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A mathematical model for investigating the performance of endoreversible heat engines
under combined conduction, convection, and radiation heat transfer modes is presented. The
model is suitable to be introduced to engineering students attending a course in thermody-
namics who may apply it to predicting the performance of real engines and a variety of
energy conversion systems in a simplified manner. Results generated by the model show that
the relative contribution of conduction/convection and radiation heat transfer modes deeply
affect the efficiency at maximum power output. Moreover, a number of well-known formulae
presented in several references are shown to represent special cases of the new formulation.

NOMENCLATURE

a), a; coefficients in algebraic equation
by, by coefficients in algebraic equation
¢y, ¢ coefficients in algebraic equation

d, coefficient in algebraic equation
e coefficient in algebraic equation
(2] heat entering the Carnot engine
(2 heat leaving the Carnot engine

Ry, R, dimensionless parameters
81, S4 dimensionless parameters

foy dimensional temperature of the hot reservoir (i.e. the working material entering the
engine), K

tn dimensional temperature of the cold reservoir (i.e. the working material leaving the
engine), K
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Ty dimensional temperature of the heat source, K

f dimensionless temperature of the hot reservoir (i.e. the working material entering the
engine)

T, dimensional temperature of the heat sink, K

V1, V4 dimensionless parameters

w power output

Wi maximum power output
oy, a, heat transfer coefficients
B1, By heat transfer coefficients
%, 7s heat transfer coefficients
n efficiency

Nm efficiency at maximum power
T ratio of heat sink to heat source temperatures
INTRODUCTION

The use of the Carnot concept in classrooms is usually confined to setting an upper bound on
the efficiencies that can be achieved by actual engines. By exploiting endoreversible or
finite-time thermodynamics, this limited usefulness of the theoretical Carnot engine may be
greatly expanded to studying the performance of real engines and a variety of interesting
energy conversion systems by treating them as Carnot-like engines. By modelling real en-
gines as endoreversible engines all irreversibilities are assumed to occur between the work-
ing material and the heat reservoirs while energy conversion within the engine itself is
considered to take place reversibly. The use of the concept of endoreversibility, allows the
simplification of complicated thermal systems and makes them easier for students to under-
stand. However, it should be made clear that the method does not allow detailed analysis of
the problem considered and rather, a simplified view of the system performance can only be
obtained. Nevertheless, this simplified view may be of great value for a designer trying to
choose among several suggested systems before going into detailed analysis.

The work in the subject was initiated by Curzon and Ahlborn [1] who employed
Newton's law of cooling to describe the heat fluxes across the walls of the hot and cold
reservoirs. Chen and Yan [2), generalized the work reported in Reference 1 by assuming the
rate of heat flowing through the walls of the reservoirs to be ruled by an equation of the
form:

Q=o(fy -13) m

where n is a non-zero integer. DeVos {3], simplified the analysis presented in References 1
and 2 by developing a simpler model for studying the engine performance.

Several workers [4-7] have also used endoreversible thermodynamics for predicting a
variety of phenomena. Gordon [4], applied finite-time thermodynamics to analyse the
thermoelectric generator. Gordon and Zarmi [5] and DeVos and Flater [6], modelled the
earth and its envelope using a Carnot-like engine with its heat input being solar radiation and
its work output representing the wind generated. Nuwayhid and Moukalled {7], added a heat
leak term into the model of DeVos and Flater [6] and studied the effect of a planet thermal
conductance on conversion efficiency of solar energy into wind energy. Nulton et al. [8] and
Pathria et al. [9] described a set of feasible operations of a finite-time heat engine subject
only to thermal losses in terms of an inequality similar to the second law of thermodynamics
and applied it to Carnot-like refrigerators and heat pumps. Recently, Moukalled and

Intemnational Joumal of Mechanical Engineering Education Vol 24 No 1



Carnot engines under combined heat transfer modes 27

Nuwayhid [10] expanded the applicability and usefulness of the Curzon—Ahlborn concept
and made it more realistic by adding a heat leak term into a variation of the DeVos model
[3]. Their work, however, was valid for the case when the operating temperatures of the
engine were not too high (i.e. dominant conduction/convection and negligible radiation heat
transfer modes).

