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Abstract 

This paper deals with the implementation and testing of seven segregated pressure-based 

algorithms for the prediction of incompressible multi-fluid flow. These algorithms belong to the 

Geometric Conservation Based Algorithm (GCBA) group in which the pressure correction 

equation is derived from the constraint on volume fractions (i.e. sum of volume fractions equals 

1). The pressure correction schemes in these algorithms are based on SIMPLE, SIMPLEC, 

SIMPLEX, SIMPLEM, SIMPLEST, PISO, and PRIME. The performance and accuracy of these 

algorithms are assessed by solving eight one-dimensional two-phase flow problems and 

comparing results with published data. The effects of grid size on convergence characteristics 

are analyzed by solving each problem over different grid sizes. Results clearly demonstrate the 

capability of all GCBA algorithms to predict a wide range of multi-fluid flow situations. Based 

on the convergence history plots and CPU-times obtained for the problems solved, the GCBA 

can be divided into two groups with the one composed of SIMPLEST and PRIME being 

generally less efficient than the second group to which the remaining algorithms belong. 

1 Author to whom all correspondence should be addressed; email: memouk@aub.edu.lb; 2email: Darwish@aub.edu.lb  
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Nomenclature 

AP
(k ) ,..  coefficients in the discretized equation for φ (k ) . 

BP
(k )  source term in the discretized equation for φ (k ) . 

B(k )  body force per unit volume of fluid/phase k. 

)k(
PD  the Matrix D operator. 

HP[φ
(k ) ]  the H operator. 

][ )(k
P uH  the vector form of the H operator. 

I(k )  inter-phase momentum transfer. 

)(kM&  mass source per unit volume. 

P pressure. 

Q(k )  general source term of fluid/phase k. 

r (k ) volume fraction of fluid/phase k. 

)k(
PR  coefficient equals )k(

PA/1  

fS  surface vector. 

t time. 

U f
(k )  interface flux velocity v f

(k ).S f( ) of fluid/phase k. 

u(k )  velocity vector of fluid/phase k. 

u(k),v(k),.. velocity components of fluid/phase k. 

x, y Cartesian coordinates. 

Greek Symbols 

ρ(k )  density of fluid/phase k. 

Γ (k )  diffusion coefficient of fluid/phase k. 

φ (k )  general scalar variable associated with fluid/phase k. 
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[ ])(k
P φ∆  the ∆ operator. 

Ω cell volume. 

δt time step. 

Subscripts 

e, w, . refers to the east, west, … face of a control volume. 

E,W,.. refers to the East, West, … neighbors of the main grid point. 

f refers to control volume face f. 

P refers to the P grid point. 

Superscripts 

C refers to convection contribution. 

D refers to diffusion contribution. 

(k) refers to fluid/phase k. 

 refers to updated value at the current iteration. *)(k

  (k ) o refers to values of fluid/phase k from the previous iteration. 

 refers to correction field of phase/fluid k. (k ′ ) 

Old refers to values from the previous time step. 

 



Introduction 

Flows involving multiple distinct phases, known as multi-fluid flows, arise in many industrial 

applications [1,2] such as mixing tanks [3-5], bubbly flows [6-8], fluidized beds [9,10], 

hydro-transport [11], separators [12-14], and spray drying [15,16] to cite a few.  Numerical 

simulation is arguably the principal path to a fundamental understanding of these flows, 

which may comprise any combination of gas, liquid, and solid phases. A concerted research 

effort has been undertaken over the last three decades to develop appropriate numerical 

techniques [17-26] capable of simulating such flows. Workers have rigorously enhanced the 

depiction of the governing equations [27-31] and exploited the extensive advances that have 

been achieved in single-fluid numerical techniques [32-39] to develop reliable multi-fluid 

numerical strategies [40,41]. 

The description of multi-fluid flow begins with the general principles governing the behavior 

of matter, namely conservation of mass, momentum, and energy.  These principles can be 

expressed mathematically at every point in space by local and instantaneous field equations.  

