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TURBULENT CONVECTION HEAT TRANSFER
IN LONGITUDINALLY CONDUCTING, EXTERNALLY
FINNED PIPES

E Moukalled and J. Kasamani

Mechanical Engineering Department, American University of Beirut, Beirut,
Lebanon

S. Acharya

Mechanical Engineering Department, Louisiana State University, Baton Rouge,
Louisiana 70803

A numerical investigation is conducted of turbulent convection in a longitudinally can-
ducting, externally finned pipe. Results reveal significant enhancement in heat transfer
due to finning. The heat transfer rate to the fluid increases with increasing thermal
conductivity of the pipe wall, with increasing values of the external heat transfer coeffi-
cient, and with decreasing interfin spacing. Heat transfer is underestimated by as much as
30 times in the developed region when the thermal conductivity of the pipe wall is not
accounted for. The magnitude of this underestimation decreases with decreasing wall
conductivity, Finning is found to be most effective at low values ef wall conductivity,
where a nearly 10-fold increase in keat transfer is noied. At high thermal conductivities in
the wall, the Nusselt number and the pipe wall temperature vary monotonically in the
axial direction, and this variation becomes increasingly nonmonaotonic at lower thermal
conductivities. A constant, spatially averaged, Biot number solution is found to give satis-
Jactory results only for cases of high conductivity in the wall. The asymptotically devel-
oped Nusselt numbers compare well (within 7%) with the axially averaged values for the
cases of conducting pipe wall.

INTRODUCTION

The objective of this study is to predict the heat transfer characteristics of turbulent
fluid flow in longitudinally conducting, externally finned pipes. Flows through exter-
nally finned pipes are encountered in many heat exchange applications. The fins are
generally square plates or annular plates distributed uniformly on the outer surface of the
pipe and enhance heat transfer by increasing the heat transfer surface area. Conse-
quently, the outer surface of the finned pipe can be idealized as a surface with a spatially
periodic boundary condition, a low heat transfer coefficient (4.} along the unfinned
sections, and a high heat transfer coefficient (h;) along the finned sections. Figure la
shows a schematic of the finned pipe, and Fig. 15 shows the above-described model for
the variation of the heat transfer coefficient.

Laminar heat transfer in externally finned pipes has been studied recently. Sparrow
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NOMENCLATURE
Bi  Biot number (= AR /k) ¥ parameter appearing in Eq. (11) {=a[Bi -
h heat transfer coefficient 8(30/3m),, - 1}
k thermal conductivity n dimensionless radial coordinate (= r/R;)
{ mixing length ) L] dimensionless temperature [ =(T — T; )/
Nu local Nusselt number (T — Tyl
p pressure " viscosity
P dimensionless pressure (= ploid) P density
Pe  Péclet number a dimensionless interfin spacing (= s/R;
Pr  Prandtl number Pe)
@  rate of heat transfer between x = 0 and T dimensionless fin thickness (=/R; Pe)
X =X ry  wall shear stress
r radial coordinate
R;  inner radius of pipe -
R, outer radius of pipe Subscripts
Re  Reynolds number (= pu, R/p)
s interfin spacing a average value
1 fin thickness f finned section
T  temperature ’ fd  fully developed
u time-averaged component of axial velocity fl fluid property
u,, mean value of u at any axial location i condition at inner radjus
U dimensionless axial velocity (= u/ug,) in  condition at inlet
X axial coordinate 1 laminar flow
X  dimensionless axial coordinate [=x/(R, Pe)] ~max maximum value
y distance from pipe wall o condition at outer radius
o parameter appearing in Eq. (11) {=2 Pe? t turbulent flow
[(RolRi)Z - 11} u unfinned section
B8 flnid to wall thermal conductivity ratio w wall property
(= kn/k,) o ambient condition

and Charmchi [1] investigated the behavicr of laminar heat transfer in externally finned
pipes but neglected the effect of axial conduction in the pipe wall. No calculations for
turbulent flows were performed in their study. Moukalled and Acharya [2] extended the
work reported by Sparrow and Charmchi [1] by including the effect of conduction in the
pipe wall. The significant influence of axial wall conduction on the heat transfer behav-
jor was clearly demonstrated. However, the results reported by Moukalled and Acharya
{2] are again limited to laminar, hydrodynamically fully developed flow.

