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Abstract 
A number of approaches have evolved over the last decade for the implementation of TVD 

schemes within an unstructured grid finite volume method framework.  Unfortunately none 

of these approaches has been comprehensive enough to permit the general implementation of 

TVD–based schemes in unstructured grids, and/or accurate enough to recover the exact TVD 

formulation in structured grids.  In this paper we propose a simple method that allows the 

implementation of the full spectrum of TVD schemes in unstructured grids, while recovering 

their exact formulation on structured grids.  Four schemes implemented using this approach, 

TVD-MINMOD, TVD-MUSCL, TVD-SUPERBEE, TVD-OSHER, are tested and compared 

to Bruner’s TVD formulation [1], and to the Barth and Jesperson linear reconstruction 

scheme [2] by solving four pure advection problems. Results indicate that the Bruner 

formulation yields, for the same original TVD scheme, overly diffusive results when 

compared to the current method. The BJ-MUSCL and TVD-MUSCL are shown to be 

comparable and more accurate than the OSHER scheme.  The SUPERBEE performs best 

though showing tendency for stepping the modeled profile.  In all tests the current method is 

found to retain the behavior of the structured grid TVD formulation.  
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Nomenclature 
f() Functional relationship. 

r Sweby’s r-factor. 

u, v Velocity components in the x- and y- directions. 

v,u  Averaged control volume face velocities. 

v Velocity vector. 

R() Reconstructed polynomial. 

Greek Symbols 

Γ Diffusion coefficient. 

φ General dependent variable. 

ρ  Density. 

ψ Sweby’s flux limiter. 

∇  gradient operator. 

∇  Linearly Interpolated gradient. 

∆r position vector. 

Subscripts 

f Refers to a control volume face. 

C Central grid point. 

D Downstream grid point. 

F Neighboring cell point 

P Main grid point. 

U Upstream grid point. 

˜ Refers to normalized variable. 



Introduction 
The last two decades have witnessed a sustained effort by the CFD community to develop 

robust high-resolution (HR) schemes [3-9] for the simulation of advection-dominated flows.  

Many of these schemes have been implemented on structured grids within the framework of 

finite volume methods.  The main ingredients common to all these schemes are a high order 

profile for the reconstruction of cell face values from cell averages, combined to a 

monotonicity criterion.  The high order reconstruction is usually based on an upwind biased, 

sometimes symmetric, high order interpolation profile [10-12].  To satisfy monotonicity, a 

number of concepts have been proposed over the years [13,14], all within a structured grid 

framework. In the Flux Corrected Transport (FCT) approach of Boris and Book [15-18], a 

first order accurate monotone scheme is converted to a High Resolution scheme by adding 

limited amounts of anti-diffusive flux.  In the monotonic upstream-centered scheme for 

conservation laws (MUSCL) of Van Leer [19], monotonicity is enforced through a limiter 

function applied to a piecewise polynomial flux reconstruction procedure.   Harten [20] 

expressed monotonicity as a measure of discrete variation in the solution fields, hence the 

name Total Variational Diminishing (TVD). This criterion was then expressed as a flux 

limiter by Sweby using the r-ψ diagram [21].  Leonard [4,22,23] presented his monotonicity 

criterion using a relation between a normalized face value, ˜ φ f , and a normalized upwind 

value, ˜ φ C .  While on the conceptual level the above-mentioned monotonicity criteria can be 

shown to be related and sometimes equivalent, implementation-wise they are very different.  

However within the framework of structured grids these differences have not translated into 

increased difficulties in implementation.   
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For unstructured grids the situation is more complicated and high-resolution schemes are not 

as advanced as for structured grids [24-26].  This is specifically due to the difficulty in 

implementing and enforcing a monotonicity criterion that relies on logical or directional 

next-neighbor information, which is readily available in structured grids but missing in 

unstructured grids.  To circumvent this difficulty a number of approaches have evolved, with 

varying degrees of success, based on different monotonicity criteria, such as the FCT [14-

17], the flux difference splitting concepts [27,28], or the MUSCL approach [29-32].  The 

MUSCL-based technique developed by Barth and Jespersen (BJ) [2,33,34], by modifying the 

Spekreijse [35] definition of monotonicity to bound the cell face values rather than the cell 

nodal value, is currently the most popular and successful approach for the implementation of 

high resolution schemes in unstructured grids [36-44], partly because of its simplicity.  