It is the intention of this work to remove the shortcomings of the model developed by
Moukalled and Nuwayhid [10] and to extend it into situations where radiation heat transfer is
as important as conduction and convection. As will be seen, this combined mode of heat
transfer results in very complicated algebraic equations which, in general, have to be tackled
numerically. Furthermore, results reported in References 1, 2 and 10 are shown to represent
special cases of the new formulation.

THE COMBINED CONDUCTION, CONVECTION, AND RADIATION MODEL

A schematic of the Carnot-like engine under consideration is depicted in Fig. 1. As shown,
heat exchange occurs via combined conduction, convection, and radiation heat transfer
modes. Furthermore, heat transfer between the heat source (or sink) and the hot (or cold)
reservoir of the engine takes place irreversibly, while heat exchange from the hot reservoir to
the engine and from the engine to the cold reservoir occurs reversibly. The external heat loss
from the engine is modelled via the heat-leak term. As discussed by Kiang and Wu [11], two
different approaches have been used in analysing endoreversible Carnot cycles. These two
methods have been denoted by the Curzon-Ahlborn and the Bejan approaches. In the
Curzon-Ahlborn method, the Carnot engine is treated as a reciprocating engine. In the Bejan
approach however, the Carnot engine represents a steady-flow engine. In this work, the
Bejan approach is adopted [11]. Referring to the model shown in Fig. 1, the heat transfer
from the hot reservoir into the engine Q; is given by a heat balance equation as

O =0y(Ty ~to1) + 0‘4(T14 —’31)—71 (to1=t02)=7a (tgl - '32) @
while the heat transfer from the engine to the cold reservoir is

0, = Bi(toz — o)+ Ba(td2 ~ T )~ 11 (to1 —to2) 74 (181~ 162 3)

where ay, a4, By, Bs 7, and 7, are the conduction/convection and radiation heat transfer
coefficients. In the above equations, 0, and Q, are defined as positive quantities.
Endoreversibility for the engine requires that

2.2 @
o1 fo2
with the Carnot efficiency given by
t
n=1-2%2 )
to1
The work can therefore be found from
W=ay(T “’01)*"0‘4(7'14 _rgl)_ﬁl (r02 _T2)_ﬂ4(’32 —T24) ©
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heat source

ay(Ty-top)+o(T 1%
==

hot reservoir

energy balance —— gl
ay(Ty-t)*+aa(Ty 1914 !
=Qq+7 1(to1-t02* 4Cto1*402

Eq. (2)

4
L
heat leak term

¥ 1001402+ 4Ctor *02®)

energy balance r ™S heat engine
I

Qu+ 1(to1-to)*Y 4Cto1*t02)1
= B1Coa-T+Balto* Toh | _ _

'\ cold reservoir

Eq- B1(to2 T +Batto2*T2%)

T I
2 — heat sink

Fig. 1. Schematic of an endoreversible engine with heat leak operating between heat
source at T and heat sink at T5.

In order to reduce the number of parameters involved and to widen the applicability of
results the following dimensionless quantities are defined:

Ty i}
Vlz—'al—l‘z‘v V4=a4—14, Vi+V, =1 (7a)
oy +oyTy Ty + o, Ty
T T
R =_E11_4, R, =$_4 (7b)
ol +os0y ol +a,1)
T; T}
S, = "4 o Sy= Y4y . D)
o Ty +a0 o Ty +a.7;
T,
1=_2, 4 =’_01_ 7d)
L L
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where V,, V4, Ry, R4, S, S, are dimensionless heat transfer coefficients, 7 is the ratio of the
temperature of the heat sink to that of the heat source, and ¢, is the dimensionless counterpart
of the hot reservoir temperature. Applying the reversibility condition by inserting Q) and Q,
into equation (4), and using the Carnot efficiency (equation (5)), the following equations for
t; and W are obtained:

at} + bty +¢; =0 (8a)
where
ay =178, +1*(Ry —48,) +n°(—4R4 +68,) +n*(6R, — 45,)

—n(4Rs+V4)+ Ry +Vy (8b)
by =-n2S,-n(R +V})+ R +V; (8¢c)
c;=n-Ryt* —Ri7-1 (8d)

and

w

———— =1+ RT+Rt* - Vi - Vo - RA-m - Ry(A-m*f )
oy +ogTh

Equations (8) and (9) are used to obtain the efficiency of the endoreversible heat engine at
maximum power. For this purpose, the derivative of the normalized power equation
(equation (9)) with respect to the efficiency is set to zero. This results in the following
relation:

dn _ Rty +4(1-1)3 Ryt}
dn  (1—-mR, +4(1-10)* Ryt +V, +45V, (10)

