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Abstract

A number of approaches have evolved over the last decade for the implementation of TVD
schemes within an unstructured grid finite volume method framework. Unfortunately none
of these approaches has been comprehensive enough to permit the general implementation of
TVD-based schemes in unstructured grids, and/or accurate enough to recover the exact TVD
formulation in structured grids. In this paper we propose a simple method that allows the
implementation of the full spectrum of TVD schemes in unstructured grids, while recovering
their exact formulation on structured grids. Four schemes implemented using this approach,
TVD-MINMOD, TVD-MUSCL, TVD-SUPERBEE, TVD-OSHER, are tested and compared
to Bruner’s TVD formulation [1], and to the Barth and Jesperson linear reconstruction
scheme [2] by solving four pure advection problems. Results indicate that the Bruner
formulation yields, for the same original TVD scheme, overly diffusive results when
compared to the current method. The BJ-MUSCL and TVD-MUSCL are shown to be
comparable and more accurate than the OSHER scheme. The SUPERBEE performs best
though showing tendency for stepping the modeled profile. In all tests the current method is

found to retain the behavior of the structured grid TVD formulation.
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Functional relationship.

Sweby’s r-factor.

Velocity components in the x- and y- directions.
Averaged control volume face velocities.

Velocity vector.

Reconstructed polynomial.

Greek Symbols

r

Subscripts
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]

Diffusion coefficient.
General dependent variable.
Density.

Sweby’s flux limiter.
gradient operator.

Linearly Interpolated gradient.

position vector.

Refers to a control volume face.
Central grid point.

Downstream grid point.
Neighboring cell point

Main grid point.

Upstream grid point.

Refers to normalized variable.



Introduction

The last two decades have witnessed a sustained effort by the CFD community to develop
robust high-resolution (HR) schemes [3-9] for the simulation of advection-dominated flows.
Many of these schemes have been implemented on structured grids within the framework of
finite volume methods. The main ingredients common to all these schemes are a high order
profile for the reconstruction of cell face values from cell averages, combined to a
monotonicity criterion. The high order reconstruction is usually based on an upwind biased,
sometimes symmetric, high order interpolation profile [10-12]. To satisfy monotonicity, a
number of concepts have been proposed over the years [13,14], all within a structured grid
framework. In the Flux Corrected Transport (FCT) approach of Boris and Book [15-18], a
first order accurate monotone scheme is converted to a High Resolution scheme by adding
limited amounts of anti-diffusive flux. In the monotonic upstream-centered scheme for
conservation laws (MUSCL) of Van Leer [19], monotonicity is enforced through a limiter
function applied to a piecewise polynomial flux reconstruction procedure. Harten [20]
expressed monotonicity as a measure of discrete variation in the solution fields, hence the
name Total Variational Diminishing (TVD). This criterion was then expressed as a flux
limiter by Sweby using the r-y diagram [21]. Leonard [4,22,23] presented his monotonicity

criterion using a relation between a normalized face value, ¢,, and a normalized upwind

value, &C. While on the conceptual level the above-mentioned monotonicity criteria can be
shown to be related and sometimes equivalent, implementation-wise they are very different.
However within the framework of structured grids these differences have not translated into

increased difficulties in implementation.



For unstructured grids the situation is more complicated and high-resolution schemes are not
as advanced as for structured grids [24-26]. This is specifically due to the difficulty in
implementing and enforcing a monotonicity criterion that relies on logical or directional
next-neighbor information, which is readily available in structured grids but missing in
unstructured grids. To circumvent this difficulty a number of approaches have evolved, with
varying degrees of success, based on different monotonicity criteria, such as the FCT [14-
17], the flux difference splitting concepts [27,28], or the MUSCL approach [29-32]. The
MUSCL-based technique developed by Barth and Jespersen (BJ) [2,33,34], by modifying the
Spekreijse [35] definition of monotonicity to bound the cell face values rather than the cell
nodal value, is currently the most popular and successful approach for the implementation of
high resolution schemes in unstructured grids [36-44], partly because of its simplicity.
Unfortunately, most of the limiters developed for structured grids cannot be implemented
using the BJ technique as it is restricted to schemes where the base high order profile uses a
cell based gradient, which is basically equivalent to the FROMM scheme [19], whose
bounded version is equivalent to the MUSCL scheme. In one dimension the BJ scheme can
be shown to be equivalent to the TVD-MUSCL scheme [45]. Bruner [1,45] suggested a
more general approach to bound convective schemes. In this approach he used the Sweby r-
w diagram with a modified r factor defined for unstructured grids. Unfortunately his
modification did not recover the exact r factor on structured grids. In this paper we present a
valid re-formulation of the r factor for unstructured grids that yields the exact TVD