Unfortunately, most of the limiters developed for structured grids cannot be implemented 

using the BJ technique as it is restricted to schemes where the base high order profile uses a 

cell based gradient, which is basically equivalent to the FROMM scheme [19], whose 

bounded version is equivalent to the MUSCL scheme.  In one dimension the BJ scheme can 

be shown to be equivalent to the TVD-MUSCL scheme [45].  Bruner [1,45] suggested a 

more general approach to bound convective schemes.  In this approach he used the Sweby r-

ψ diagram with a modified r factor defined for unstructured grids.  Unfortunately his 

modification did not recover the exact r factor on structured grids.  In this paper we present a 

valid re-formulation of the r factor for unstructured grids that yields the exact TVD 

formulation on structured grids.  

In what follows the formulation of TVD schemes is presented for structured grids following 

the r-ψ diagram of Sweby.  The modification of Bruner to the r-factor is then described 

before detailing the new r-formulation. Spekreijse‘s criterion is then presented and the BJ 
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technique described.  Finally, the new method is compared to the Bruner implementation and 

the BJ scheme.  For that purpose, four TVD schemes (MINMOD [20], OSHER [46], TVD-

MUSCL [19], and SUPERBEE [47]), implemented using the new formulation, are tested by 

solving a number of pure advection problems.   

TVD Schemes 
Following Roe [47], the face value φi+1/2  of a TVD scheme is written as the sum of a 

diffusive first order upwind term and an anti-diffusive one.  The anti-diffusive part is 

multiplied by the flux limiter function, ψ(r), which is a non-linear function of r, the upwind 

ratio of consecutive gradients of the solution, defined as (without loss of generality, we 

assume the velocity at the face vi+1/2>0): 

i1i

1ii
2/1ir φ−φ

φ−φ
=

+

−
+  (1) 

leading to  the flux-limited scheme: 

( )( )i1i2/1i2
1

i2/1i r φ−φψ+φ=φ +++  (2) 

Using a flux limiter, ψ(r), which is simply a linear function of r, different high order schemes 

can be written in the form of equation (2).  For example for, ψ equal to r, the second order 

upwind (SOU) scheme is obtained.  Other schemes can be similarly formulated: 

( )
( )
( )

( )
2

r1rschemeFROMM

rrschemeSOU

1rschemeCD

2rschemeDOWNWIND

+
=ψ

=ψ

=ψ

=ψ

 (3) 

TVD schemes can also be formulated in a form slightly different from the one given by 

equation (2), as in: 
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( )( )1ii2/1i2
1

i2/1i r −++ φ−φ′ψ+φ=φ  (4) 

in this case the r term, now denoted by r’, is defined as: 

2/1i1ii

i1i
2/1i r

1r
+−

+
+ =

φ−φ
φ−φ

=′  

the relation between the two formulations is given by: 

( ) ( 2/1i2/1i
2/1i

rr
r

1
++

+

ψ=′ψ′
′

) (5) 

taking for example the SOU scheme were ψ(r)=r, the equivalent flux limiter function for 

equation (4) becomes  

( ) ( ) 1r
r
1rrr SOUSOU ==ψ′=′ψ′  (6) 

This can be demonstrated by deriving 2/1i+φ  for the SOU scheme:

φi+1/ 2 = φi +
1
2

ψSOU ri+1/ 2( ) φi+1 − φi( )

= φi + 1
2

ri+1/ 2 φi+1 − φi( )

= φi +
1
2

φi − φi−1( )
φi+1 − φi( )

φi+1 − φi( )

=
3
2

φi −
1
2

φi−1

 (7) 

( )( )

( )

1ii

1iii

1ii2/1iSOUi2/1i

2
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2
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2
1

r
2
1

−

−

−++

φ−φ=

φ−φ+φ=

φ−φψ′+φ=φ

 (8) 

In this work the formulation of TVD schemes will be performed using equation (2). 

