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TRANSIENT THERMAL PERFORMANCE OF A
RADIALLY DILUTED AND CENTRALLY COOLED
NUCLEAR FUEL CELL

F. Moukalled, R. Nuwayhid, and 1. Lakkis
Faculty of Engineering and Architecture, Mechanical Engineering Department,
American University of Beirut, Beirut, Lebanon

Steady and unsteady heat transfer in a radially diluted and centrally cooled nuclear fuel rod
are investigated numerically. The nuclear fuel cell is radially diluted by the addition of a
non-heai-generating material of high melting point, high specific heat, and high resistance
to axidation and ignition, with the intention of increasing its time delay before melting, when
convection is totally lost. Resulis show a great reduction in the maximum wall temperature
under steady operation and a substantial increase in the time delay under transient
conditions, with its velue increasing with increasing the amount of edded diluent. Moreover,
results indicate the presence of an optimum value of the ratio of inner to outer channel flow
rates for which the maximim inner and outer walil temperatures are minimum. Finally, the
distribution of the added diluent is shown to mildly affect the steady and unsteady
performance of the reactor.

INTRODUCTION

One of the current major concerns in nuclear industry is safety and the cost
entailed by its assurance. Following the explosion that blew apart the Soviet
Union’s Chernobyl Unit 4 nuclear reactor, which was mainly caused by human
failure and poor operator judgment [1], attention was directed toward designing
reactors that are inherently safe [1, 2]. The analysis undertaken here is along these
lines and deals with studying the transient thermal performance of a newly
suggested type of fuel rods, for use in the core of gas-cooled fast reactors (GCFR)
that are capable, in case of loss of coolant, of absorbing their own generated heat
for a longer period before melting.

Recently, Moukalled et al. [3] studied the thermal performance of radially
diluted nuclear fuel cells and showed that the use of such rods results in a
significant decrease in the maximum temperature during steady operation and a
great increase in time delay before melting of the reactor core under unsteady
conditions. The aim of this article is to extend the work reported in Ref. [3] to
situations where the radially diluted rod is centrally cooled. This will force the heat
generated by the fuel to be transported to the inner and outer coolants, creating
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NOMENCLATURE
a ratio of diluent 1o total fuel rod [ dimensional and dimensionless
volumes times
[ ratio of central diluent strip to T temperature
total diluent cross-sectional areas u, U dimensional and dimensionless
p specific heat axial components of velocity
d., D, dimensional and dimensionless x X dimensional and dimensionless
outer diameters of coolant annulus axial coordinates
d;, D, dimensional and dimensionless y distance from rod wall into the
outer diameters of inner coolant fluid
channcl o solid thermal diffusivity
d, outer diameter of the rod & distance beyond physical domain
dyp Van Driest factor where free surface boundary
h heat transfer coefficient condition is applied
ke k, fluid and solid thermal A dimensionless value of &
conductivities € turbulent thermal diffusivity
K solid to fluid thermal conductivity n dimensionless radial coordinate
ratio m dynamic viscosity
{ mixing length 9 dimensionless temperature
i, Nikuradse-type mixing length P density
L, L, dimensional and dimensionless Tu wall shear stress
. lengths of the fuel rod pIN fuel macroscopic scattering
M fuel molecular weight Neutron cross section
Nu Nussclt number
p, P dimensional and dimensionless
pressures Subscripts
Pe Péclet number
q. average heat source per unit ave average value
volume f refers to fluid
r radial coordinate in inner coolant channel
RC ration of outer to inner channel 1 laminar flow
flow areas max maximum value
R, radial location of diluent shell as out outer coolant annulus
a ratio of outer fuel strip radius t turbulent flow
Re Reynolds number (= pu,d /) w refers to wall
St Stanton number B condition at inlet

temperature gradients in both directions and expectedly leading to lower tempera-
ture levels within the rod, Therefore it will be possible to achieve an increase in the
reactor time delay equal to that reported in Ref. [3] with a smaller amount of
added diluent, which may produce less departure from the neutronic “fast” nature
of the reactor core. Thus, whereas traditional fuel rod designs usually have a sealed
void in their centers, the present concept is to have a somewhat larger central
passage in the rod, allowing cooling. Some complication in the engineering of the
fuel rod is therefore anticipated for safety purposes.