A few studies have also been reported on flow and heat transfer through longitudi-
nally conducting, smooth, unfinned pipes. Lin and Chow [3] obtained an analytical
solution for turbulent flow and heat transfer in an unfinned pipe, taking into account the
effects of axial and radial conduction in the pipe wall. Faghri and Sparrow [4] consid-
ered simultaneous wall and fluid axial conduction in laminar pipe flow and heat transfer.
Depending on the wall conductance parameter and the Péclet number, it was found that
axial wall conduction can carry a substantial amount of heat upstream into the non-
directly heated portion of the pipe. Anand and Tree [5] have numerically studied the
effect of axial conduction in a tube wall with a step change in heat flux. Fithen and
Anand [6] used a finite-element technique to study conjugate pipe flow and heat transfer.
Barozzi and Pagliarini [7] used a superposition principle with a finite-element method to
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solve conjugate heat transfer in a pipe. Soliman [8] presented an analytical solution for
slug flow with wall conduction, while Zariffeh et al. [9] used a numerical method to
solve for flow in a tube with axial wall and fluid conduction.

In this paper, as noted before, axial conduction in the wall of an externally finned
pipe is accounted for, and its influence on turbulent convection heat transfer is assessed.
Since in most practical situations the flow is turbulent, the earlier laminar flow study of
Moukalled and Acharya [2] has limited applicability, and this paper addresses the more
commonly encountered situation of turbulent flow in an externally finned pipe. Radial
conduction in the pipe wall is neglected, and therefore results are valid for relatively thin
pipes. In view of the axial conduction, a conjugate heat transfer problem has to be
solved. In this work, this solution is obtained by a numerical technique. The coupling
between turbulent convection in the pipe and conduction in the pipe wall is accomplished
by ensuring continuity of the thermal conditions along the inside surface of the pipe.
These conditions are not known beforehand and have to be determined along with the
solution to the problem. This adds to the complexity of the problem and necessitates the
use of an iterative procedure in which the fluid convection and the pipe conduction
equations are successively solved until convergence. To model turbulence, the mixing
length theory is used. As discussed later, for simple pipe flows such a model is adequate.

(a)
o - A r-
| IT I o !
I 1hy I Pl 1o
+___4J L..l_.__l Cmed Lo—od Leomm
hl 1 p— |
T —
(B)

Fig. 1 (@) Physical situation for the externally finned pipe. (&) Model for variation of
the heat transfer coefficient.
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Due to the lack of any numerical or experimental data for the specific problem consid-
ered herein, comparison is made with predictions obtained for an unfinned tube and with
those calculated for the spatially averaged values of the high and low external Biot
numbers.

GOVERNING EQUATIONS

The physical situation under consideration is illustrated in Fig. la (and is modeled
as shown in Fig. 1b) and represents turbulent convection of a fluid in a longitudinally
conducting, externally finned pipe. Fluid enters the pipe with an assumed uniform tem-
perature T, that is different from the ambient temperature T,,. The governing equations
for conservation of momentum and energy are formulated for hydrodynamically fully
developed turbulent flow. Water is assumed to be the working fluid, and all property
values are chosen to correspond to water.

Instead of using an analytical or experimental velocity profile for the hydrodynam-
ically fully developed turbulent flow, a numerical solution is first obtained of the mo-
mentum equation, using a uniform velocity profile at the inlet to the pipe and marching
downstream until a fully develeped turbulent velocity profile is obtained. Then this
velocity profile is used to solve the energy equation. Moreover, axial diffusion in the
fluid is neglected due to the high values of Péclet numbers in turbulent flow (> 50). With
these assumptions, the conservation of the x momentum equation and the conservation of
energy equations can be expressed in parabolic form.

Velocity Equation

As noted above, the equation for conservation of the x momentum is selved first,
until a fully developed velocity profile is obtained. This profile is then used in the
conservation of energy equation. To express the governing equations in dimensionless
form, the following dimensionless quantities are defined:

X r P
= = U=>2 P = 1
R, Pe K R, U, pu’, )

With these dimensionless variables, conservation of the x momentum equation

becomes
U.vv = -2, (1)i[1>r,(1 + -"-)ﬂ]] @
0X 1/ 91 m/ O

where p, and p, are the molecular and turbulent viscosities, respectively. For turbulent
pipe flows, Re = 5.5 X 10* is a typical value and is used here.