formulation on structured grids.
In what follows the formulation of TVD schemes is presented for structured grids following
the r-y diagram of Sweby. The modification of Bruner to the r-factor is then described

before detailing the new r-formulation. Spekreijse‘s criterion is then presented and the BJ



technique described. Finally, the new method is compared to the Bruner implementation and
the BJ scheme. For that purpose, four TVD schemes (MINMOD [20], OSHER [46], TVD-
MUSCL [19], and SUPERBEE [47]), implemented using the new formulation, are tested by

solving a number of pure advection problems.

TVD Schemes

Following Roe [47], the face value ¢i+1, of a TVD scheme is written as the sum of a
diffusive first order upwind term and an anti-diffusive one. The anti-diffusive part is
multiplied by the flux limiter function, y(r), which is a non-linear function of r, the upwind
ratio of consecutive gradients of the solution, defined as (without loss of generality, we

assume the velocity at the face viy,>0):

L = 6~ (1)
(I)i+l - (I)i

leading to the flux-limited scheme:

i =0 +%W(ri+l/2)(¢i+l _d)i) (2)

Using a flux limiter, y(r), which is simply a linear function of r, different high order schemes
can be written in the form of equation (2). For example for, y equal to r, the second order

upwind (SOU) scheme is obtained. Other schemes can be similarly formulated:

DOWNWIND scheme y(r) =2

CD scheme \V(r) =1
SOU scheme y(r)=r 3)
FROMM scheme y(r)= HTT

TVD schemes can also be formulated in a form slightly different from the one given by

equation (2), as in:



Gin =9 +%“|”(ril+l/2)(¢i _¢i—1) 4)

in this case the r term, now denoted by r’, is defined as:

' _ ¢i+1 _(I)i _ 1

i+1/2 -
& =0 T,

the relation between the two formulations is given by:

1

,_W,(ri'mz): w(r) (5)
L

taking for example the SOU scheme were y(r)=r, the equivalent flux limiter function for

equation (4) becomes

1 ’ [} 1
‘Vsou(r)zr\l’sou(r):;rzl (6)

This can be demonstrated by deriving ¢.,,,, for the SOU scheme:

Pion =G+ %‘//sou (ri+1/2)(¢i+1 - ¢|)

= ¢i +%ri+1/2(¢i+l - ¢|)

(7)
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In this work the formulation of TVD schemes will be performed using equation (2).
Following Sweby [21], these schemes may be plotted along with the TVD monotonicity
region on an r-y diagram (see Fig. 1(a)). Using this diagram, it is simple to grasp the

formulation of TVD schemes: any flux limiter function, y(r), formulated to lie within the



TVD monotonicity region yields a TVD scheme. Sweby has also shown that for second
order schemes the flux limiter function, y(r), has to pass through point (1,1). A number of

TVD schemes are shown in Figs. 1(b)-1(¢), and formulated as:

SUPERBEE limiter y(r)=max(0, min(1,2r), min(2,,))

MINMOD limiter ~ (r) = max(0, min(l,r))

OSHER limiter \V(r) = maX(O, min(2, r)) 9)
. T+
MUSCL limiter \y(r) =
1+ |r|

Since the index-based notation used above is not suitable for unstructured grids, the more
appropriate notation, shown in Figs. 2(a), 2(b), is adopted. As shown in Fig. 2(b), nodes C
and D are defined as the Upwind and Downwind nodes around face f, and the virtual U node

is defined as the node upwind of the C node.