As in Ref, [3], the design-based accident for GCFR is a depressurization
event [4-7], which may be caused by a pipe rupture or a pump failure, leading to
partial or complete loss of coolant surrounding the fuel rods. With no capability to
remove heat, the intention is to introduce “diluent” of good thermal behavior
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within the fuel rods themselves to absarb this generated energy. Candidate diluents
must have high specific heat, high density, high melting point, and be oxidation and
ignition resistant. Ideally, it should not be a fuel material, although depleted UO,,
as shown in this work, can be considered. The limiting factor should always be that
the diluent must be in a sufficiently small amount so as to retain the fast character
of the core {4, 5]. With this in mind, no attempt is made here to ascertain the
neutronics of the diluted core design but merely an upper limit on the diluent-to-
fuel ratio is imposed at random.

The problem is modeled and reduced to that of predicting the heat transfer
characteristics of turbulent fluid flow around a longitudinally and radially conduct-
ing slender annular rod with internal heat generation. The heat produced in the
“average” rod by the fission chain reaction is assumed to be radially independent
with an axial cosine distribution {8]. The analysis is conducted for both steady and
transient performance in case of a sudden and complete loss of coolant before
shutting the reactor down. Initial conditions for the transient heat conduction
problem in the fuel annulus are obtained from the steady state performance of the
coolant-annulus and coolant-channel problems (Figure 1a).

The coupling between conduction in the fuel and convection in the fluid is
accomplished by ensuring continuity of thermal conditions along the inner and
outer walls of the annulus. These conditions are not known beforehand and have
to be determined along with the solution to the problem. This adds to the
complexity of the problem and necessitates the use of an iterative procedure in
which the rod conduction and the fluid convection equations are successively
solved until convergence. To model turbulence, the mixing length theory is used.

<IL » i : ’./‘LMM
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B

Figure 1. (a) Schematic of a radially
diluted and centrally cooled fuel cell;
(b) one-part dilution of a radially diluted
and centrally cooled fuel cell; (¢) two-part
dilution of a radially diluted and centrally
() () cooled fuel cell.
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GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The physical situation under consideration, illustrated schematically in Figure
1la, represents the turbulent convection of a fluid around a longitudinally and
radially conducting, slim annular rod with internal heat generation. Longitudinal
diluent strips are added to the fuel annulus for various diameters of the inner
coolant channel. The coolant is assumed to enter the annulus with uniform
temperature and velocity profiles of values T, and u,, respectively. Moreover, the
properties of the steady, two-dimensional axisymmetric flow are temperature
dependent, and their expressions are displayed in Table 1a. The pressure of the
coolant, chosen to be carbon dioxide, at the inlet to the annulus is assumed to be
uniform and equal to 40 bars, a typical value of the pressure inside the pressurized
vessel containing the reactor core [8].

In order to reduce the number of parameters involved, the following dimen-
sionless variables are defined:

X X r U u v v
4, "4, T w
§))
P T-T, 1

0= ——— = —
pu 7.4k, - di/a

P=

Furthermore, axial diffusion in the fluid is neglected due to the high value of
Péclet number in turbulent flow (= 50). With this assumption, the governing
conservation equations may be expressed in parabolic forms and are detailed in the
following sections.

Momentum Equation

The fluid momentum equation, in dimensionless form, may be written as

U aUu dP 1 19 w U
U—=+V—=—-— ——In|l+ —|— (€3]
aX an dX Re, m dn M/ on
where p, and u, are the laminar and turbulent viscosities, respectively.
Table 1a. Properties of coolant, fuel, cladding, and diluent {(SI units)
K P cp M
Coolant
Carbon dioxide  7.10238 x 10~°T  21173.16/T k/c, = 3.3587 X 10~5InT 6.647 x 10~°
(COy) —0.000615478 -0.000176441 +3.562 X 1078
Fue) and diluent
Uranium 7.536 — 0.00534T 10,400 228 + 0.274T — 0.00027T2 —
dioxide +1.3 x 107°72 +9.2 x 107873
(U0,)
Cladding

Stainless steel 0.0127 + 8.224 7,900 0.25T + 411.75 —
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The solution is obtained by solving two parabolic fluid flow problems in the
outer and inner coolant channels and a conduction problem in the fuel rod. To
solve the conservation of momentum equations governing the parabolic flow in the
convection parts, the boundary conditions and the turbulent viscosity u, must be
specified.