To solve the above conservation equation, which has a parabolic form, the bound-
ary conditions and the turbulent viscosity y, must be specified. The boundary conditions
are

U=1 atX =20 (3a)
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ol

— =0 tn =0 3b
X at n (3b)
U=20 atn = 1 (30

Turbulence Model

The turbulence model employed here is Prandtl’s mixing length model [10, 11].
For simple pipe flows, such as those considered in this study, this model has been shown
to be adequate. It is emphasized that while the choice of this model is based partly on its
simplicity for pipe flows, the model is clearly adequate to determine the mean velocity
profile of the flow. In a more complex flow situation, the use of the mixing length model
could not have been justified. In this model, the turbulent viscosity p, is evaluated in
terms of the mixing length and the local velocity gradient. A commonly used representa-
tion for g, is

@

where 1 is the mixing length at a point situated at a distance y from the pipe wall and is
represented as the product of a Nikuradse-type mixing length /, [12] and a Van Driest
[13] damping factor d;, that is,

L= [ndf (5)

For turbulent pipe flow, /, and d; are given by [10]

2 4
ho_ 014 - 0.08 (1 - l) - 0.06(1 - l) ©6)
Ri Rj R

== ()G ®

In the above equation, 7, is the local shear stress on the pipe wall. When Eqgs. (5)-(7)
are combined, the mixing length « and, consequently, u [Eq. (4)] are completely speci-
fied.

Temperature Equation

The conservation of energy equation in the fluid, in nondimensional form, can be

written as
v - (1)1 (1 " &P_r_.)n_ae ®)
ax n/ on w Pr,/ an

where the nondimensional temperature 6 is defined as



406 F. MOUKALLED ET AL.

- I-T, 9)
Tun - T‘l

and Pr, is the laminar Prandtl number and Pr, is the turbulent Prandtl number. Values

representative for water have been assigned. The boundary conditions for the tempera-

ture equation are

8 =0 X =0 (10a)
CLA) aty = 0 (108)
an

6= 0,X) atn=1 (10¢)

where 6,(X) is the temperature distribution in the pipe wall, which is not known a priori
but is determined as part of the solution by solving the pipe wall conduction equation.

Wall Conduction Equation

The heat conduction equation for the pipe wall is formulated by making a quasi-
one-dimensional energy balance on a control volume along the wall of the pipe. Pipe
walls are assumed to be thin, so that radial temperature variations in the pipe wall can be
assumed to be small, The final form of this equation can be expressed as

O — aBig, 4y =0 (a1

where
« = ﬁ% (124)
g = /,:_: (12b)

o). ]

and Bi is the Biot number, which varies periodically on the outside surface of the pipe
and is equal to Bi, for the unfinned surface and Bi; for the finned surface. That is,

Bi=Biu=% Mo+ 1)< X<no+n+o (13q)

w

Bi---Bif=-hIfcR° ne+nN+o< X<+ De+7+0c (13

w
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where

S ¢

T
R, Pe R, Pe

n=0119293)---1 (14)

The terms s and ¢ are the interfin spacing and the fin thickness, respectively.

The thermal wall boundary conditions at the two ends of the pipe, X = Oand X =
L, also have 1o be specified. Due to lack of better information, it is assumed here that
poorly conducting pipes {(e.g., a CPVC pipe) are connected upstream and downstream of
the externally finned pipe section. Such boundary conditions have also been used by
many other workers [2-4]. Mathematically, the boundary condition can be written

%=0 at X =0and X = L, (15)
ax

Another reasonable boundary condition at X = 0 is to assume that the fluid and pipe
wall are isothermal to T,. This is equivalent to 8, = 0 at X = 0. Since at X = 0, the
velocity profile has been taken to be fully developed, it has been implicitly assumed that
the pipe upstream of X = 0 is long enough for the flow to become fully developed, and
the pipe and the fluid can therefore be assumed to be in thermal equilibrium, that is,
8, = 0at X = 0. Computations using this boundary condition have also been obtained,
but for two cases only, and are used for the purpose of comparing results with those
obtained using the previous boundary condition (30,./0X = 0).

It should be noted that the term (96/d%),_, appearing in Eq. (12¢) provides the
coupling between the fluid and the pipe wall temperatures. This term is not known
beforehand and is determined in the course of the solution.

Examination of the dimensionless governing equations and boundary conditions
reveals the presence of six parameters, namely, the thermal conductivity ratio 8, the low
and high Biot numbers (Bi, and Bi,, respectively), the interfin spacing o, the fin thick-
ness 7, the pipe radius ratio R;/R,, and the dimensionless pipe length L. To reduce the
number of parameters, R,/R,, is assigned the value of 0.9 (for thin pipes) and L, (=//R,;
Pe) is assigned the value of 0.0015 (which is the length required for thermally fully
developed flow when axial conduction is neglected). Other parameter values are listed in
Table 1.

