Co in Figure 13¢ are due to the increase
in false diffusion, as explained earlier. Profiles predicted by TICS'”® (Figures 12d
and 13d) and TICS*® (Figures 12¢ and 13¢) are much sharper, with the sharpness
increasing as m increases (i.e., sharper interfaces are obtained with TICS*?). Never-
theless, the shape of the slot is better preserved with the TICS!”> scheme.

Co,,,, =0.852 Co,,. =1.704 Co,,, =2.556
Euler
B-SOUE
(0)
TICS1.75
©
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Figure 16. Contour plots of the r field for the collapse of a liquid column at time #* =1.278 computed
using the STACS advection scheme.
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The Dam-Break Problem

A schematic of the model is presented in Figure 14a. In this model, a column of
water with width of @ =0.146 m and height 2« is located on the left side of a square
tank with sides of size 4a filled with air. Water is considered viscous, with a constant
density p,, and viscosity p, of values 998.2kg/m® and 0.993 x 10 *Pa-s, res-
pectively. Air is also considered to be of constant density and viscosity (p,=
1.164 kg/m3, p,=1.824 x 10> Pa-s). The water column, which is initially at rest,
starts collapsing under its own weight at time 1=0.

This problem differs from the previously presented problems in that the velo-
city field is not known a priori; rather, it is obtained as part of the solution. There-
fore, in addition to the r equation, the momentum and continuity equations have to

Co,,, =0.852 Co,,, =1.704 Co,,, =2.556
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TICS'™
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Figure 17. Contour plots of the r field for the collapse of a liquid column at time #* =2.54 computed using
the SMART advection scheme.
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be solved. The resulting flow field at time z>0 is modeled as laminar, the gravi-
tational acceleration g is assigned the value of 9.8 m/s?, and surface tension effects
are neglected. The boundary conditions are all set as no-slip wall conditions. The
physical domain is subdivided into 80 x 80 control-volumes and the problem is
solved for three different time steps, with values of 0.00265s, 0.0052s, and 0.0078 s.
With the maximum velocity not exceeding /2 X g x (2a) = 2.392m/s, these time
steps correspond to Cop,,x =0.852, 1.704, and 2.556, respectively. In the momentum
equations, the convective terms are discretized using the SMART scheme, while the
unsteady term is discretized via a first-order Euler scheme. In the r equation, how-
ever, the convective terms are discretized using either SMART or STACS, while
the unsteady term is discretized using the various transient schemes presented earlier.
Results are validated in Figure 145 by comparing the front position of the leading

Co,,.. =0.852 Co,,, =1.704 Co,,., =2.556
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Figure 18. Contour plots of the r field for the collapse of a liquid column at time #* =2.54 computed using
the STACS advection scheme.
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water and the water column height predicted using STACS and TICS*? with experi-
mental measurements reported by Martin and Moyce [55]. In the experimental
results, the nondimensional times are different for the front position of the leading
water and the water column height. The same nondimensional parameters are used
here in the presentation of the numerical results to allow a direct comparison with
the original publication [55]. As shown in Figure 145, the column height values pre-
dicted numerically are very close to experimental data, while the front positions of
the leading water calculations show a small deviation from the measurements. Simi-
lar deviations were reported in the literature (e.g., [56], with computations performed
using the FLUENT commercial software) and may be due to the imperfect initial
conditions in the experiments (e.g., nonuniform breaking of the diaphragm) and
the physical effects not considered in the numerical model (e.g., surface tension).

Co,,, =0.852 Co,,, =1.704 Co,,, =2.556
Euler g
Lo o
B-SOUE
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(©)
TICS*®

C)

Figure 19. Contour plots of the r field for the collapse of a liquid column at time 7* = 6 computed using the
SMART advection scheme.
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Having established the credibility of the numerical procedure and calculation
routines, solutions are generated for the various transient schemes using the SMART
and STACS convective schemes; the results are presented in Figures 15-20. In all
computations, results at any time step are assumed to be converged when the
maximum absolute value of the residual of all variables falls below a small number
& set at 107>

Contour plots of the r field generated by SMART are displayed in Figures 15,
17, and 19, while those generated by STACS are depicted in Figures 16, 18, and 20.
In each of these Figures, solutions obtained using the first-order Euler (Figures 15a—
20a), B-SOUE (Figures 15b-20b), TICS'”> (Figures 15¢-20¢), and TICS*®
(Figures 154-20d) transient schemes at three values of the Cop,., are presented.

Co,,, =0.852 Co,,, =1.704 COp =2.556
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Figure 20. Contour plots of the r field for the collapse of a liquid column at time #* = 6 computed using the
STACS advection scheme.
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Figures 15 and 16 show interfaces at the dimensionless time ¢* = t1/g/a = 1.278,
Figures 17 and 18 at #* =2.54, and Figures 19 and 20 at #* = 6. Computations using
the CN scheme diverged after a certain number of time steps, not allowing results to
be generated at the desired ¢* values, with the time over which results could be
obtained decreasing as Coy,,y increases. For this reason, no results using the CN
scheme are presented.

The trend of results is similar to that presented earlier, with interfaces predicted
by STACS (Figures 16, 18, and 20) being sharper than the corresponding ones
obtained with SMART (Figures 15, 17, and 19) for all transient schemes, due to
STACS being more compressive. Also, results become more diffusive, with a wider
spread of the r contours around the interface, as Co,,,, increases. As with pure
advection problems, the first-order Euler scheme is the most diffusive (Figures 15a—
20a) at all Cop,.y and ¢* values. Interfaces predicted by the TICS'7 (Figures 15¢-
20c¢) scheme are slightly sharper than those obtained with the B-SOUE
(Figures 15b-20b) scheme. This slight difference is due the fact that TICS"” (m =
1.75) is slightly more compressive than B-SOUE (m=1.5). As shown in
Figures 15d-20d, the sharpest interfaces at all Co,,,, and ¢ values are those pre-
dicted by the TICS* scheme. As seen in the plots, all schemes are capable of predict-
ing the collapse of the water column on the left wall of the domain (¢* =1.278), the
rise of water on the opposite side (* =2.54), and then its descent (£* = 6).

Again, by comparing contours obtained with the various schemes (Figures 15—
20), it is clear that the performance of TICS*’ is superior in preserving sharp
interfaces.

CLOSING REMARKS

A new methodology for constructing transient interface-capturing schemes,
given the acronym TICS, was presented. The TICS approach is based on a switching
strategy that combines a bounded high-order transient scheme with a bounded tran-
sient compressive scheme. Bounded high-order and compressive transient schemes
were constructed by discretizing the transient term over a temporal control-volume
in a way similar to the discretization of the convective term. The TICS methodology
was then applied to the bounded high-order and compressive transient schemes to
create a new family of transient interface-capturing schemes that was designated
by TICS™. Two schemes (TICS'7® and TICS*”) were used to demonstrate the virtues
of the proposed methodology in preserving steep interfaces. The accuracy of the new
transient TICS™ schemes was compared with the first-order Euler scheme, the
Crank-Nicolson scheme, and the B-SOUE scheme by solving several test problems
using the SMART and STACS convective schemes. Results demonstrated that inter-
faces obtained with TICS'”> and TICS>® are sharper and bounded.
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