The boundary conditions for the coolant in the outer channel are

U=1 X=0 (3a)
oU/on=0 n=D./2 3b)
U=20 n=05 G

whereas those for the inner channel are given by

U=1 X=0 (4a)
aUs/on=0 n5=0 (4b)
U=0 n=D/2 (4¢)

The turbulent viscosity u, is calculated using the mixing length model as described
next.

Turbulence Model

The turbulence model employed here is Prandtl’s mixing length model [9].
For simple annular and channel flows, such as those considered in this study, it has
been shown to be adequate [3, 10]. In this model the turbulent viscosity ., is
evaluated in terms of the mixing length and the local velocity gradient as

du

& &)

e = pl*

where ! is the mixing length at a point sitvated at a distance y from the wall of the
fuel rod (y = r — d,/2 for the annulus and y = d;/2 — r for the inner channel)
and is represented as the product of a Nikuradse-type mixing length 7, [11] and a
Van Driest factor dp, [12], ie.,

I=1dyp (6)
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For turbulent annular flow between inner diameter d, and outer diameter 4, /,
and dyp are given by
!

2 4
n ¥ Y
—— =014 - 008|1 - ——m———| —0.06|1 — ——————
(d.—d,)/2 [ ] [

(d, —d,)/2 (d, - &0)/2
(7

dVD=1—exp[—-(%]]/T—:] (8

where 7, is the local shear stress on the pipe wall. The expression (d. — d) is
replaced by d; for the case of inner channel flow. By combining Eqs. (6)-(8), the
mixing length [ and, consequently, u, (Eq. (5)) are completely specified.

Energy Equations

The conservation of energy equation for the axisymmetric parabolic flow
problems, in dimensionless form, can be written as

U a0 Vaﬂ 1194 [1 EH] a0 ©
dX  "an Pemoam|’ a ) an
The boundary conditions used to solve the above equation in the outer channel are
( 7 7 0.5 (10a)
— = —_— 'n = N a
I w(f) In w(s)

a6
— =0 n=D/2 (1056)

an
=10 X =10 (10¢)

whereas for the inner channel the applied boundary conditions are given by

a8 30
——] =K —) n=2D,/2 (11a)
(971 wi(f) ‘971 wi(s)
a0
— =0 n=0 (116)
an
8=0 X=0 (11¢)

The dimensionless energy equation for the steady and unsteady heat conduction

problems in the fuel rod is
29 A PN X 1 a2
+ —|K—| +j= — - =
ax( aXJ I T 2

30
"

1
at* N

3
an
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where K is the solid to fluid thermal conductivity ratio, j = 1 in the fuel, and j =0
in the cladding and diluent.
The boundary conditions for the conduction energy equation are

% 0 X=0 X=1L (13a)
x -0 Xs = b ’
8= 6,in(X) 1 =D)2 (13b)
for steady state performance,
0 = Bou(X) n=05 (13¢)
for steady state performance,
d6
— =0 n=>D/2 (134)
n
for transient performance, and
a0
— =0 n=05 (13e)
an

for transient performance, where 6, (X) and 6,,,,(X} are the temperatures
along the inner and outer walls of the fuel rod, respectively, which are not known a
priori but are determined from solving the convection energy equations for the
inner and outer coolant channels. Moreover, the parameters 6,(X) and {(38/d7),,
provide the coupling between the convection and conduction problems. Further-
more, it should be pointed out here that under transient conditions and due to the
lack of any better information, the walls of the fuel annulus in contact with the
coolant during steady performance are assumed to be insulated (Egs. (134} and
(13¢)). Thus results generated in this article simulate the worst probable situation
that could arise during an accident. Therefore any improvement in thermal
performance of the fuel rod is expected to further magnify if this condition is
relaxed.

FUEL ROD PARAMETERS AND CONFIGURATIONS

The number of parameters involved in the problem is large, and thus,
analyzing the effect of varying each of these parameters is computationally not
feasible due to the large number of cases to be considered. Consequently, the
effect of varying selected parameters is only studied, and the remaining parameters
(Table 1b) are fixed throughout the analysis. The streamwise heat source distribu-
tion in the fuel is calculated from ¢(x) = q,,, cos m(X/L' — 1/2), where q,,,, =
(w/2)q,,. and L' = L + A is the extrapolated fuel rod length, which is obtained
from the (nonzero) value of the heat flux generated at the extremities of the fuel
rod (i.e, X = 0 and L,). To further elaborate, the extrapolated length arises in
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Table 1b. Parameters kept fixed throughout the analysis