SOLUTION PROCEDURE AND COMPUTATIONAL DETAILS

The fluid momentum and energy equations, Eqs. (2) and (8), are solved numeri-
cally by the parabolic calculation procedure of Patankar and Spalding [14]. This is a
fully implicit, marching-type solution procedure, proceeding from the inlet location
(X = 0) to the exit of the pipe (X’ = L)). The equation for heat conduction in the pipe
wall, Eq. (11), is solved by the elliptic finite-volume method described by Patankar [15].

The momentum equation, Eq. (2), is first solved separately to obtain the fully
developed, turbulent velocity profile used in the fluid energy equation. Then an iterative
approach is adopted, whereby the energy equation for the fluid and that for the pipe wall
are solved consecutively. To start the first iteration, the fluid energy equation, Eq. (8), is
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Table 1 Parameter Values

Bi,

Case 8 x 10° 7 o Bi, Big Case [Eq. (16)]
1 o0 7.5 x 1077 3r 1 50 1A 53/
2 16.5 7.5 % 1077 3r 1 50 2A 53/4
3 1.65 7.5 x 1077 Ir 1 50 3A 53/4
4 o 7.5 x 1077 ir 5 250 4A 265/4
5 16.5 7.5 x 1077 3r 5 250 SA 265/4
6 1.65 7.5 x 1077 3r 5 250 6A 265/4
7 o 7.5 x 1077 7r 1 50 7A . 518
8 16.5 7.5 x 1077 1r ! 50 8A T 58
9 1.65 7.5 x 1077 17 1 50 9A 57/8

solved by imposing a guessed value for 6,(X) as the boundary condition needed in Eq.
(10¢c). The solution obtained is fed inte the pipe wall conduction equation, Eq. (11), via
the term (36/d%),.,, which is solved to obtain updated values for 0,(X). The updated
0,.(X) is used to initiate the second iteration, and the fluid energy equation is solved
again. This procedure is continued until convergence to at least four significant figures is
reached.

The computational task is fairly demanding in terms of both computer time and
computer storage. This is mainly due to the periodic boundary condition, Eqs. (134) and
(13b), and the consecutive iterative scheme used to resolve conduction-convection cou-
pling. The thermal boundary layer that develops each time a finned segment is encoun-
tered necessitates the use of a very small forward step size, especially in the initial
portion of the pipe, where the largest differences occur between the fluid bulk tempera-
ture Ty, and the ambient temperature T,,. The flow computations are performed with 100
grid points, which span the pipe cross section 0 < 5 =< 1, and cluster more densely near
the pipe wall. Nonuniform step sizes are used in the axial direction, and the value
gradually increases in the streamwise direction. For the first 1000 steps, the forward
step size was taken to be 107°, then increased in steps up to 8 x 107°, and held constant
thereafter. A total of 6100 points in the streamwise direction are used and, as discussed
below, the 6100 x 100 mesh used is found to be adequate for producing grid-
independent results. For the solution of the pipe wall conduction equation, 6100 grid
points are used also. The conduction control volume faces were chosen to be identical to
the streamwise positions in the flow solution. Thus the information transfer between the
conduction and flow solutions can be easily done without the need for interpolation.

To check the accuracy of the solution, results were first calculated for the laminar
case and compared with those reported by Sparrow and Charmchi [1] and Moukalled
and Acharya [2]. Excellent agreement to within 0.75% was obtained. Also, the turbulent
flow problem in an isothermal pipe was solved with the mixing length model, and results
(Fig. 2) were found to be in excellent agreement with the experimental data of Nikuradse
[12]. As a further check for accuracy, computations were performed using much smaller
forward step sizes, a starting forward step value of 10", 200 grid points in the radial
direction, and 12,200 grid points in the conduction problem. Results on the finer mesh
(Fig. 2) agreed to within 0.8 % of the results reported here.
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RESULTS AND DISCUSSION

Due to the large number of parameters involved and lengthy computations needed
for each set of parameters, a limited set of illustrative cases is considered.

As previously stated, the momentum equation is solved first to obtain the numeri-
cal turbulent fully developed velocity profile, which is used in all subsequent computa-
tions of the energy equation. As shown in Fig. 2, the computed velocity profile com-
pares well with the measured velocity profile of Nikuradse [12].

Three values for the thermal conductivity ratio 8 are considered: the first case
(8 = o) represents the situation when axial conduction in the pipe wall is neglected, the
second case (8 = 16.5 x 107%) corresponds to a low wall conductivity situation, k,, =
40 W/m °C (conductivity for steel), and the last case (8 = 1.65 x 107%) characterizes a
high wall conductivity situation, k, = 400 W/m °C (conductivity for copper). For all
cases, the fluid thermal conductivity k; is taken to be 0.66 W/m °C, corresponding to
water. The choices for 7, ¢, Bi,, and Bi; are essentially the same as those made by
Moukalled and Acharya [2]. A listing of the various cases studied is presented in
Table 1.

