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Endoreversible thermodynamics are used for studying the performance of Carnot engines
with heat leak. This is done by adding a heat leak term into a variation of the model
suggested by DeVos [1]. Heat transfer across the engine is assumed 10 occur via a
conduction /convection mechanism and Newton's law of cooling is employed to model the
heat transfer processes. The efficiency at maximum power output is found to be deeply
affected by the rate of heat leak. Moreover, the Curzon-Ahlborn relation [2] is shown to
represent a special case of the new formulation. Since the suggested model allows more
flexibility in predicting actual engines’ performance, its use is recommended in thermody-
namics courses.

NOMENCLATURE

0] heat entering the Carnot engine

o)) heat leaving the Carnot engine

R dimensionless parameter

S dimensionless parameter

to1 dimensional temperature of the hot reservoir (i.e. the working material entering the
engine), K

to2 dimensional temperature of the cold reservoir (i.e. the working material leaving the
engine), K

T, dimensional temperature of the heat source, K

f dimensionless temperature of the hot reservoir (i.e. the working material entering
the engine)

T, dimensional temperature of the heat sink, K

w power output

Wi maximum power output

o, B, v heat transfer coefficients

n efficiency

M efficiency at maximum power

T ratio of heat sink to heat source temperatures

International Jounal of Mechanical Engineering Education Vol 23 No 2



158 F. Moukalled and R. Y. Nuwayhid

INTRODUCTION

In classrooms, the Carnot cycle is generally introduced as being the most efficient cycle
operating between two thermal reservoirs. Therefore, the Carnot concept sets an upper limit
on the efficiencies that can be achieved by actual cycles operating between two reservoirs of
fixed temperature. This limited use of the Carnot engine was removed through the
introduction of what is called finite-time or endoreversible thermodynamics. The basic
concept of an endoreversible heat engine is to consider the irreversibility associated with
heat transfer between the working material and the heat reservoirs while processes within the
engine are assumed to take place ideally. With this concept, very complicated thermal
systems may be simplified and made easier for students to understand. However, it should be
pointed out that the approach does not allow detailed predictions of the problem considered
and, rather, a simplified view of the system performance only can be obtained. Nevertheless,
this simplified view may be of great value for a designer trying to choose among several
suggested systems before going into detailed analysis.

Curzon and Ahlborn [2] exploited the concept of finite-time thermodynamics for predict-
ing the performance of real engines by treating them as Carnot-like engines. In their work,
the heat fluxes across the walls of the hot and cold reservoirs were taken to be proportional
to the prevailing temperature differences there (i.e. Newton’s law of cooling). Chen and Yan
[3], generalized the work reported in reference 2 by assuming the rate of heat flowing
through the walls of the reservoirs to be ruled by an equation of the form:

Q=a(Ty" -T3) o))

where n is a nonzero integer. DeVos [1], simplified the analysis presented in references 1
and 2 by developing a simpler model for studying the engine performance.

Several workers [4-7] have also used endoreversible thermodynamics for predicting a
variety of interesting phenomena. Gordon [4], applied finite-time thermodynamics to analyse
a thermoelectric generator. Gordon and Zarmi [5] and DeVos and Flater [6], modelled the
Earth and its envelope using a Carnot-like engine with its heat input being solar radiation and
its work output representing the wind generated. Nuwayhid and Moukalled (7], added a heat
leak term into the model of DeVos and Flater [6] and studied the effect of a planet thermal
conductance on conversion efficiency of solar energy into wind energy. The theoretical
upper bound on conversion efficiency reported in reference 6 was shown to be well above
the actual values predicted by the modified model. Recently, Nulton et al. [8] and Pathria et
al. [9] described a set of feasible operations of a finite-time heat engine subject only to
thermal losses in terms of an inequality similar to the second law of thermodynamics and
applied it to Camnot-like refrigerators and heat pumps.