Parameter Dimensional value
Coolant annulus sectional area 0.0000676648 m*
Cladding thickness 0.00035 m
Fuel cross-sectional area 0.0000384845 m?®
Fuel length 1.5m
Energy produced in the fuel 25189 W
Coolant inlet conditions

Temperature 525 K

Axial velocity component 30 m/s
Pressure 40 bars

connection with the so-called free surface boundary condition: the neutron flux is
required to vanish just beyond the physical length due to leakage of neutrons from
the rod. A simplistic and approximate relation for A may be written as

0.71
3. [1 - (0.67/M)]

(14)

I

A i 5
_do

where X, is the fuel macroscopic scattering neutron cross section and M is the fuel
molecular weight. For large fast cores, § is usually in the range of 5-10 cm.

Dilution is accomplished by one of the following two ways: one-part dilution,
and two-part dilution. In both cases the dilutent extends axially all over the fuel
rod. One-part dilution, shown in Figure 1b, places the diluent directly around the
inner coolant channel (i.e., at r = 4;/2). Two-part dilution (Figure 1¢) is made by
having half the diluent placed at r = 4,/2 and the other half at a distance of
Ry =0.7.

SOLUTION PROCEDURE AND COMPUTATIONAL DETAILS

For the convection problems, the fluid momentum and energy equations,
Eqgs. (2) and (9), are solved numerically using the parabolic calculation procedure
of Patankar and Spalding [13]. This is a fully implicit, marching type solution
procedure, proceeding from the inlet location (X = 0) to the exit of the annulus
(X = L,). The heat conduction problem in the fuel rod, Eq. (12), is solved by the
elliptic finite volume method described by Patankar [14].

The conjugate conduction-convection coupling is solved via an iterative
approach in which the momentum and energy equations for the fluid and the
energy equation for the fuel annulus are solved consecutively. To start the first
iteration, the fuel energy equation, Eq. (12), is solved by imposing guessed values
for 6,,(X) and 6,,,,,(X) as the boundary conditions needed in Eqs. (13b) and
(13c), respectively. The solution obtained is fed into the fluid energy equation, Eq.
(9), via the terms (96/9m),_p, ,, (for the inner channel) and (96/9m),. s (for the
outer channel), which is solved for the inner and then the outer channel (or vice
versa) to obtain updated values for 6,,,,(X) and 6,4,,(X), respectively. The
updated 6, (X) and 6,,,,,(X) are used to initiate the second iteration, and the
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fuel rod energy equation is solved again. This procedure is continued until
convergence to at least four significant figures is reached.

The computational task is fairly demanding in terms of both computer time
and computer storage. This is mainly due to the consecutive iterative scheme used
to resolve the conduction-convection coupling. The flow computations in the outer
and inner channels were performed with 175 grid points scanning the annulus cross
sections (0 < n < D;/2 and 0.5 5 n < D_/2) and clustering near the rod walls. In
the axial direction a uniform step size of value 10~ was used for all tested cases,
giving a total number of 1500 grid points in the streamwise direction. The
1500 X 175 mesh system was found to be adequate for producing grid-independent
results. For the solution of the fuel rod conduction equation for both steady and
unsteady situations, the mesh consisted of 71 grid points in the axial direction and
54 grid points in the radial direction. When transferring data from the steady
conduction problem to the convection problems, linear interpolation was em-
ployed. The step size in the flow problems was sometimes modified to allow for the
conduction control volume radial faces to be identical to streamwise positions in
the flow solution, so that the transfer of information from the flow problems to the
conduction problem is easy and direct.

RESULTS AND DISCUSSION

The main parameters of interest in this study are the ratio of the volume of
added diluent to total fuel rod volume (a), the location of the added diluent (R,)
and its percentage (b), and the ratio of the outer to inner coolant mass flow rates
(RC). Parameter values considered are four different values of a (a = 0.1, 0.2, 0.3,
and 0.5), two values of Ry and b (b=1and R, =0; b = 0.5 and R; = 0.7), and
four values for RC (RC = 0.5, 1, 2, and 3). The purpose of varying a is to
investigate the effectiveness of the heat sink, represented by the diluent, as
compared with the heat source represented by the fuel with respect to temperature
distribution in the fuel annulus. The second parameter aims at anticipating the
effects of redistributing the added diluent. Two possible distributions are investi-
gated; the first locates all the diluent as an inner cladding around the central
coolant channel (b = 1 and Ry = 0), whereas the second locates half the diluent
around the central channel and the other half at a radius that is equal to 0.7 times
the outer fuel radius (b = 0.5 and R, = 0.7). Finally, the third parameter RC
predicts the effects of varying the inner and outer flow rates on the maximum inner
and outer wall temperatures of the fuel rod. Only one diluent material (natural and
totally depleted UQ,) was tested due to the mild influence of the material used on
the thermal performance of the fuel rod {3]). However, since the diluent (or part of
it in two-part dilution) will contact the coolant in the central channel, it would be
definitely preferable to have a diluent that is a nonfuel such as Al1,0,,B,C..., but
this is not of concern in this article.