Using this notation equation (2) is rewritten as

0 =dc +3w(r Nop —oc) (10)
and the r ratio becomes
¢c _(I)U
=0 11
' ¢D _¢C ( )

It is clear that the main difficulty in implementing TVD schemes in unstructured grids lies in

the need for defining a “virtual’ U node.

Bruner r modification

Bruner [1,45] proposed the following modification to the definition of the r-factor for TVD

schemes:

b —by _ 2 —bc) 287V, (12)

(I)D _(I)C ¢D _(I)c ¢D _¢C

This approximation is clearly inconsistent and when brought back into one dimension does

Iy

not recover the TVD condition, as equation (11) becomes:



= M T — ZA}‘?(V(]))C — (I)D _(I)U
¢D - ¢c e ¢D - ¢c (I)D - (I)c

(13)

Iy

Exact r formulation

A better formulation for r in unstructured grids can still be derived. Returning to the

definition of r, we can write:

_ ¢c _¢U _ (I)D +(¢C _¢U)_¢D

rf_¢D_¢c ¢D_¢C
(14)
_ (95 —00) (65 —0c)
¢D_¢C

Noting that values for ¢p and ¢¢ represent the values of the nodes straddling the interface and
thus are readily available for unstructured grid. Therefore, the r-values would be computable
if the term involving ¢y could be replaced by a known term. In this case

(¢D _¢U): Vo - ryo
= (2V¢c 'rCD)

where rcp is the vector between the nodes ‘C’ and ‘D’, and ryp is the vector between nodes

(15)

'D' and the virtual node 'U', representing the node Upstream of node ‘C’ (see Fig. 2(b)).
Node ‘U’ is chosen such that it lies along the line joining nodes ‘D’ and ‘C’ with ‘C’ at the
center of the ‘UD’ segment. Other positions of ‘U’ could also be chosen, but with a loss of
accuracy as the nodal gradient yields a second order accuracy only when the difference is

centered at node ‘C’.

The formulation of r becomes

(2v¢c 'rCD)_(¢D _(I)c) (Zvd)c 'rCD)_I

rf= =

(I)D _¢c ¢D _¢c

which can be easily computed for unstructured grids.

(16)



Gradient Interpolation

Another important aspect of the TVD implementation resides in the interpolation of gradients
to the cell faces. Gradients at the cell faces are used in the discretization of the convection
term when using High Resolution schemes and are usually obtained by a weighted
interpolation from the neighboring cell gradients. A simple weighted interpolation leads to
an extended stencil as shown in Fig. 2(c), the stencils of the cell gradients computed using
the gauss theorem or least squares involving the neighboring cell nodes are added to yield the
face gradient extended stencil. A better method is to force the face gradient along the PN
direction, Fig. 2(d), to be directly computed from the cell nodes in a manner similar to the
Rhie-Chow interpolation [48] for pressure gradients. In this case the cell face gradient along

PN is more compact, and accurate, and is given by:

), = V9, + =)o (5, e, o (17)

e

where (V¢); is the gradient interpolated from the two adjacent cell gradients, Ipr the vector

between the nodes P and F (where F=F1, or F2, ...), and epr is a unit vector in the direction

of rpr. What is achieved with this formulation is a reduction in the stencil of the face
gradient along the PF direction. The stencil for (V¢),, shown in Fig. 2(c), is basically the

union of the stencils of the P and F cells, whereas that for (V¢5)f along the PF direction is

formed of the P and F cells only, (Fig. 2(d)).

This modification was found to be especially important for HR schemes that are defined as a

function of face gradients such as the SOU scheme.
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Barth and Jesperson Scheme

Barth and Jespersen [2] followed a different approach in enforcing the monotonicity
criterion. In their approach the Speikreijse monotonicity criterion [35] was modified to apply
it for the reconstruction of ¢ within the control volume, i.e the condition was changed to state
that the values of the reconstructed polynomial within the control volume should not exceed
the maximum and minimum values at the neighbors of the control volume.