Because of their numerical intractability at microscopic level, these equations are averaged in 

space and time. Several averaging strategies have been developed (Ishii [28] and Drew [42], 

Soo [43], Gidaspow [44]), which led basically to two different methods for describing the 

physical processes. In the first approach the n phases are averaged together to obtain 

averaged variables for an n-phase mixture, while in the second technique each phase is 

averaged separately giving rise to averaged variables for each of the n phases.  The latter 

procedure, adopted here, yields the multi-fluid model, which is a bit more general and useful.  

Even the most simplified models for two-dimensional incompressible multi-fluid flows are 

complex, as they involve the solution of 3n (n the number of phases/fluids) coupled partial 

differential equations (averaged mass and momentum equations for each fluid) and numerous 

constitutive equations.  Work on numerical techniques for the simulation of multi-fluid flows 
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within a segregated pressure-based approach was initiated independently, following two 

distinct tracks, by the CFD group at the Los Alamos Scientific Laboratory [20-21] and by the 

Spalding group at Imperial College [17-19,45].  In a recent article, Darwish et al. [40] have 

shown that these two approaches and the extensive developments that followed can be 

classified under what they denoted by the mass conservation and geometric conservation 

formulation, repectively. This designation was based upon the equation used in obtaining the 

pressure correction equation, which can be derived either by using the geometric 

conservation equation or the overall mass conservation equation. Depending on which 

equation is employed, the segregated pressure-based multi-fluid flow algorithms were 

classified respectively as either the Geometric Conservation Based family of Algorithms 

(GCBA) or the Mass Conservation Based family of Algorithms (MCBA). Moukalled and 

Darwish [41] implemented and tested the MCBA family and proved its capability to predict 

multi-fluid flow. On the other hand, the GCBA family has not yet been implemented nor 

tested.  

The objective of the present work is to implement and test seven multi-phase algorithms from 

the GCBA family (with their pressure correction schemes based on SIMPLE [46], 

SIMPLEST [47], SIMPLEC [48], SIMPLEM [49], PISO [50], PRIME [51], and SIMPLEX 

[52]) and to assess their relative performance by solving a total of eight incompressible one-

dimensional two-phase flow problems encompassing dilute and dense gas-solid flows in 

addition to bubbly flows on several grid sizes.  

In what follows, the governing equations for incompressible multi-phase flows are first 

introduced, followed by a brief description of the discretization procedure. Then the 

capability of the GCBA algorithms to predict multi-fluid flow phenomena is demonstrated 

and their performance characteristics (in terms of convergence history and speed) assessed. 



The Geometric Conservation Based Algorithms  for Incompressible Multi-Fluid Flow 6 

The Governing Equations 

The equations governing incompressible multi-phase flows are the conservation laws of mass 

and momentum for each individual fluid, given by: 

( ) ( ) )()()()(
)()(

kkkkk
kk

Mrr
t

r &=∇+
∂

∂ )(u. ρρ  (1) 

( ) ( ) [ ] ( ) )()()()()()(
)()(

k
M

kkkkkkkkk
kkk

Prrr
t

r IBu.uu.u )()()()(
)(

++∇−+∇∇=∇+
∂

∂ µρρ  (2) 

where the superscript (k) refers to the kth phase, r(k) the volume fraction (Ω(k)/Ω),  ρ(k) the 

fluidic density, u(k) the velocity vector, P the pressure shared by all fluids/phases, B(k) the 

body force per unit volume, µ (k)  the fluid viscosity, and I M
(k )  represents the interfacial forces 

per unit volume due to drag, virtual mass effects, lift, etc… 

An adequate manipulation of equations (1) and (2) allows their representation in a unified 

equation of a general fluidic scalar variable φ(k) as follows: 

( ) ( ) ( ) )()()()()()()()(
)()()(

kkkkkkkkk
kkk

Qrrr
t

r
+∇Γ∇=∇+

∂
∂ φφρφρ .u. )(  (3) 

The above set of differential equations has to be solved in conjunction with constraints on 

certain variables represented by algebraic relations.  For incompressible laminar multi-phase 

flow, these auxiliary relations include the geometric conservation equation  and 

the interfacial mass and momentum transfers. In this work, only interfacial momentum 

transfer is of interest and its closure will be detailed later. Moreover, in order to present a 

closed mathematical model, initial and boundary conditions should supplement the above 

equations.  