In order to reveal the influence on heat transfer of the various parameters
involved, results are presented in terms of streamwise variations of wall tempera-
ture, maximum wall temperature, exit bulk temperature, average Nusselt number,
and heat flux. Finally, using the steady temperature distribution in the fuel rod as
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the initial condition, transient behavior is investigated for the respective cases, and
transient performance curves are generated.

Due to unavailability of any experimental data related to the problem at
hand, results are validated by comparing numerical values of steady state conduc-
tion obtained in the original rod with results generated analytically using various
empirical turbulence models. The numerical results, not presented here for com-
pactness, are found to fall in the range of results generated by the empirical
models. For further details, the reader is referred to the previous work reported by
the authors [3].

Steady Conjugate Heat Transfer Results

Wall heat flux. The total heat generated by the fuel (Q) is partly conducted
to the coolant in the annulus across the outer wall (¢,,,) and the rest to the coolant
in the channel across the inner wall (g;,) such that

Q = oy T+ qin = cODS (15)

However, q,,./4q;, depends on the ratio of the cuter to inner thermal resistances to
radial heat flow, which is a function of the outer to inner wall areas. Consequently,
the division of the total energy generated between the outer and inner coolants is
strongly dependent on the outer to inner channel diameter ratio d_/d;. This
dependence is clearly shown in Figure 24, where the variation of g, /q:, is plotted
as a function of RC or (d,/d;)* for a = 0.3. As depicted, the amount of heat
conducted across the outer wall increases with increasing values of d,/d; (or RC)
due to an increase in the outer coolant mass flow rate, which decreases the outer
coolant bulk temperature and creates higher outer radial temperature gradients,

M
1 — u .
\ J =]
¢ ®
Yoy 17 oot 5
- L -
a o s ! L
L] L |
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1 b _-l
aF 1 L 3 18 a 1Y) a -~ “ -~
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RC RC
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Figure 2. (¢) Variation of the outer to inner wall heat flux ratio with RC.
(b) Variation of the outer to inner wall heat flux ratio with 4. Variation of the
average (c) inner and outer Nusselt numbers and (d4) their ratio with RC.
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The decrease in the inner wall heat flux with increasing values of a is clearly
seen in Figure 2b and is due to the increase and decrease in the outer rod
diameter and the outer coolant bulk temperature, respectively.

Nusselt numbers. The local and average Nusselt numbers are defined as

have
kf ave .k

d

Q

Nu (16)

i

fave

The variation of the average outer and inner Nusselt numbers with RC and their
ratio are presented, for a = 0.3, in Figures 2¢ and 24, respectively. The average
values of Nu,, are seen to decrease as RC increases, whereas the average values
of Nu,, are more or less constant (Figure 2¢). As RC increases, the outer flow area
increases and the outer diameter of the fuel rod decreases. Consequently, the rate
of increase in velocity away from the wall is lower for higher values of RC, which
indicates lower values of the heat transfer coefficient (i.e., the average velocity is
constant, and the flow area increases with increasing RC values). The variation in
k values with temperature is comparatively smalil, so that the combined effect of
h,d , and k; is a net decrease in the average values of Nu_,,. The slight variation
in the values of Nu;, may be explained by noting that the inner Nusselt number is
also based on the outer diameter (Nu, = h,d,/k;), which decreases as RC
increases, so that it offsets the increase in the heat transfer coefficient, keeping
Nu,, almost constant. Since Nu_,, is decreasing and Nu,, is nearly constant, their
ratio should decrease as RC increases, as shown in Figure 24.
Coolant bulk temperatures. The coolant bulk temperature is defined as