In the following discusison, cases 1, 4, and 7 represent the situations when axial
conduction is neglected; cases 2, 5, and 8 are for pipes with wall thermal conductivity;
and cases 3, 6, and 9 are for pipes with high wall thermal conductivity. Cases 1, 2, and 3
represent an interfin spacing that is 3 times the fin thickness and an external heat transfer
coefficient along the finned section that is 50 times that of the unfinned part of the pipe.
These are the baseline cases against which other cases are compared. Cases 4, 5, and 6
explore the effect on heat transfer of increasing the level of heat transfer coefficients A,

1.0 +
—— Present predictions
*  Measurements | Nikuradse (1932} ]
0.8 |-
1.0
0.6 k- 0.8
. — 200x12200 Grid points
a 0.6 ---- 100x6100 Grid points
T v
w [
-
-
0.4 ( 0.4
- 0.2
0.2
0.0 i i
0.3 0.5 0.7
8
0.0 N L 1 L L
0.0 0.2 0.4 0.6 0.8 1.0 1,2
u/u

Fig. 2 Fully developed turbulent velacity profile based an mixing length theory (main figure) and tempera-
ture profile (X = 1.43 x 10‘3, case 2) for two different mesh spacings and forward step sizes (inset).
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and A, keeping the same values for 7, g, and the ratio A/h,. Cases 7, 8, and 9 delineate
the effect of increasing the interfin spacing to 7 times the fin thickness as compared with
3 times the fin thickness for cases 1, 2, and 3. For completeness, constant Biot number
computations are included that correspond to the spatial average of Bi, and Bi; given by

Bi, = o Bi, + 7 Bi (16)
g+ T

Results are intended to show heat transfer enhancement due to finning and to
reveal the relative effects of axial conduction in the pipe wall and of the various parame-
ters involved. For this purpose, calculations are performed to determine the bulk tem-
perature and Nusselt number variations. Also included are the cross-stream fluid temper-
ature profiles and the pipe wall temperature distribution.

Bulk Temperatures

The streamwise variation of the fluid bulk temperature, which also represents the
fraction of the maximum possible heat that can be transferred to the fluid, can be writien
as

Q 1
O = 5= = 250 Uty dy an

max

As mentioned earlier, two boundary conditions at X = 0 are considered for the
solution of the conduction equation, Eq. (11). The primary boundary condition used in
obtaining the resuits is the adiabatic condition 6,/0X = 0. Limited calculations are
done with the isothermal boundary condition 8, = 0. The comparison between the two
boundary conditions is depicted in Fig. 3. It may be noted that the curves for the
adiabatic boundary condition are slightly higher than those for the isothermal boundary
condition, but only near the entrance to the pipe, and after the initial entry region, the
two curves merge into one. This result is expected, since the finned pipe section is
insulated at the inlet and the pipe wall temperature there will be higher. Higher fluid bulk
temperatures thus occur near the inlet for the adiabatic boundary condition case in
comparison with the isothermal boundary condition situation. This difference is reduced
in the streamwise direction with the increase in pipe wall temperature. As shown, the
difference in predictions using the two boundary conditions increases with increasing
thermal conductivity in the pipe wall. This is due to the fact that increasing the thermal
conductivity in the pipe wall causes a greater portion of the heat to be transferred
longitudinally along the pipe walls and therefore leads to higher wall temperatures at the
inlet to the pipe. This in turn implies higher heat transfer rates (higher 6,) close to the
inlet. From Fig. 3, it can be inferred that except in the vicinity of the pipe inlet, the
solution is nearly insensitive to the choice of either boundary condition.

The increase in heat transfer due to finning is obvious in Fig. 4 (a 10-fold enhance-
ment is seen for case 1), where the results of cases 1-3 are compared with the corre-
sponding unfinned tube results (i.e., cases having the same thermal conductivity ratio as
in cases 1-3 but with Bi, = Bi; = 1). The heat transfer augmentation rates decrease with
increasing thermal conductivity in the pipe wall because thermal conductivity smooths



411

TURBULENT CONVECTION HEAT TRANSFER IN FINNED PIPES
L g
{0-1 F
£ case 2 {adiabatic)
1072
F 1 (adiabatic)
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Fig. 3 The effects of adiabatic and isothermal boundary conditions on the streamwise bulk temperature,
cases I and 2.