⎟
⎠

⎞
⎜
⎝

⎛
=∑ 1)(

k

kr

Discretization Procedure 

The first step in the discretization process consists of integrating the general equation (Eq. (3) 

over a differential control volume (Fig. 1(a)) to yield: 
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( ) ( )

( ) ∫∫∫∫

∫∫∫∫

ΩΩ

ΩΩ

Ω+Ω∇Γ∇=

Ω∇+Ω
∂

∂

dQrdr

drd
t

r

kkkkk

kkkk
kkk

)()()()()(

)()()()(
)()()(

.                                 

.

φ

φρφρ u
 (4) 

where Ω is the volume of the control cell. Through the use of the divergence theorem, the 

convection and diffusion volume integrals are transformed into surface integrals as: 

( ) ( )

( ) ∫∫∫∫

∫∫∫∫

ΩΩ∂

Ω∂Ω

Ω+∇Γ=

+Ω
∂

∂

dQrdr

drd
t

r

kkkkk

kkkk
kkk

)()()()()(

)()()()(
)()()(

                                 S.

S.u

φ

φρφρ

 (5) 

By a trapezoidal-type approximation, the surface integral about the cell faces is set equal to a 

summation of fluxes at the cell faces centers, while the volume integral is evaluated at the 

cell center. Thus, Eq. (5) becomes: 

( ) ( Ω=∇Γ−+Ω
∂

∂ ∑ )()()()()()()()()(
)()()(

kk

nb

kkkkkkk
kkk

Qrrr
t

r .S.Su φφρφρ )  (6) 

These fluxes are then related to the values at the cell centers and their neighboring nodes by 

using a suitable interpolation profile in a local coordinate direction. The profile of the 

diffusion term is second order accurate and follows the derivations presented in [53]. For the 

convective terms, the High Resolution SMART [38] scheme is employed and applied within 

the context of the NVSF methodology [34]. Substitution of the interpolation profiles into Eq. 

(6) gives the final form of the discretized equation as 

)()()()()( k
P

NB

k
NB

k
NB

k
P

k
P BAA += ∑ φφ  (7) 

where the coefficients  and  depend on the selected scheme and  is the source 

term of the discretized equation . In compact form, the above equation can be written as 

)(k
PA )(k

NBA )(k
PB

[ ] )(

)()()(

)()(
k

P

k
P

NB

k
NB

k
NB

k
P

k

A

BA
H

+
==

∑ φ
φφ  (8) 

The discretization procedure for the momentum equation yields an algebraic equation of the 

form: 
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[ ] ( )Pr P
k

P
kk

P
k

P ∇−= )()()( DuHu )(  (9) 
Moreover, the phasic mass-conservation equation (Eq. (1)) can be viewed as a phasic volume 

fraction equation, which can either be written as:  

[ ])()( k
P

k
P rHr =  (10) 

or as a fluidic continuity equation to be used in deriving the pressure correction equation: 

( ) ( ) [ ] )()()()(
)()()()(

kkkkk
P

Oldk
P

k
P

k
P

k
P Mrr

t
rr &=∆+Ω

− .Su )(ρ
δ

ρρ  (11) 

where the ∆ operator represents the following operation: 

[ ] ∑Θ=Θ∆
f

fP  (12) 

Geometric Conservation Based Algorithms (GCBA) 

The numbers of equations describing an incompressible n-fluid flow situation are: n 

momentum equations, n volume fraction (or mass conservation) equations, and a geometric 

conservation equation. Moreover, the variables involved are the n velocity vectors, the n 

volume fractions, and the pressure field.  It is clear that the n-velocity fields are associated 

with the n-momentum equations, i.e. the momentum equations can be used directly to 

calculate the velocity fields.  The volume fractions could arguably be calculated from the 

volume fraction equations, which mean that the remaining equation, i.e. the geometric 

conservation equation (the volume fractions sum to 1), has to be used in deriving the pressure 

equation, or equivalently the pressure correction equation.  This results in what was denoted 

[40] by the Geometric Conservation Based Algorithm (GCBA).  