Following Sweby [21], these schemes may be plotted along with the TVD monotonicity 

region on an r-ψ diagram (see Fig. 1(a)).  Using this diagram, it is simple to grasp the 

formulation of TVD schemes: any flux limiter function, ψ(r), formulated to lie within the 
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TVD monotonicity region yields a TVD scheme.  Sweby has also shown that for second 

order schemes the flux limiter function, ψ(r), has to pass through point (1,1).  A number of 

TVD schemes are shown in Figs. 1(b)-1(e), and formulated as: 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( )
r1
rr

rlimiterMUSCL

r,2min,0maxrlimiterOSHER

r,1min0,maxrlimiterMINMOD

r,,2min,r2,1min0,maxrlimiterSUPERBEE

+

+
=ψ

=ψ

=ψ

=ψ

 (9) 

Since the index-based notation used above is not suitable for unstructured grids, the more 

appropriate notation, shown in Figs. 2(a), 2(b), is adopted.  As shown in Fig. 2(b), nodes C 

and D are defined as the Upwind and Downwind nodes around face f, and the virtual U node 

is defined as the node upwind of the C node. 

Using this notation equation (2) is rewritten as 

( )( )CDf2
1

Cf r φ−φψ+φ=φ  (10) 

and the r ratio becomes 

CD

UC
fr φ−φ

φ−φ
=  (11) 

It is clear that the main difficulty in implementing TVD schemes in unstructured grids lies in 

the need for defining a ‘virtual’ U node. 

Bruner r modification 

Bruner [1,45] proposed the following modification to the definition of the r-factor for TVD 

schemes:   

( ) ( )
CD

C

CD

Cf

CD

UC
f

.r22
r

φ−φ
φ∇∆

=
φ−φ
φ−φ

≈
φ−φ
φ−φ

=
ϖ

 (12) 

This approximation is clearly inconsistent and when brought back into one dimension does 

not recover the TVD condition, as equation (11) becomes: 
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( )
CD

UD

CD

C
bruner,f

CD

UC
f

.r2
rr

φ−φ
φ−φ

=
φ−φ
φ∇∆

=≠
φ−φ
φ−φ

=
ϖ

 (13) 

Exact r formulation 

A better formulation for r in unstructured grids can still be derived.  Returning to the 

definition of r, we can write: 

( )

( ) ( )
CD

CDUD

CD

DUCD

CD

UC
fr

φ−φ
φ−φ−φ−φ

=

φ−φ
φ−φ−φ+φ

=
φ−φ
φ−φ

=

 (14) 

Noting that values for φD and φC represent the values of the nodes straddling the interface and 

thus are readily available for unstructured grid.  Therefore, the r-values would be computable 

if the term involving φU could be replaced by a known term. In this case 

( )

( )CD

UD

r

r

⋅φ∇=

⋅φ∇=φ−φ

C

CUD

2
 (15) 

where rCD is the vector between the nodes ‘C’ and ‘D’, and rUD is the vector between nodes 

'D' and the virtual node 'U', representing the node Upstream of node ‘C’ (see Fig. 2(b)).  

Node ‘U’ is chosen such that it lies along the line joining nodes ‘D’ and ‘C’ with ‘C’ at the 

center of the ‘UD’ segment.  Other positions of ‘U’ could also be chosen, but with a loss of 

accuracy as the nodal gradient yields a second order accuracy only when the difference is 

centered at node ‘C’. 