Jrr puQmrdr)e, T

A

= 1
bulk frr puQmrdric, (17)

where r, =0, r, = d;/2 for the inner channel, and r, = d_ /2, r, = d_/2 for the
outer channel. Since k; varies slightly with temperature (Table 1a), Eq. (1) shows
that variations in the dimensionless bulk temperature reflect nearly the same
variations in the dimensional bulk temperature. Moreover, the bulk temperature at
a certain streamwise location is related to the energy conducted across the wall up
to that location according to the following relation:

Gou 0-x)= moulcp(f)[Tbu!k(x) - Tin] (18)

At constant RC values, neglecting the slight dependence of ¢, on tempera-
ture, Eq. (18) shows that for higher values of ¢, anticipated with higher a, the
outer exit Ty, should experience higher values (Figure 3a). Consequently, the exit
Ty, associated with the inner coolant channel should decrease with increasing
values of a (Figure 3a) due to the lower energy conducted radially inward.
Furthermore, the ratio of outer to inner exit T, for various dilutions varies
approximately between 0.9 and 1.3 (Figure 3b), with a value of 0.98 obtained for an
a value of 0.2 and resulting in nearly equal inner and outer exit T,
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Figure 3. Variation of (a, c) outer and inner exit coolant bulk temperatures and (b, d) their
ratio with a and RC.

At constant g values, a major rise in the outer exit T,,, occurs as RC
decreases. This is expected because decreasing RC results in lower outer coolant
mass flow rate and a decrease in the heat conducted radially outward. Therefore
the T, should increase because a simple calculation (using Eq. (18)) reveals that
4., decreases at a lower rate than the outer coolant mass flow rate. This effect on
T, results in major changes in its value, as depicted in Figure 3¢. On the other
hand, lower values of RC are associated with lower exit T, in the inner channel.
This is further revealed in Figure 3d, where the variations of the outer to inner exit
Ty are presented. Furthermore, it can be inferred from the figures that a value
of RC = 2.2 results in equal outer and inner exit T,,y,.

Wall temperatures. The streamwise variation of wall temperatures (Fig-
ure 4) shows the same general behavior of increasing from zero at the inlet to a
maximum somewhere beyond the center, and then decreasing all the way to the
exit. Even though the heat source has a cosine distribution that maximizes at the
middle of the fuel annulus, the maximum wall temperature is shifted toward
the exit due to the interaction of the heat source with the convective coolant of
steadily increasing Ty, .

In Figure 44 the axial variation of 8,, with a is depicted. Increasing a results
in lower heat conducted radially inward and lower inner T,,,. Therefore, since g,
should satisfy the following equation,

dT
] (19)

=k A, | —
Jin f w(dl'

and since the fluid-wall contact area is constant (RC = 2) and variations in k, are
comparatively small, the radial gradient of temperature at the wall should de-
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crease, leading to lower inner wall temperature levels. On the other hand, increas-
ing a results in a larger outer coolant-fuel contact area, higher heat conducted
radially outward, higher fluid temperatures, and lower radial thermal resistance in
the outward direction, so that the net effect is an increase in the outer wall
temperatures, as shown in Figure 4b. Moreover, for RC = 2 the value of a that
yields equal outer and inner maximum wall temperatures is ~ 0.41 (Figure 4c¢). In
addition, Figures 4¢ and 44 show that, as @ increases, the rate of decrease in the
maximum inner wall temperature is higher than the increase in the outer wall
temperature. This is to our advantage and is due to the increase in the outer area
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Figure 4. Streamwise variation of (g, e) inner wall temperature and (b, f) the ratio
of outer to inner wall temperatures for various values of @ and RC. Variation of
(c, g) maximum outer and inner wall temperatures and {d, k) their ratio with a and
RC.
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of the fuel rod (the inner area is constant), which contributes to the outer heat flux
(Eq. (18)), requiring less increase in the outer wall temperature for a given gq,,,. As
shown in Figure 4c, the decrease in the maximum inner wall temperature reaches
about 20% as a varies from 0.1 to 0.5.