From the above literature survey it appears that, even though heat leak has a realistic
influence on model performance [7], it has not been widely exploited. Adding a heat-leak
term into the model, makes the model more realistic since, the heat-leak term serves as a
means to account for the external thermal losses from the engine to the surroundings. There-
fore, the intention of this work is to further expand the applicability and usefulness of the
Curzon—Ahlborn’s concept and to make it more realistic by adding a heat-leak term into a
variation of DeVos model [1]. In addition, all heat fluxes are assumed to be proportional to
the prevailing temperature difference across their respective walls, This is equivalent to
assuming dominant conduction/convection heat transfer modes. Such an assumption is valid
if the operating temperatures of the engine are such that the relative contribution of radiation
heat transfer is negligible.
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THE HEAT-LEAK MODEL

A schematic of the Carnot-like engine under consideration is depicted in Fig. 1. Heat transfer
between the heat source (or sink) and the hot (or cold) reservoir of the engine takes place
irreversibly, while heat transfer from the hot reservoir to the engine and from the engine to
the cold reservoir occurs reversibly. The external thermal losses from the engine are mod-
elled via the heat-leak term. With such a model (Fig. 1), the heat transfer from the hot
reservoir into the engine Q is given by an energy balance on the hot reservoir as

O =a(Ty —101)—y{to1 — to2) @

while the heat transfer from the engine to the cold reservoir is obtained from an energy
balance on the cold reservoir:

0y = Blto) —T) - y(to; —te2) )

heat source

hot reservoir

energy balance — gl

a(T1-t91)=Qq +¥(tp1-102)
Eq. 2)

heat leak term
Y (tp1-t02)

™ heat engine

energy balance ‘——>:_
Q2+¥(to1-1p2)=B(1g2-T2)

Eq. (3) cold reservoir

heat sink

Fig. 1. Schematic of an endoreversible engine with heat leak operating between heat
source at T and heat sink at 7).
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where a, B, and Y are the conduction/convection heat transfer coefficients. In the above
equations, & and Q, are defined as positive quantities. Endoreversibility requires that

9.9 @
fo1 o2
with the Carnot efficiency given by
t
n =]- #—.2- (5)
fo1
The work can therefore be found from
W=a(Ty —t9)) - Bltpz — T2) (6)
Defining the following dimensionless quantities:
r=B, =¥ B a4 =l )
a a T T

applying the reversibility condition by inserting Q) and Q, into equation (4), and using the
Camot efficiency (equation (5)), the following equations for t; and W are obtained:

1-n+R7
= 8
TE AR A-m-s ®
Wy ge- L=+ Re1 14 RO ©
o A+R) (-m-57

The efficiency at maximum power is found by differentiating the power equation (equation
(9)) with respect to 7 and setting the result to zero. This results in the following equation for
the efficiency at maximum power (7,):

[R2(1+57)+ ROL+25)+ S|, -2[R2(1+57)+ R+ S+57)+ 5]
+RA+R) (1-1)=0 (10)

The above equation for 7, has two real roots with the one physically correct (i.e.
nonnegative) given by

- =1- (1-T)RS
m RZ(1+15)+R(1+25)+S
N (1-T)RS ’  RA+R)(-1) an
R2(1+15)+ R(1+25)+S| R 2(1+15)+R(1+25)+S

It is interesting to note that when there is no leakage (S = 0), equation (11) above, irrespec-
tive of the value of R, reduces to

N =1-7 (12)
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which is the Curzon—Ahlborn efficiency [2]. The maximum work under these conditions is
obtained from the following simple equation:
Wo__R 2

R 13
ol R+l M 13

Therefore equation (9) (with W replaced by W, and n by 7n,,,) and (11) are the generalized
forms of equations (13) and (12), respectively, reported by Curzon and Ahlborn [2]. In
addition, equation (11), for 7=0 (i.e. T, = 0 since the value of T} is finite due to a negligible
radiation) and with R = S reduces to

_ R+[(R+1) (R+2) a4

3R+2

M =1

With R=S§=1, the efficiency at maximum power (equation (11)) can be written as a
function of 7 as follows:

1-1 4(1-1) (1—1)2
=l-—" |1- + 15
m S5+7 \/ 547 \5+71 13

Finally, when R approaches infinity (i.e. when the only thermal resistance is between the
working fluid and the high-temperature source), the value of 7, is governed by

T(1+5)

li =1- 16
Ao, Mhm 1+18 (16)
RESULTS AND DISCUSSION

The equations derived in the previous section are analysed here and the effects of the various
parameters involved on the efficiency are discussed.