The formulation of r becomes 

( ) ( ) ( )
1

22
r

CD

C

CD

CDC
f −

φ−φ
⋅φ∇

=
φ−φ

φ−φ−⋅φ∇
= CDCD rr

 (16) 

which can be easily computed for unstructured grids.  
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Gradient Interpolation  

Another important aspect of the TVD implementation resides in the interpolation of gradients 

to the cell faces.  Gradients at the cell faces are used in the discretization of the convection 

term when using High Resolution schemes and are usually obtained by a weighted 

interpolation from the neighboring cell gradients.  A simple weighted interpolation leads to 

an extended stencil as shown in Fig. 2(c), the stencils of the cell gradients computed using 

the gauss theorem or least squares involving the neighboring cell nodes are added to yield the 

face gradient extended stencil.  A better method is to force the face gradient along the PN 

direction, Fig. 2(d), to be directly computed from the cell nodes in a manner similar to the 

Rhie-Chow interpolation [48] for pressure gradients.  In this case the cell face gradient along 

PN is more compact, and accurate, and is given by: 

( ) ( ) ( ) ( )( PFPFfPF
PF

PF
ff eee

r
⋅φ∇−

φ−φ
+φ∇=φ∇ )  (17) 

where ( )fφ∇  is the gradient interpolated from the two adjacent cell gradients, rPF the vector 

between the nodes P and F (where F=F1, or F2, …), and ePF is a unit vector in the direction 

of rPF.  What is achieved with this formulation is a reduction in the stencil of the face 

gradient along the PF direction.  The stencil for ( )fφ∇ , shown in Fig. 2(c), is basically the 

union of the stencils of the P and F cells, whereas that for ∇φ( )f
along the PF direction is 

formed of the P and F cells only, (Fig. 2(d)). 

This modification was found to be especially important for HR schemes that are defined as a 

function of face gradients such as the SOU scheme.  
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Barth and Jesperson Scheme 
Barth and Jespersen [2] followed a different approach in enforcing the monotonicity 

criterion.  In their approach the Speikreijse monotonicity criterion [35] was modified to apply 

it for the reconstruction of φ within the control volume, i.e the condition was changed to state 

that the values of the reconstructed polynomial within the control volume should not exceed 

the maximum and minimum values at the neighbors of the control volume.  

Using the notation of Fig. 2(a) the Speikreijse criterion written as: 

( ) ( ) ( )PNeighborsNmaxmin NPN ∈∀φ≤φ≤φ  (18) 

was modified to: 

( ) ( ) ( ) ( )PNeighborsN,maxR,min PNjPPN ∈∀φφ≤≤φφ r  (19) 

where j is some point within the control volume P, and R is the reconstruction operator given 

by: 

( ) ( )PjPjPjPR rrr −⋅φ∇ψ+φ=  (20) 

where ψ is the flux limiter, and r the position vector.  Instead of enforcing the condition of 

equation (2) over the control volume, it is enforced at the cell faces integration points, thus 

changing equation (19) into: 

( ) ( ) ( ) ( )PNeighborsN,maxR,min PNfPPN ∈∀φφ≤≤φφ r  (21) 

where f  is a cell face centroid.  The computation of the value of the limiter ψ is performed in 

two steps as follows.  

Step 1: The reconstruction polynomial is evaluated at each cell face integration point in order 

to determine the value of ψf that satisfies the relation: 

( ) ( ) ( ) ( )PNPfPPfPPN ,maxR,min φφ≤−⋅φ∇ψ+φ=≤φφ rrr  (22) 

which can be rewritten as 
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( )
( )

( )( )
( )

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

φ=φ

φ<φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅φ∇

φφ−φ
Φ

φ>φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅φ∇

φ−φφ
Φ

=ψ

Pf

Pf
PfP

PNP

Pf
PfP

PPN

f

1

,min

,max

rr

rr

 (23) 

where 

Φ x( ) = min x,1( )  (24) 

Step 2: The value of the limiter is computed as the minimal value of ψ over all cell faces, 

i.e.: 

ψP=min(ψf)  (25) 

Because of convergence problems found with the limiter, Venkatakrishnan [33,40] proposed 

a modified version of the original limiter. The modified limiter is based on the differentiable 

function: 

( ) 22

22

2xx
x2xx

ε+++
ε++

=Φ  (26) 

The role of the constant, ε2, being to deactivate the limiter in smooth flow regions, with its 

value specified as  where K is a user-specified constant, and h a local mesh size. ( )32 Kh=ε

It is worth noting that for a one dimensional discretization, the Barth & Jesperson scheme can 

be shown to be equivalent to the TVD-MUSCL scheme, and thus in this special case could be 

represented graphically using the Sweby diagram of Fig. 1(c). 