Increasing RC results in a decrease in the heat conducted across the inner
wall, as discussed earlier. Moreover, it produces a reduction in the coolant channel
diameters such that the reduction in the inner diameter is greater than that in the
outer diameter, resulting in a net increase in the rod annulus thickness. The
interaction of the decreasing heat conducted across the inner wall, together with
the variation of the thermal resistance to radial conduction associated with the
increasing rod annulus thickness, results in the streamwise distributions of the
inner wall temperature depicted in Figure 4e,

The streamwise variations of the outer to inner wall temperature ratio
(8,,./9;,) for various values of RC are presented in Figure 4f. It may be noted that
for low RC values, the outer wall temperature is very high compared with the inner
wall temperature due to the small coolant mass flow rate associated with the outer
channel. As RC increases, a higher coolant mass flow rate across the outer channel
is anticipated at the expense of that in the inner channel, which results in lower
outer wall temperatures. Once the optimal outer to inner coolant flow area ratio is
reached, increasing RC further results in a reverse effect on the outer wall
temperature. This is further revealed in Figure 4g, where the maximum inner and
outer wall temperatures are seen to decrease with increasing RC until reaching a
minimum, and then to rise again. Such behavior implies the presence of an
optimum RC value (between 1 and 2, Figures 4g and 44), for which the maximum
wall temperatures are minimum,

[t should be mentioned here that the design temperature is the maximum
outer wall temperature associated with the cladding surface. As will be seen below,
even though the maximum wall temperatures are lower than the maximum fuel
temperatures, they are closer to their limiting values. Furthermore, the limiting
value of the inner wall temperature is the melting point of the UQ, diluent, which
is much higher than that of the cladding (stainless steel), so that attention should
be focused on the maximum outer wall temperature. However, if stainless steel is
to be used as a diluent instead of uranium dioxide, then equality of the maximum
outer and inner wall temperatures will yield optimum performance of the fuel rod
because failure will occur whenever any of them reaches the melting point of
stainless steel. Moreover, the maximum allowable temperature is actually the fault
temperature, which is lower than the melting temperature and beyond which the
material loses its strength. However, in this work, the melting point is assumed to
be the limiting temperature. Furthermore, results generated here indicate that
optimum performance is associated with RC = 2, where the maximum outer wall
temperature reaches a minimum of 0.001075, which is about 54% of that corre-
sponding to the original rod, and about 86% of the value reported in Ref. [3] for
the case where there is no central channel and maximum radial dilution (RC = oo,
a = 0.7). The maximum inner wall temperature corresponding to RC,;pmy i8
nearly 0.00112,

At this point it should be clarified that adding a diluent poses a problem
regarding the “fast” characteristic of the reactor, since such a diluent acts as a
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moderator that slows down the neutrons. Thus, if diluent is added, a smaller
amount is preferable to a larger one even though higher wall temperatures are
anticipated. As demonstrated here, introducing a central channel in the fuel rod
produces significant improvements in its steady state performance as compared
with the original fuel rod configuration and shows an even better performance than
all diluted rods discussed in Ref. [3] for less diluent addition. Therefore this
configuration yields very promising results regarding the required improvements in
thermal performance, without appreciably affecting the “fast” mode or characteris-
tic of the reactor core.

Finally, redistributing the diluent using the two-part dilution practice proves
to have very mild influence on the thermal performance of the fuel rod. As shown
in Figure 5a, two-part dilution results in a slight decrease in the bulk and wall
temperatures along the outer channel, faced by an equivalent increase along the
inner channel.

Unsteady Conduction Heat Transfer Results

The steady state results of the previous section are used as the initial
conditions for simulating the performance of the reactor core in the case of a
sudden loss of coolant. Under such conditions, the problem reduces to that of
unsteady conduction heat transfer in a thermally insulated heat-generating annu-
lus. The temperature in the annulus is expected to increase with time, but at
different rates; the temperatures in regions close to the coolant in steady state
performance are expected to experience higher rates of increase than those nearer
to the center of the annulus, especially since the walls are assumed to be insulated.

The above speculations are confirmed by the unsteady streamwise distribu-
tion of the wall (Figure 5b) and fuel centerline temperatures (Figure 5¢) of the
original nondiluted rod. The wall and fuel temperatures maintain the same shape
with a shift in the maximum toward the center, where maximum heat generation
occurs. This occurs because the rod is insulated, convection is totally lost, and the
radial direction is the dominant direction of conduction heat transfer. From
Figures 5b and 5c, it is obvious that the maximum wall temperature will reach its
limiting value long before the fuel centerline temperature because it is increasing
at a higher rate (e.g., at t* = 0.1, 6,,,,, increases by a factor of about 7, whereas
Brucl max iNCreases by a factor of 2 only). Thus, attention should be directed toward
maximizing the time delay before the maximum wall temperature reaches its
limiting value.