The GCBA uses the momentum equations for a first estimate of velocities. However, the 

volume fractions are calculated without enforcing the geometric conservation equation. 

Hence, the mass conservation equations of all fluids are used to calculate the volume 

fractions.  As such, the pressure correction equation should be based on the geometric 

conservation equation and used to restore the imbalance of volume fractions.  The errors in 
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the calculated volume fractions are expressed in terms of pressure correction ′ P ( ), which is 

also used to adjust the velocity and volume fraction fields. The sequence of events in the 

Geometric Conservation Based Algorithm (GCBA) is as follows: 

• Solve the individual mass conservation equations for volume fractions. 

• Solve the momentum equations for velocities. 

• Solve the pressure correction equation. 

• Correct velocity, volume fraction, and pressure fields. 

• Return to the first step and repeat until convergence. 

The Pressure Correction Equation 

In order for the volume fraction fields to satisfy the compatibility equation and the velocity 

and pressure fields the continuity equations, a guess-and-correct scheme is adopted. 

Correction is obtained by solving a pressure correction equation, which is derived from the 

geometric conservation equation by noticing that initially the volume fraction fields denoted 

by *)(kr , do not satisfy the compatibility equation and a discrepancy exists, i.e. 

∑−=
k

k
PP rRESG *)(1  (13) 

A change to *)(kr  is sought that would restore the balance. The corrected r value, denoted by 

)(kr  ( ))(*)()( ′+= kkk rrr , is such that 

( ) ( ) ( ) ( ) P
k

k

k

k

k

k

k

k RESGrrrr =−=−= ∑∑∑∑ ′ *)(*)()()( 1  (14) 

Correction to the volume fraction, )( ′kr , will be associated with a correction to the velocity 

and pressure fields,  and )( ′ku P′  respectively. Thus, the corrected fields are given as: 

)(*)()()(*)()( ,, ′′ +=′+=+= kkkkkk PPPrrr uuuο  (15) 
The discretized form of the corrected continuity equation of phase (k) can be written as 
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( ) ( )

( ) ( )( ) ( P
k

P
k

P
k

P
kkk

P
kk

P

P

Oldk
P

k
P

k
P

k
P

k
P

rrMrr
t

rrr

Ω+=++∆+

Ω
−+

′′′

′

)(*)()(*)()(*)(

)()()()(*)(

          &.Suu )()(ρ
δ

ρρ

)
 (16) 

Neglecting second order terms, its expanded form reduces to:  

( ) ( )[ ]
( ) ( ) ( )[ ] P

k
P

k
P

kkk
PP

Oldk
P

k
P

k
P

k
P

P
k

P
k

P

kkkkkk
PP

k
P

k
P

rMUr
t
rrrM

rUr
t

r

Ω+∆−Ω
−

−=Ω−

+∆+Ω

′

′′
′

*)()(*)(*)(
)()()(*)(

)()(

)(*)()()(*)(
)()(

   && )(

)( .Su

ρ
δ

ρρ

ρρ
δ
ρ

 (17) 

Writing  as a function of , the correction momentum equations become )( ′k
Pu P′

οPrPr k
P

k
P

k
P

k
P

k
P

k
P ∇−′∇−= ′′′ )()()(*)()()( ][ DDuHu  (18) 

Substituting Eq. (18) into Eq. (17), rearranging, and discretizing one gets 

[ ]