Using the notation of Fig. 2(a) the Speikreijse criterion written as:

min(¢, ) < ¢, < max(¢, )¥Ne Neighbors(P) (18)

was modified to:

min(¢y, ¢, )< R, (r;)< max(¢y, ¢, )¥Ne Neighbors(P) (19)

where j is some point within the control volume P, and R is the reconstruction operator given
by:

Rp(rj)zd)l) +WjV¢P ’(rj _rP) (20)
where v is the flux limiter, and r the position vector. Instead of enforcing the condition of
equation (2) over the control volume, it is enforced at the cell faces integration points, thus
changing equation (19) into:

min(¢, ¢, )< R, (r, ) < max(d,d, )VNe Neighbors(P) 1)
where f is a cell face centroid. The computation of the value of the limiter y is performed in

two steps as follows.

Step 1: The reconstruction polynomial is evaluated at each cell face integration point in order

to determine the value of ¢ that satisfies the relation:

min(,, ¢, ) SR, (1) =, +wV, - (r; -1, )< max(dy. ;) (22)

which can be rewritten as
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i) e

o) oo
1 O = 0p

where

®(x) = min(x, 1) 24)

Step 2: The value of the limiter is computed as the minimal value of y over all cell faces,

1.e.:

Yp=min(yr) (25)
Because of convergence problems found with the limiter, Venkatakrishnan [33,40] proposed

a modified version of the original limiter. The modified limiter is based on the differentiable

function:

x*+2x+¢°
q)(X): 2 2
X" +Xx+2+¢

(26)
The role of the constant, 82, being to deactivate the limiter in smooth flow regions, with its
value specified as &* = (Kh)’ where K is a user-specified constant, and h a local mesh size.
It is worth noting that for a one dimensional discretization, the Barth & Jesperson scheme can

be shown to be equivalent to the TVD-MUSCL scheme, and thus in this special case could be

represented graphically using the Sweby diagram of Fig. 1(c).

Test Problems

The validity of the newly proposed r-factor formulation in unstructured grids is demonstrated
in this section. For that purpose four TVD schemes are implemented using the Bruner and
the new formulations. The schemes are then used in solving four pure convection test

problems: advection of a step profile, advection of a sinusoidal profile, advection of a
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double-step profile, and the Smith and Hutton problem [49]. Results obtained using the
schemes are compared against those obtained using the BJ linear reconstruction scheme and

the first order upwind scheme.

Advection of a Step Profile

Figure 3(a) shows the well known benchmark test problem consisting of a pure advection of
a transverse step profile imposed at the inflow boundaries of a square computational domain.
Two unstructured mesh systems consisting of 862 and 2094 cells (illustrated in Fig. 3(b))
were used. The governing conservation equation for the problem is simply:

V-(ovg)=0 (27)
where ¢ is the dependent variable and v=1i+1j is the Cartesian velocity vector. The computed
values of ¢using the upwind scheme, the OSHER, the MINMOD, the MUSCL and the
SUPERBEE schemes, implemented using the exact r-formulation, in addition to the BJ
scheme are shown in Fig. 3(c) and 3(d) for the coarse and fine grids respectively. As is the
case for structured grids [5] the MINMOD is the most diffusive, the BJ-MUSCL and TVD-
MUSCL schemes yield comparable results that are better than the OSHER scheme. The
performance of the upwind scheme is worse in unstructured grids than for structured grids
because no flow can be aligned with the grid lines. As expected the SUPERBEE yields the
best results because it is a highly compressive scheme. All results are devoid of
over/undershoots. Performance-wise the TVD and BJ implementations required about the
same computational cost per iteration, TVD schemes generally did not experience any
flattening of the convergence rate below a residual of 10° except for the SUPERBEE
scheme, while the BJ scheme experienced oscillations of the residual around 10°. This was

inconsequential with respect to the results.
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In Fig. 4, the TVD-MUSCL scheme profiles generated using the current formulation are
compared against profiles obtained following Bruner’s formulation on both coarse (Fig. 4(a))
and dense (Fig. 4(b)) grid systems. As depicted, Bruner’s scheme results are over diffusive
due to the approximation introduced in the formulation of r. The same trend was observed

with all the other schemes and deemed unnecessary to be reported for compactness.