-
w
{ case 3, Ri=}
1072}
0
@
10’k
F -
b - (case 1, Himl}
w0ty e
.
-
P
.
107? L L
i0™® 1073 107% 1073
x/Ri/Pe

Fig. 4 The bulk temperature 6, (or Q/Gp,,) for axially periodic Biot number, cases 1-3, and the
corresponding unfinned tube results (Bi = 1).
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out the finning effect, especially at higher wall thermal conductivities. Furthermore, for
all cases presented in Fig. 4, heat transfer enhancement diminishes with increasing
streamwise distance along the pipe, where the fluid tends toward thermal saturation.

Figures 5-7 show the profiles for the fluid bulk temperature 8, (or @/Q,...) for both
axially periodic Biot number cases and the corresponding uniform spatially averaged
Biot number cases [Eq. (16)]. The streamwise periodic Biot number plots (cases 1, 2,
and 3) are depicted by a solid line, whereas those for spatially averaged uniform Biot
number (cases 1A, 2A, and 3A) are represented by dashed lines. In the absence of
fengthy calculations for the periodic Biot number case, a constant Biot number solution
may be considered as a first approximation for that case. The quality of this approxima-
tion is evaluated from the comparisons presented in Figs. 5-7.

In Fig. 5, it can be seen that there is substantial heat transfer enhancement when
axial conduction along the pipe wall is considered (cases 2, 2A, 3, and 3A) as compared
with situations when it is neglected (cases 1 and 1A). The largest values for 8, (or Q/
Q...) occur for the highest wall conductivity (cases 3 and 3A). The increase in wall
conductivity from 40 {case 2) to 400 (case 3) enhances heat transfer by a factor greater
than 4 at the pipe inlet, and thereafter it tends to diminish somewhat with increasing
downstream distance, where the fluid tends toward thermal saturation (i.e., T, — 7).
This behavior can be explained by considering a control volume along the pipe wall. In
the absence of axial wall conduction in the pipe, there is only transverse heat transfer
through the control volume with g, (heat transferred to the wall) equaling g, (heat
transferred to the fluid). In the presence of axial conduction, since 7}, — T, as X — L,,
the axial wall conduction (assuming T, > T, is directed in the upstream direction
(negative x direction), and hence at any X, due to this upstream conduction, 7, (or Q/

case ZA

x/Ri/Pe

Fig. § The bulk temperature 8, (or @/Q,.) for axially periodic Biot number, cases 1-3, and the corre-
sponding uniform Biot number, cases 1A-3A.
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case 6A

1070 107° o™ 1073

x/Ri/Pe

Fig. 6 The bulk temperature 6, (or Q/Q,,,,) for axially periodic Biot number, cases 4-6, and the corre-
sponding uniform Biot number, cases 4A-6A.

\Raddi |

v

X/Ri/Pe

Fig. 7 The bulk temperature 8, (or Q/Q,,.,) for axially periodic Biot number, cases 7-9, and the corre-
sponding uniform Biot number, cases 7A-9A.
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O Will be greater. Since axial conduction is stronger at higher values of the wall
thermal conductivity, 6, is correspondingly higher.

In determining how well the results for the finned pipe can be approximated by the
results for a uniform Biot number based on the spatial mean of Bi, and Bi, it is clear that
the approximating curves (cases 1A-3A) overestimate the heat transfer for the finned
pipe. As seen in Fig. 5, the greatest overestimation occurs at X = 0 for all cases, and
the approximating curves become increasingly more accurate at larger streamwise loca-
tions. Similar behavior is observed for cases 4A-9A presented in Figs. 6 and 7.

In Fig. 6, the Biot number is increased by a factor of 5 over the value used in Fig.
5. Increasing the pipe wall conductivity gives rise to a lower increase in heat transfer
enhancement for cases 4-6 (Fig. 6) than for cases 1-3. Increasing the Biot number
reduces the external convective thermal resistance and makes the internal convective
thermal resistance more dominant. Hence, increasing the Biot number of the finned tube
reduces the benefit from finning. In other words, with higher heat transfer coefficients,
the pipe wall temperature is closer to T, and is relatively more uniform (see Figs. 12
and 13), which reduces the effect of increasing the wall thermal conductivity. For the
conducting cases, the spatially averaged Biot number results obtained are more accurate
than those observed in Fig. 5.