The conversion efficiency at maximum power (7)) given by equation (11) is plotted in
Figs 2-4 for §=0.1,0.5, and 1 as a function of R for values of 7 ranging from 0 to 0.9. The
general trend of the results is similar and shows 7, to increase with R for a given 7 and to
decrease with 7 for a given R. This is to be expected since, when S and 7 are both constant,
increasing R (the ratio of heat transfer coefficients) reflects an increase in the heat transfer
coefficient (or a decrease in resistance to heat flow) between the working fluid and the heat
sink and results in a lower temperature for the cold reservoir. This, in turn, causes the
Camnot-like engine to operate between a hot and cold reservoir of higher temperature differ-
ence and consequently, results in an increase of its efficiency. Furthermore, at constant
values of R and S, a higher value of 7 (7=T,/T;) means closer hot and cold reservoir
temperatures (i.e. less efficient Carnot cycle) and hence a less efficient engine.

The effect of S on the efficiency at maximum power can be assessed by comparing results
in Figs 2 to 4. As can be seen, increasing S decreases the value of 7, that can be achieved at
specific values of R and 7 due to higher losses from the engine. Furthermore, as R increases,
Tm approaches a limiting value which may be evaluated from equation (16). In addition,
equation (16) shows that for 7= 0 this limiting value is independent of S and is always equal
to 1. Therefore, all 7= 0 curves displayed in Figs 2 to 4 approach 1 as R approaches infinity.
Moreover, the variation of maximum work with R, S, and 7 is found to be very similar to that
of N, and is presented, for completeness, in Fig. 5 for the case when S = 1. In Fig. 6, the
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Fig. 2. Variation of the efficiency at maximum power with R for different values of
T(S=0.1).
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Fig. 3. Variation of the efficiency at maximum power with R for different values of
7($=0.5).
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Fig. 4. Variation of the efficiency at maximum power with R for different values of
T(S=1).
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Fig. 5. Variation of maximum power with R for different values of 7(S = 1).
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s=0 (Eq. (12))
R=S=1 (Eq. (15))

Fig. 6. Variation of the efficiency at maximum power with 7 for § = QandR=S=1.

Curzon—Ahlborn relation [2] and the efficiency at maximum power for R = § =1 (the case of
similar heat transfer coefficients for all heat transfer processes) are plotted as a function of 7.
The realistic effect of heat leak on the efficiency is clearly seen by the decrease in the highest
achievable efficiency with heat leak. Moreover, the variation of 7, with R for 7=0 when
R =S is depicted in Fig. 7. Again, the highest achievable efficiency is shown in this case to
be more realistic and to approach a limiting value of 0.33 when R approaches infinity. In
conclusion, leakage governs the highest achievable efficiency at maximum power.

CONCLUSION

An analytical investigation of the performance of Carnot-like engines with heat leak was
undertaken. Heat transfer was assumed to occur via a conduction/convection mode and
Newton’s law of cooling was used to represent the heat transfer processes. Moreover, the
Curzon—Ahlborn relation was generalized, the efficiency at maximum power was found to be
limited by the heat-leak mechanism, and the predicted values were found to be more realis-
tic. The simplicity and practical achievement of the model make it an attractive tool to
students, who may use it for predicting the performance of a variety of energy conversion
systems (e.g. power plants [10], thermoelectric generators [4], thermionic generators and so
on).
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Fig. 7. Variation of the efficiency at maximum power with R for R = § and 7= 0.
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