Test Problems 
The validity of the newly proposed r-factor formulation in unstructured grids is demonstrated 

in this section.  For that purpose four TVD schemes are implemented using the Bruner and 

the new formulations.  The schemes are then used in solving four pure convection test 

problems: advection of a step profile, advection of a sinusoidal profile, advection of a 
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double-step profile, and the Smith and Hutton problem [49].  Results obtained using the 

schemes are compared against those obtained using the BJ linear reconstruction scheme and 

the first order upwind scheme. 

Advection of a Step Profile 

Figure 3(a) shows the well known benchmark test problem consisting of a pure advection of 

a transverse step profile imposed at the inflow boundaries of a square computational domain. 

Two unstructured mesh systems consisting of 862 and 2094 cells (illustrated in Fig. 3(b)) 

were used. The governing conservation equation for the problem is simply: 

∇ ⋅ ρvφ( ) = 0  (27) 

where φ is the dependent variable and v=1i+1j is the Cartesian velocity vector. The computed 

values of φ using the upwind scheme, the OSHER, the MINMOD, the MUSCL and the 

SUPERBEE schemes, implemented using the exact r-formulation, in addition to the BJ 

scheme are shown in Fig. 3(c) and 3(d) for the coarse and fine grids respectively.  As is the 

case for structured grids [5] the MINMOD is the most diffusive, the BJ-MUSCL and TVD-

MUSCL schemes yield comparable results that are better than the OSHER scheme. The 

performance of the upwind scheme is worse in unstructured grids than for structured grids 

because no flow can be aligned with the grid lines.   As expected the SUPERBEE yields the 

best results because it is a highly compressive scheme.   All results are devoid of 

over/undershoots.   Performance-wise the TVD and BJ implementations required about the 

same computational cost per iteration, TVD schemes generally did not experience any 

flattening of the convergence rate below a residual of 10-6 except for the SUPERBEE 

scheme, while the BJ scheme experienced oscillations of the residual around 10-6.  This was 

inconsequential with respect to the results.  
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In Fig. 4, the TVD-MUSCL scheme profiles generated using the current formulation are 

compared against profiles obtained following Bruner’s formulation on both coarse (Fig. 4(a)) 

and dense (Fig. 4(b)) grid systems.  As depicted, Bruner’s scheme results are over diffusive 

due to the approximation introduced in the formulation of r. The same trend was observed 

with all the other schemes and deemed unnecessary to be reported for compactness.   

Advection of a Sinusoidal Profile 

This problem is similar to the previous one in geometry except that a sinusoidal profile is 

used.  The sinusoidal profile involves steep and smooth regions, as well as an extremum 

point, making its simulation much more demanding than the simple step profile.  The profile 

is given as 

φ =
sin π

2
max 1-

abs y - 0.1707( )
0.1707

,0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 0 ≤ y ≤ 0.3414

0 otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 (28) 

The problem is depicted in Fig. 5(a), the same meshes as the step-profile problem were used.  

Results are shown in Figs. 5(b) and 5(c) for the coarse and fine meshes respectively.  As 

expected all the schemes suffer from a substantial decrease in the numerical extremum, with 

its value decreasing down to 0.48 for the UPWIND scheme.  The SUPERBEE preserves on 

the coarse mesh more of the extremum value (0.83), and experience no loss in extremum on 

the fine mesh.  The BJ-MUSCL, TVD-MUSCL and OSHER schemes results are much better 

than those of the UPWIND scheme and the MINMOD scheme, while still experiencing on 

the coarse and fine meshes a decrease in the extrema down to 0.68 and 0.92 respectively.  
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Advection of a double-step Profile 

A double step profile is imposed at inlet to the square domain depicted in Fig. 6(a). The 

profile is given as 

⎩
⎨
⎧ ≤≤

φ
0.3>y0

0.3y01
=  (28) 

The same meshes as for the step-profile problem were used.  Results are shown for the coarse 

and fine meshes in Figs. 6(b) and 6(c) respectively.  As expected all schemes suffer from an 

important decrease in the numerical extremum on the coarse mesh, however on the fine mesh 

the SUPERBEE, OSHER, TVD-MUSCL and BJ-MUSCL preserve the extremum of 1.0. The 

profiles obtained by the MINMOD and UPWIND schemes are however of lower quality. 