A second equation for the derivative of #; with respect to 77 may be obtained from the
reversibility equation, equation (8), and is given by

4R, +N%(12R, - _sSpts
—1+t1(R1+2nsl+Vl)_Hl4 4 +N°(12Ry —1854)—51"8,

dn _ +1(=12R4 +8S84) +7°(—4R4 +165,)+V,
dn D
(11a)
where
D =R -1*S; (R + W)
+Vi+ 17[4Ry + 0 (4R, —1684)+ 1 (4R, ~165) +47°S,
+ 13(-16R, +2454) ~N(16R; +4V;) + 4V, ] (11b)

Equating equations (10) and (11), a relation for the efficiency at maximum power (1), is
obtained and its final form is written as

ayt] +bytf +cyff +dyty +e5 =0 (12a)
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where
ay = [-327;,,, +136n2, -256n3, +292n% — 22403, +112n8, -32n], +4r;;‘§,]le4s4
+ [~a+24n% —32n3, +12n8 RV,

+ [-32n, + 7202 —64n3, +20mf, |5,V - 4v2 (12b)

by = [~871m +28n% —36n3, +20mf, —4n3, Ry
+ [-8m +10m% — 1073, + 5nh - JRuS,s
+ [4 4120 —1202 +4n3 RV,

+ [-8n + 1873 —1603, + 5745,V

~ (N + DRV, - 81,5,V — SV, (12¢)
oy = [4-16ny, +24n2 — 1603, + and |Ry + 4V, (12d)
dy = [-2n0 + 18 RS 20 S)V; - RV - V2 (12¢)
e =01-1)R+W (12f)

At the same time, the efficiency should satisfy the reversibility equation (equation (8)). This
results in a highly nonlinear system of two equations in the two unknowns f; and 7,
Therefore, the problem is mathematically well defined and in general, the solution may be
obtained numerically once the constant parameters are assigned specific values. Such a
numerical solution is given here for several combinations of the parameters involved and
results are displayed graphically in Figs 2-4.

The conversion efficiency at maximum power, as given by the above equations, is a
function of the ratio of the cold to hot reservoir temperatures 7, the relative contribution of
conduction/convection and radiation to total heat transfer between the working fluid and the
heat source (V; and V}), the dimensionless heat transfer coefficients between the working
fluid and the heat sink (R, and R,), and the dimensionless heat leak coefficients (S and S,).
In Figs 2-4, 1, is plotted as a function of R, and R, for different values of V|, V,, S}, and S,
at a given 7. The general trend of results is similar and shows 7, for constant values of 7, to
increase with Ry and Ry for given Vi, V4, S;, and S and to decrease with increasing 7 for
given values of the various parameters involved. This is to be expected since, when S;, Sy,
and 7 are constant, increasing R, and R, (the dimensionless heat transfer coefficients) reflect
an increase in the heat transfer coefficients or a decrease in resistance to heat flow between
the working fluid and the heat sink and results in a lower temperature for the cold reservoir.
This, in turn, causes the Carnot-like engine to operate between a hot and cold reservoirs of
higher temperature difference and consequently, results in an increase of its efficiency.
Furthermore, at constant values of R}, Ry, S| and Sy, an increase in 7 produces closer hot and
cold reservoir temperatures and hence a less efficient engine.

By comparing results in Figs 2-4, it can easily be inferred that, the efficiency at maxi-
mum power conditions of the endoreversible engine at given R; and R, increases with
increasing the dimensionless radiation heat transfer coefficients, i.e. with V,, and/or S,. This
is so because as V4 and S, increase, the contribution of radiation heat transfer increases
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Fig. 2. Variation of the efficiency at maximum power with R and R, for T,/T)

0) are of theoretical importance because they show the highest possible efficiencies of

an endoreversible Carnot engine.

implying higher hot reservoir temperature and thereby higher efficiency. Results in Fig. 2

the new formulation presented here. This is done by setting alternatively the radiation and

In this section, the work reported in several references is shown to represent special cases of
conduction/convection heat transfer coefficients to zero.