Advection of a Sinusoidal Profile

This problem is similar to the previous one in geometry except that a sinusoidal profile is
used. The sinusoidal profile involves steep and smooth regions, as well as an extremum
point, making its simulation much more demanding than the simple step profile. The profile

is given as

sin| P max| 1. 2250-01707) 0<y<0.3414
2 0.1707
¢:
0

otherwise

(28)

The problem is depicted in Fig. 5(a), the same meshes as the step-profile problem were used.
Results are shown in Figs. 5(b) and 5(c) for the coarse and fine meshes respectively. As
expected all the schemes suffer from a substantial decrease in the numerical extremum, with
its value decreasing down to 0.48 for the UPWIND scheme. The SUPERBEE preserves on
the coarse mesh more of the extremum value (0.83), and experience no loss in extremum on
the fine mesh. The BJ-MUSCL, TVD-MUSCL and OSHER schemes results are much better
than those of the UPWIND scheme and the MINMOD scheme, while still experiencing on

the coarse and fine meshes a decrease in the extrema down to 0.68 and 0.92 respectively.
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Advection of a double-step Profile
A double step profile is imposed at inlet to the square domain depicted in Fig. 6(a). The

profile is given as

1 0<y<0.3
¢={ =ye 28)

0 y>03

The same meshes as for the step-profile problem were used. Results are shown for the coarse
and fine meshes in Figs. 6(b) and 6(c) respectively. As expected all schemes suffer from an
important decrease in the numerical extremum on the coarse mesh, however on the fine mesh
the SUPERBEE, OSHER, TVD-MUSCL and BJ-MUSCL preserve the extremum of 1.0. The

profiles obtained by the MINMOD and UPWIND schemes are however of lower quality.

Smith and Hutton problem
In the fourth test problem, shown schematically in Fig. 7(a) along with an illustrative grid
used (Fig. 7(b)), a step discontinuity at x=-0.5 is convected clockwise from the inlet plane

(x<0, y=0) to the outlet plane (x>0, y=0) by a rotational velocity field given by:

2
(- @
The use of the above equation, denoted by the ‘point formula’, to compute the convective
fluxes yielded a non-conservative velocity field, i.e. continuity was not satisfied over each
cells. This is clearly demonstrated in the continuity residuals’ map depicted in Fig. 7(c). The
reason for this behavior is that the cell face velocities in the discretized equation are assumed,
when using the point formula, to be constant through out the face, which is clearly wrong. In

order to satisfy continuity over each cell the above equations should be integrated over the

cell faces to yield the respective face fluxes. The resulting equation is denoted here by the
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‘integration formula’. Integrating equation (29) over a cell face yielded the following

equations for the x and y face fluxes:

'[ J. udxdy = IXI 2y )dxdy

Yn1 Xni nl Xnl

over a general cell face defined by:

y = mx+nwithm = 22 = gy oy
X,, — X

n2 nl

Integrating equation from node 1 to node 2, one gets:

U= lnf dl = Ime+n)(1 x> i

nl Xn1

ler(me+2n 2mx* —2nx? )dx

e o Lyt = 200
I 2 3

:Il m(xﬁz —X; )+ Zn(xnz — X, )—%m(xg‘z — X, )—%n(xﬁz - X, )}

and for the y component we get

2
V=

—_— —
>

>

vdl = Xj'z— 2x(1 —(mx+nYy’ )dx

1 Xn1

% (= 2x+ 22X + 2m?x® + 4mnx? Jdx

e

i 1 4
=—| =x*+n’x’ +Em2x4 +§mnx3}

Xn,

Xn]

40 el - ) Sl - xt)- Sl <)

(30)

G

(32)

(33)

Where m and n define the equation passing through nodes n; and ny, i.e the cell face. Using

the ‘integration formula’ to compute the velocity component yielded a continuity satisfying

velocity fields as shown by the map displayed in Fig. 7(d).
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The boundary conditions for the Smith and Hutton problem [49] are:

for-0.5<x<0;y=0

for-1<x<-0.5;y=0

for-l1<x<Ly=1 (34)
forx =-1;0<y<l1

S O O N

0 forx=10<y<l1

No physical diffusion was considered and the problem was solved using two grid systems of
size 889 and 1060 cells (Fig. 7(b)). Results are displayed in Figs. 7(e) and 7(f). As before,
for the coarse mesh numerical results obtained with the SUPERBEE are better than those
achieved with the other schemes. For the fine mesh the SUPERBEE, OSHER, BJ-MUSCL
and TVD-MUSCL scheme profiles are nearly similar. Results from the MINMOD scheme

are quite diffusive, but nonetheless better than the UPWIND scheme.