Figure 7 reveals the geometrical effects on heat transfer behavior by presenting the
results for cases 7-9. Here, the interfin spacing is 7 times the fin thickness, and the Biot
numbers are the same as those for cases 1-3. By comparing Figs. 5 and 7, it can be seen
that if the interfin spacing is increased, resulting in a decrease in the finned surface, the
enhancement in heat transfer at the tube entrance due to increase in pipe wall conductiv-
ity is increased from a factor of 15 (in case 2) to a factor of 42 (for case 8). The unfinned
surface, for case 8, is larger (6 = 77 as compared to 37), and hence the fluid is less
preheated along the finned segments. Thus the temperature difference (7, — T.) is
larger in the pipe entrance region and the fluid is more amenable to heat transfer. As a
consequence, for this case, increasing the wall conductivity has a stronger effect. The
accuracy of the constant Biot number approximating curves, cases 7A-9A, is somewhat
less satisfactory than those depicted in Fig. 5.

Nusselt Numbers

The local Nusselt number is defined by

a ar

The Nusselt number is averaged separately along each of the unfinned and finned seg-
ments of the pipe and is denoted by Nu, and Nu,, respectively.

The streamwise variation of the Nusselt number for cases 1-3 is presented in Fig.
8, and for cases 4-6 in Fig. 9. The Nu values are plotted at the respective mid-points of
the successive segments, and these points are connected with a smooth curve. All of the
Nusselt number curves show similar behavior, decreasing with increasing downstream
distance and then leveling off to a constant value, indicating the attainment of the ther-
mally fully developed regime.

In Fig. 8, Nu; are higher than Nu,, as a result of the higher heat transfer rates
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Fig. 8 Comparison between Nu variation for axially periodic Biot number, cases 1-3, and the corre-
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Fig. 9 Comparison between Nu variation for axially periodic Biot number, cases 4-6, and the corre-
sponding uniform Biot number, cases 4A-6A.
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occurring at the finned sections. The high rates are due to the higher Biot numbers along
these sections, which in the physical situation represent the increased heat transfer arca
due to the fin. The value of the difference (Nu; — Nu,) decreases with increasing pipe
wall conductivity, because axial conduction smooths the effect of finning. Thus when the
pipe wall conductivity is high, the smoothing effect is stronger, and the differences in
Nusselt number between the finned and unfinned sections decreases. For case 1 the Nu,
values are well below and the Nu; values are higher than the corresponding values for
cases 2 and 3. As noted above, this is due to axial conduction in cases 2 and 3, which
tends to smear the abruptness of the changes between the Nusselt numbers in the un-
finned and finned parts. The Nusselt numbers for the corresponding spatial average Biot
number cases 1A-3A are also shown. The Nusselt numbers for these constant Biot
numbers lie below the Nu; and above the Nu, numbers. For case 3, the Nusselt numbers
for the periodic and the spatially averaged Biot number cases are so close that a single
curve represents both. The highest error that occurs in assuming spatially averaged Biot
numbers is for the case when the wall thermal conductivity is neglected (case 1). Thus,
the constant Biot number [based on Eq. (16)] solution gives comparable Nusselt number
results only when axial conduction is significant.

" Figure 9 depicts the Nusselt number variation for cases 4-6. Here, the Biot num-
ber values are greater than those in Fig. 8 by a factor of 5. Inspection of Fig. 9 shows
that the differences (Nu; — Nu,) are smaller here in comparison with those in Fig. 8.
This is because in the presence of relatively high external heat transfer coefficients, the
pipe wall temperature is closer to T, (see Figs. 12 and 13). Therefore, the Nusselt
number curves shown in Fig. 9 are closer to each other compared with the cases in Fig.
8. The other trends are similar to those given earlier (Fig. 8), and therefore the same
discussion is not repeated. For the same reason, the Nusselt number variations for cases
7-9 are not presented.

Table 2 presents the axially averaged Nusselt numbers for the finned and unfinned
sections of the pipe, defined by

Ny, = % Nuu(x,-)o/z o 19)

Ny, = E Nuf(xj)f/E T 20)
j J

Table 2 Axially Averaged and Periodically Developed Nusselt Number Values

Case Nu, Nu; mu‘ o Nug pd
1 103.21 930.11 69.12 858.88
2 248.45 512.62 233.73 482.44
3 490.36 532.53 455.14 499.25
4 118.14 915.18 87.39 849.21
5 372.07 556.39 340.77 51712
6 522.53 548.43 485.72 507.37
7 73.21 995.87 58.84 902.15
8 223.42 474,28 206.92 443.76
9 428.56 526.17 417.61 507.32
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Fig. 10 Fluid temperature profile for axially periodic Biot number, cases 2 and 3, and the correspond-
ing uniform Biot number, cases 2A and 3A.