( ) ( ) ( )[ ] ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω−∆+Ω
−

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′∇−

′∇−
∆

−

=−

′

′

′′

P
k

P
k

P
kkk

PP

Oldk
P

k
P

k
P

k
P

kk

kkk
kk

P
k

P

k
P

k
P

rMUr
t
rr

Pr
Pr

r
R

rHr

*)()(*)(*)(
)()()(*)(

)()(

)(*)()(
)(*)(

)(

)()(

][

  

&)(

.S
D

DuH

ρ
δ

ρρ

ρ
 (19) 

where . )()( /1 k
P

k
P AR =

Neglecting volume fraction correction to neighboring cells, equation (19) reduces to: 

( ) ( ) ( )[ ] ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω−∆+Ω
−

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′∇−

′∇−
∆

−=
′

′

′

P
k

P
k

P
kkk

PP

Oldk
P

k
P

k
P

k
P

kk

kkk
kk

P
k

P
k

P

rMUr
t
rr

Pr
Pr

r
Rr

*)()(*)(*)(
)()()(*)(

)()(

)(*)()(
)(*)(

)()(

][

&)(

.S
D

DuH

ρ
δ

ρρ

ρ
 (20) 

Substituting this equation into the geometric conservation equation, the pressure correction 

equation is obtained as 

( )[ ]
( ) ( ) ( )[ ] P

k kkk
PP

Oldk
P

k
P

k
P

k
P

kkkkkkk
P

k
P RESG

Ur
t
rr

PrPrr
R =

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∆+Ω
−

+

′∇−′∇−∆
−∑

′′

*)(*)(
)()()(*)(

)()()(*)()()(*)(

)(

][

)(

.SDDuH

ρ
δ

ρρ

ρ
 (21) 

If the [ ])( ′kuH  term in the above equation is retained, there would result a pressure correction 

equation relating the pressure correction value at a point to all values in the domain. To 

facilitate implementation and reduce cost, simplifying assumptions related to this term have 
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been introduced. Depending on these assumptions, different algorithms are obtained. These 

algorithms were detailed in [40] to which interested readers are referred. Following the 

calculation of the pressure correction field,  are obtained using the following 

equations 

)()(  and ′′ k
P

k
P ru

( )
([( .Su

Du
)()()()()(

)()()(

′′

′

∆−=

′∇−=
kkk

P
k

P
k

P

P
k

P
kk

P

rRr

Pr

ρ ) ]) (22) 

 

Results and Discussion 

The performance of the various multi-fluid Geometric Conservation Based Algorithms is 

assessed in this section by solving eight one-dimensional two-phase flow problems. These 

problems can be broadly classified as: (i) horizontal particle transport, and (ii) vertical 

particle transport. Results are presented in terms of the CPU-time needed for the residuals to 

reach a set level and of the convergence history. Moreover, in order to assess the performance 

of the various algorithms with increasing grid density solutions are generated using four grid 

systems of sizes 20, 40, 80, and 160 control volumes . Results are compared against available 

numerical/theoretical values. The residual of a variable φ(k) at the end of an outer iteration is 

defined as: 

( ) ( ) ( ) ( )∑ ∑ −−=
vc NB

k
P

k
NBNB

k
PP

k BAARES
.

φφφ  (23) 

For global mass conservation, the imbalance in mass is defined as:  

( ) ( ) [ ]∑∑ −∆−Ω
−

=
  ..

)()()()(
)()()()(

k vc

kkkkk
P

Oldk
P

k
P

k
P

k
P

C Mrr
t
rrRES &.Su )(ρ

δ
ρρ  (24) 

All residuals are normalized by their respective inlet fluxes. Computations are terminated 

when the maximum normalized residuals of all variables drop below a very small number εs, 

which is set to 10-8. In all problems, the first phase represents the continuous phase (denoted 

by a superscript (c)), which must be fluid, and the second phase is the disperse phase 
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(denoted by a superscript (d)), which may be solid or fluid. Unless otherwise specified the 

HR SMART scheme is used in all computations reported in this study. For a given problem, 

all results are generated starting from the same initial guess, since in iterative techniques 

different initial guesses might require different computational efforts. 