Maximum wall temperature. The variations of the maximum outer and
inner wall temperatures with the amount of added diluent a (for RC = 2) are
presented in Figures 6a—6d. Figures 6a and 6c show the temporal variation using
dimensionless parameters, while Figures 65 and 6d show the same figures in
dimensional form. As discussed earlier, increasing the amount of added diluent,
represented by a, resulted in slight increase in the upper wall temperature during
steady state performance. However, in the case of total loss of coolant, the factors
affecting the temperature field are the geometry and the heat flux distribution.
Increasing a results in lower radial temperature gradients due to the increase in
diameter, so that lower wall and fuel temperatures are expected during transient
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Figure 5. (a) Streamwise variation of
inner and outer coolant bulk and wall
temperatures for one-part and two-part
dilutions. Transtent axial distribution of
(b) wall and (¢) centerline temperatures
in the original nondiluted rod.

performance. This is clearly shown in Figure 6b, where the time required for the
maximum wall temperature to reach a certain value is seen to increase with
increasing values of a. The curves in Figure 6b map into one curve when using
dimensionless quantities (Figure 6a). This is because for a certain value of ¢* the
value of ¢ depends on a. Similar improvements are noticed for the unsteady
variations of maximum inner wall temperatures (Figure 6d). However, the curves
in Figure 6d do not map into one curve in Figure 6¢ because ¢* is based on 4,
rather than on d;, which remains constant (RC = 2) as a varies. Thus the transient
performance shows improvement for both upper and lower wall temperatures,
unlike the steady state performance for which only improvement in inner wall
temperatures were obtained.

The temporal variations of maximum outer and inner wall temperatures with
RC are presented using dimensional and dimensionless quantities in Figures
6e-6h. In contrast with the monotonic decrease in maximum wall temperature
with increasing values of a, the curves in Figures 6f and 6 indicate the presence
of an optimum RC value for which these temperatures are minimum (e.g., curves
for RC = 0.5 are higher than those for RC = 1, which in turn, are lower than
those for RC = 3). The wider spread in the curves when using dimensionless
variables (Figures 6¢ and 6g) is due to a being constant,

As shown in Figure 6, improvements in time delay before melting of the fuel
rod are of the order of a few seconds. These few seconds, however, are significantly
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Figure 6. Variation of maximum dimensicnal and dimensionless outer and inner
wall temperatures with time for various values of a and RC.

beneficial in an accident situation because in a typical gas-cooled reactor with
prestressed pressure vessel, a depressurization usually takes place over a scale of
minutes, with a typical exponential period in the neighborhood of 500 s [7). The
case studied in this work assumes a “worst case” situation, wherein the fuel (i.e.,
the fuel rod) becomes instantaneously isolated from the rod at the onset of
depressurization. Therefore the additional few seconds in time delay obtained here
will translate into an additional few minutes in an actual accident.

Maximum fuel temperature. In the steady state results section the varia-
tion of the maximum fuel temperature was not presented because, as already
stated, the maximum wall temperature is the design temperature. However, for
completeness of presentation, the variation of the maximum dimensionless fuel
temperature with time for various values of a and RC are presented in Figures
7a—7d. As depicted, the trend of variation of the maximum fuel temperature is very
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Figure 7. Variation of maximum (a, ¢) dimensionless and (4, d) dimensional
fuel temperature with time for various values of (a,b) a and (c,d) RC.
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similar to that of the maximum wall temperature and will not be repeated.
Furthermore, the results in Figures 7a—7d confirm that the maximum outer wall
temperature reaches its limiting value long before the maximum fuel temperature.

The effects of diluent distribution using one-part and two-part dilution
practices on the temporal variation of the maximum outer wall, inner wall, and fuel
temperatures are shown comparatively in Figures 7e and 7f, respectively. Results
indicate a mild influence of the diluent distribution on the thermal performance of
the fuel rod.

CONCLUSION

The thermal performance under steady and unsteady conditions of radially
diluted and centrally cooled nuclear fuel cells was investigated numerically. Results
generated indicate a great reduction in the maximum wall temperatures of the fuel
rod during steady operation and a noticeable increase in time delay before melting
under unsteady conditions. In addition, results reveal the presence of an optimum
RC value for which the maximum wall temperature is minimum. The method by
which diluent is distributed proved to have little influence on the thermal perfor-
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mance of the fuel rod. Most important, however, is the fact that lower wall
temperature and longer time delay than those reported in Ref. [3] were obtained
with less diluent addition. This somewhat alleviates the problem of retaining the
“fast” mode of the reactor.
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