The trends noted earlier also hold for these averaged values: the difference between the
finned and unfinned Nusselt number values decreases with increasing wall conductivity
and increasing magnitude of Biot number. The differences are more pronounced for
increased interfin spacing.

Also presented in Table 2 are the corresponding asymptotic, periodically devel-
oped values. In long pipes, the use of the periodically developed values is expected to be
reasonable, and the values in Table 2 confirm this expectation. For the conducting wall
cases, the difference between the average and periodically developed values is less than
7% over the range of parameters considered. For the poorly conducting cases repre-
sented by cases 1, 4, and 7, the differences between the periodically developed and
axially averaged values are significant. This observation is consistent with earlier com-
parisons of the Nusselt numbers with the constant spatially averaged Biot number solu-
tions, where the agreement between the two solutions was satisfactory only for the high-
conductivity cases.

Temperature Distribution

The fluid temperature profiles at two different cross-stream locations along the
pipe, for some of the cases considered, are presented in Figs. 10 and 11. It is clear that
all the temperature profiles in the pipe are characteristic for turbulent flow. Another
common behavior of the temperature profiles is that the bulk temperature increases in
the streamwise direction (compare temperature profiles at X = 1,43 x 107 and X =
2.9 x 107, which conforms with the bulk temperature variations depicted in Figs. 5-
7. For all cases shown, the uniform, spatially averaged Biot number results overestimate
the corresponding periodic Biot number predictions. This overestimation decreases in
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Fig. 11 Fluid temperature profile for axially periodic Biot number, cases 5 and 6, and the corresponding
uniform Biot number, cases 5A and 6A.

the streamwise direction, where the fluid tends toward thermal saturation (Figs. 10 and
11). The overestimation also decreases with increasing values of thermal conductivity in
the pipe wall (see the difference between cases 2 and 3 and cases 5 and 6) or higher
levels of external heat transfer coefficient (see the difference between cases 2 and 5 and
cases 3 and 6), where higher temperatures are involved.

In Figs. 12 and 13, temperature distributions in the pipe wall are presented for two
intervals along the streamwise direction of the pipe. The high wall conductivity curves
(cases 3, 6, and 9) exhibit a smooth monotonic variation due to the smoothing effect of
axial conduction in the pipe wall. The maximum smoothing is obtained with the largest
external heat transfer coefficients because the pipe wall temperature is then closer to T,.
With decreasing wall conductivity values, the smoothing effect of axial conduction is
reduced, and the temperature curves (cases 2, 5, and 8) show a highly nonmonotonic
periodic variation with high values in the finned regions and low values in the unfinned
regions. The amplitude of these variations [i.e., the difference between the highest and
lowest temperature values over the segment n{o + 7) < X < (n + 1)(o + 7)] in-
creases with decreasing external heat transfer coefficient or increasing interfin spacing.
This is due to the fact that increasing the external heat transfer coefficient or decreasing
the interfin spacing tends to increase the temperature in the unfinned parts of the pipe
without appreciably affecting the maximum temperature in the finned sections,

Finally, the present turbulent results are qualitatively compared with those for
laminar flow reported by Sparrow and Charmchi [1] and Moukalled and Acharya [2].
Obviously, a direct comparison is not attempted, since the Reynolds numbers are differ-
ent. Due to the higher internal heat transfer coefficient in turbulent flow, which results
in higher cooling rates, the pipe wall temperature is lower than the temperature asso-
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ciated with laminar flow. Also, that axial conduction in the pipe wall is relatively more
important in turbulent flow is reflected by the larger underestimation of the heat transfer
rates when conductivity effects are not accounted for.

CLOSING REMARKS

The influence of axial wall conduction on turbulent convection heat transfer in an
externally finned circular tube is studied numerically. Results indicate a strong depen-
dence of heat transfer on axial conduction in the tube walls. Increasing the wall thermal
conductivity reduces the benefit of finning, while increasing the interfin spacing en-
hances the role of the wall thermal conductivity. Also, at constant wall conductivity,
increasing the interfin spacing causes a decrease in heat transfer rates. The effects of
wall conduction decrease as the level of the external convection heat transfer coefficient
is increased. Moreover, the difference between finned and unfinned Nusselt number
values decreases with increasing wall thermal conductivity. When the tube wall conduc-
tivity is large, the wall temperatures indicate a smooth variation along the length of the
tube, but exhibit a periodically decaying profile when the tube wall conductivity is low.
A constant spatially averaged Biot number sclution is found to give comparable heat
transfer results only for the higher wall conductivity cases. The asymptotically devel-
oped finned and unfinned Nusselt numbers compare with the axially averaged values for
the conducting wall cases to within 7%.
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