Smith and Hutton problem 

In the fourth test problem, shown schematically in Fig. 7(a) along with an illustrative grid 

used (Fig. 7(b)), a step discontinuity at x=-0.5 is convected clockwise from the inlet plane 

(x<0, y=0) to the outlet plane (x>0, y=0) by a rotational velocity field given by: 

( )
( ⎭

⎬
⎫

⎩
⎨
⎧

−−
−

=
⎭
⎬
⎫

⎩
⎨
⎧

=
2

2

y1x2
x1y2

v
u

v )  (29) 

The use of the above equation, denoted by the ‘point formula’, to compute the convective 

fluxes yielded a non-conservative velocity field, i.e. continuity was not satisfied over each 

cells.  This is clearly demonstrated in the continuity residuals’ map depicted in Fig. 7(c).  The 

reason for this behavior is that the cell face velocities in the discretized equation are assumed, 

when using the point formula, to be constant through out the face, which is clearly wrong.  In 

order to satisfy continuity over each cell the above equations should be integrated over the 

cell faces to yield the respective face fluxes.  The resulting equation is denoted here by the 
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‘integration formula’.  Integrating equation (29) over a cell face yielded the following 

equations for the x and y face fluxes:  

( )∫ ∫∫ ∫ −=
2n

1n

2n

1n

2n

1n

2n

1n

y

y

x

x

2
y

y

x

x

dxdyx1y2dxdyu  (30) 

over a general cell face defined by: 

22
12

12
nn

nn

nn mxyn,
xx
yy

mwithnmxy −=
−
−

=+=  (31) 

Integrating equation from node 1 to node 2, one gets: 

( )( )

( )

( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−−−−+−=

⎥⎦
⎤

⎢⎣
⎡ −−+=

−−+=

−+==

∫
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334422

342

23

2
2

1

12121212

2

1

2

1

2

1

3
2

2
121

3
2

2
121

22221

121

nnnnnnnn

x

x

x

x

x

x

n

n

xxnxxmxxnxxm
l

nxmxnxmx
l

dxnxmxnmx
l

dxxnmxudl
l

u

n

n

n

n

n

n

 (32) 

and for the y component we get 

( )( )

( )

( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−−+−+−−=

⎥⎦
⎤

⎢⎣
⎡ +++−=

+++−=

+−−==

∫
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3344222222

342222

2322

2
2

1

12121212

2

1

2

1

2

1

3
4

2
11

3
4

2
11

42221

121

nnnnnnnn

x

x

x

x

x

x

n

n

xxmnxxmxxnxx
l

mnxxmxnx
l

dxmnxxmxnx
l

dxnmxxvdl
l

v

n

n

n

n

n

n

 (33) 

Where m and n define the equation passing through nodes n1 and n2, i.e the cell face. Using 

the ‘integration formula’ to compute the velocity component yielded a continuity satisfying 

velocity fields as shown by the map displayed in Fig. 7(d). 
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The boundary conditions for the Smith and Hutton problem [49] are: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<<=
<<−=
=<<−

=−<<−
=<<−

=φ

1y0;1xfor0
1y0;1xfor0
1y;1x1for0

0y;5.0x1for0
0y;0x5.0for2

 (34) 

No physical diffusion was considered and the problem was solved using two grid systems of 

size 889 and 1060 cells (Fig. 7(b)).  Results are displayed in Figs. 7(e) and 7(f).  As before, 

for the coarse mesh numerical results obtained with the SUPERBEE are better than those 

achieved with the other schemes.  For the fine mesh the SUPERBEE, OSHER, BJ-MUSCL 

and TVD-MUSCL scheme profiles are nearly similar.  Results from the MINMOD scheme 

are quite diffusive, but nonetheless better than the UPWIND scheme. 