DERIVATION OF PREVIOUSLY REPORTED WORK FROM THE NEW MODEL

(t

Intemnational Joumal of Mechanical Engineering Education Vol 24 No 1



F. Moukalled

32

{.1,0,0,1], v=1[.9,0,0,.1]

S:

[1,0,0,.1], V=[.9,0,0,.1]

S=

(.1,0,0.1], v=1.5,0,0,.5]

S=

[1,0,0,.1], V={.5,0,0,.5]

S=

[.1.0.0,1], V=[.1,0,0,.9]

S=

(1.0,0..1}, v=1[.1,0,0,.9]

S=

=04.

Fig. 3. Variation of the efficiency at maximum power with R and Ry for T,/T;

heat transfer mode
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ion/convecti

t conduct

Dominan

Case 1

all heat transfer processes are governed by Newton’s law of cooling and the

>

In this case

relations for f) and W should be the same as those presented by Moukalled and Nuwayhi

[10] and may be obtained from equations (8) and (9) by setting Va=Ry

=0, V,=1,

=5,

Ry =R, and §; = S. Performing this step, the following equations for ¢#; and W are obtained:
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The efficiency at maximum power is found by differentiating the power equation (equation
(14)) with respect to 77 and setting the result to zero. This results in the following equation
for the efficiency at maximum power (7),,):

[R2(1+ 57)+ RA+25)+ S|, —2[R2(1+57)+ RO+ S+57)+ Sl + RA+ RY(1-7) = 0

(15)

The above equation for 7, has two real roots with the one physically correct (i.e. positive)
given by

=1 (1-7)RS
m R2(1+1S)+R(1+28)+S
N (1-7)RS °  RA+RQ-7) 16)
R2(1+1S)+R(1+ZS)+S R2(1+1'S)+R(1+2S)+S

It is interesting to note that when there is no leakage (S = 0), equation (16) above, irrespec-
tive of the value of R, reduces to

e =1-+7 an

which is the Curzon—Ahlborn efficiency [1]. The maximum work under these conditions is
obtained from the following simple equation:

Wm R 2

L 18
ol R+l m (18)

Therefore equations (14) (with W replaced by W, and n by 7,,) and (16) are the generalized
forms of equations (18) and (17), respectively.

Case 2: Dominant radiation heat transfer mode

For this cases, all heat transfer processes including the heat leak, take place through a
radiative heat transfer mode. Upon setting Vi =R; =8, =0, V4 =1, R4 =R, and §, = S, the
following relations for ¢, and 1, are obtained:

(A=7n,)+7*R v
n= ry (19)
(R+nms)(1_nm) +(1_nm)_nms

and

R[S+ R+7*SR|1~1p)® +4[RS+ R+ 5)(1-1)°
~[35+5Rs+3R-35R?2* — 5RS7* -3R% 2% J1-n,,)*
—~4R[RS+R+ St (1-ny)° -S—Rt* —RS7* =0 (20)
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The highest possible efficiency is attained when there is no leakage (§ = 0) and when 7=0.
If this is the case, then equation (20) may be written as

R(1-7)* +4(1-1y)~3=0 @1

This equation reduces to that of DeVos [6] when R—1,1i.e.,
T — 411 + 615, =87 +2=0 @2)

and the solution gives 7, =0.307. Equation (21), is however, the more general one in that
the variation of efficiency at maximum power with R is shown.

Finally, of interest is the case for which $=0 and R — o (i.e. when the only thermal
resistance is between the working fluid and the high temperature source). Substitution of
these values into equations (19) and (20) results in the following equations for the efficiency
at maximum power and #g,;:

T,
M =1-% 23)
o
and
a3 =34 -, =0 24

The last equation, known as Castan’s relation [2], is a practical formula in solar energy
conversion systems and shows that the results of this paper are more general.

CONCLUSION

A theoretical investigation of the performance of Carnot-like engines with heat leak was
undertaken, The heat exchange processes were assumed to occur via combined conduction,
convection, and radiation heat transfer modes. Generated results, demonstrated the strong
influence of the heat transfer mode on the efficiency at maximum power. Several well-
established formulae were shown to represent special cases of the new formulation. The
simplicity of the approach (one has to solve algebraic equations only which is a trivial
numerical task), makes it an attractive tool to students, who may employ it for predicting the
performance of a variety of energy conversion systems (e.g. power plants [12], thermoelec-
tric generators [4], and solar energy conversion systems [7]).
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