Conclusion

In this paper, a number of TVD schemes, namely the SUPERBEE, TVD-MUSCL, OSHER,
and MINMOD schemes, in addition to the BJ-MUSCL scheme were implemented on
unstructured grids. As expected, results for the BJ-MUSCL and TVD-MUSCL were found
to be similar. The approach followed was proved to be general and consistent with the
Sweby TVD formulation for structured grids. Results for all test problems presented showed
that TVD monotonicity was properly enforced for all schemes resulting in oscillation free
profiles. The benefit of such an approach are twofold: (i) a wide range of TVD schemes
including compressive schemes such as the SUPERBEE scheme can be readily implemented;
(i1) improvement to the standard TVD formulation such as extremum preserving algorithms

[50] can now be used for unstructured grids.
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Figure Captions

Figure 1: (a) High Order and TVD monotonicity region on Sweby’s diagram, (b)-(e) TVD
schemes in Sweby r-y diagram.

Figure 2: (a) unstructured grid notation, (b) advection node notation, (c) extended stencil
for face gradient, and (d) compact stencil for face gradient

Figure 3: Convection of a step profile; (a) physical domain, (b) dense grid used, (¢) ¢
profile at y=0.8 using coarse grid, (d) ¢ profile at y=0.8 using dense grid.

Figure 4: Comparison of ¢ profiles at y=0.8 using MUSCL scheme implemented via the
new TVD formulation against Bruner’s formulation [1] over (a) coarse and (b)
dense grid systems for the pure convection of a step profile problem.

Figure 5: Convection of a sinusoidal profile; (a) physical domain, (b) ¢ profile at y=0.8
using coarse grid, (c) ¢ profile at y=0.8 using dense grid.

Figure 6: Convection of a double-step profile; (a) physical domain, (b) ¢ profile at y=0.8
using coarse grid, (¢) ¢ profile at y=0.8 using dense grid.

Figure 7: Smith Hutton problem; (a) physical domain, (b) dense grid used, (c) divergence
error over the domain using the “point formulation”, (d) divergence error over the
domain using the “integral formulation”, (¢) ¢ profile at exit from the domain
(y=0) using coarse grid, (f) ¢ profile at exit from the domain (y=0) using dense

grid.
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Figure 1 (a) High Order and TVD monotonicity region on Sweby’s diagram, (b)-(e) TVD

schemes in Sweby r-y diagram.
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Figure 2: (a) unstructured grid notation, (b) advection node notation, (c) extended stencil

for face gradient, and (d) compact stencil for face gradient
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Figure 3: Convection of a step profile; (a) physical domain, (b) dense grid used, (c) ¢ profile
at y=0.8 using coarse grid, (d) ¢ profile at y=0.8 using dense grid.
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Figure 4: Comparison of ¢ profiles at y=0.8 using MUSCL scheme implemented via the new
TVD formulation against Bruner’s formulation [1] over (a) coarse and (b) dense grid systems
for the pure convection of a step profile problem.
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Figure 5: Convection of a sinusoidal profile; (a) physical domain, (b) ¢ profile at y=0.8 using
coarse grid, (b) ¢ profile at y=0.8 using dense grid.
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Figure 6: Convection of a double-step profile; (a) physical domain, (b) ¢ profile at y=0.8
using coarse grid, (c) ¢ profile at y=0.8 using dense grid.
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Figure 7: Smith Hutton problem; (a) physical domain, (b) dense grid used, (c) divergence

error over the domain using the “point formulation”, (d) divergence error over the domain

using the “integral formulation”, (e) ¢ profile at exit from the domain (y=0) using coarse
grid, (f) ¢ profile at exit from the domain (y=0) using dense grid.
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