Conclusion 
In this paper, a number of TVD schemes, namely the SUPERBEE, TVD-MUSCL, OSHER, 

and MINMOD schemes, in addition to the BJ-MUSCL scheme were implemented on 

unstructured grids.  As expected, results for the BJ-MUSCL and TVD-MUSCL were found 

to be similar.  The approach followed was proved to be general and consistent with the 

Sweby TVD formulation for structured grids.  Results for all test problems presented showed 

that TVD monotonicity was properly enforced for all schemes resulting in oscillation free 

profiles.  The benefit of such an approach are twofold: (i) a wide range of TVD schemes 

including compressive schemes such as the SUPERBEE scheme can be readily implemented; 

(ii) improvement to the standard TVD formulation such as extremum preserving algorithms 

[50] can now be used for unstructured grids.  
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Figure Captions 

Figure 1:  (a) High Order and TVD monotonicity region on Sweby’s diagram, (b)-(e) TVD 

schemes in Sweby r-ψ  diagram. 

Figure 2: (a) unstructured grid notation, (b) advection node notation, (c) extended stencil 

for face gradient, and (d) compact stencil for face gradient 

Figure 3: Convection of a step profile; (a) physical domain, (b) dense grid used, (c) φ 

profile at y=0.8 using coarse grid, (d) φ profile at y=0.8 using dense grid. 

Figure 4:  Comparison of φ profiles at y=0.8 using MUSCL scheme implemented via the 

new TVD formulation against Bruner’s formulation [1] over (a) coarse and (b) 

dense grid systems for the pure convection of a step profile problem. 

Figure 5: Convection of a sinusoidal profile; (a) physical domain, (b) φ profile at y=0.8 

using coarse grid, (c) φ profile at y=0.8 using dense grid. 

Figure 6:  Convection of a double-step profile; (a) physical domain, (b) φ profile at y=0.8 

using coarse grid, (c) φ profile at y=0.8 using dense grid. 

Figure 7:  Smith Hutton problem; (a) physical domain, (b) dense grid used, (c) divergence 

error over the domain using the “point formulation”, (d) divergence error over the 

domain using the “integral formulation”, (e) φ profile at exit from the domain 

(y=0) using coarse grid, (f) φ profile at exit from the domain (y=0) using dense 

grid. 
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Figure 1  (a) High Order and TVD monotonicity region on Sweby’s diagram, (b)-(e) TVD  

     schemes in Sweby r-ψ  diagram. 
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Figure 2: (a) unstructured grid notation, (b) advection node notation, (c) extended stencil  

    for face gradient, and (d) compact stencil for face gradient  
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Figure 3: Convection of a step profile; (a) physical domain, (b) dense grid used, (c) φ profile 
at y=0.8 using coarse grid, (d) φ profile at y=0.8 using dense grid. 
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Figure 4: Comparison of φ profiles at y=0.8 using MUSCL scheme implemented via the new 
TVD formulation against Bruner’s formulation [1] over (a) coarse and (b) dense grid systems 

for the pure convection of a step profile problem. 
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Figure 5: Convection of a sinusoidal profile; (a) physical domain, (b) φ profile at y=0.8 using 
coarse grid, (b) φ profile at y=0.8 using dense grid. 
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Figure 6: Convection of a double-step profile; (a) physical domain, (b) φ profile at y=0.8 
using coarse grid, (c) φ profile at y=0.8 using dense grid. 
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Figure 7: Smith Hutton problem; (a) physical domain, (b) dense grid used, (c) divergence  
error over the domain using the “point formulation”, (d) divergence error over the domain 
using the “integral formulation”, (e) φ profile at exit from the domain (y=0) using coarse 

grid, (f) φ profile at exit from the domain (y=0) using dense grid. 