Many runs were performed so as to set the control parameters of each algorithm near 

optimum values. The CPU times are reported in the form of charts and normalized by the 

time needed by the residuals of GCBA-SIMPLE to reach the set level on the coarsest grid. 

Horizontal particle/bubble transport 
The physical situation is illustrated in Fig. 1(b) with the gravitational acceleration set to zero. 

Air-particle and bubbly flows are modeled by correctly setting the densities of the continuous 

and disperse phases. Diffusion within both phases is neglected and drag, which is the sole 

driving force for the particle-air/bubble-water motion, is calculated as: 

( ) ( ) ( )()()()(

8
3 cd

slip
cd

p

Dd
M

c
M uuVr

r
CII −=−= ρ )  (25) 

)()( cd
slipV uu −=  (26) 

with the drag coefficient (CD) assigned the value of 0.44. Since diffusion is neglected, the 

GCBA-SIMPLEST and GCBA-PRIME becomes identical and reference will be made to 

GCBA-SIMPLEST only. The task is to calculate the particle/bubble-velocity distribution as a 

function of position. If the flow field is extended far enough (L=2m), the particle/bubble and 

fluid phases are expected to approach an equilibrium velocity given by: 

)()()()( d
inlet

d
inlet

c
inlet

c
inletmequilibriu ururU +=  (27) 

Problem 1: Dilute gas-solid flow 

The first case considered is that of dilute gas-solid flow. The physical properties and 

boundary conditions of the   two   phases   are:         ,/5 , 1 ,2000/ )()()( smVmmr c
inletp

cd ===ρρ
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.10,/1/1 5)()( −== d
inlet

d
inlet randsmsmV  Due to the dilute concentration of the particles, the free 

stream velocity is more or less unaffected by their presence, the equilibrium velocity is nearly 

equal to the inlet free stream velocity, and the variation of the particle velocity u(d)
 as a 

function of the position x and the properties of the two phases is given by [54]:  

[ ] [ ] )()(

)(
)()(

)(

)(

)()(

)(
)()(

8
3

d
inlet

c
inlet

c
inletd

inlet
c

inlet
p

D
d

c

dc
inlet

c
inletdc

inlet VV
VVVLnx

r
C

uV
VuVLn

−
+−+=

−
+−

ρ
ρ  (28) 

The accuracy of the numerical procedure is demonstrated in Fig. 2(a) by comparing the 

predicted particle velocity distribution against the analytical solution given by Eq. (28). As 

shown, the two solutions are indistinguishable. The convergence histories of the various 

GCBA over the four grid networks used are displayed in Figs. 2(b)-2(h). For all algorithms, 

the required number of iterations increases as the grid size increases, with PISO (Fig. 2(b)) 

requiring the minimum and SIMPLEST/PRIME (Fig. 2(f)) the maximum number of 

iterations on all grids. This performance of SIMPLEST/PRIME is due to the explicit 

methodology followed in solving the momentum equations. The convergence histories of 

SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX (Figs. 2(c), 2(d), 2(e), and 2(g), 

respectively) are very similar with SIMPLEM (Fig. 2(e)) requiring the lowest number of 

iterations. The convergence paths of the various algorithms over a grid of size 80 C.V. are 

compared in Fig. 2(h) and the above observations are easily inferred from the figure.  

Problem 2: Dense gas-solid flow 

A dense gas-solid flow is simulated by setting the concentration of particles ( ) 2)( 10−tor d
inlet  

while retaining all other boundary conditions and physical properties as for the previous test 

case. Even though the particle volume fraction is low, the ratio of disperse phase and 

continuous phase mass loadings is large ( )20/ )()()()( =ccdd rr ρρ . Thus the disperse phase 

carries most of the inertia of the mixture. Due to the small variation in the gas velocity (i.e. 

the equilibrium velocity is 4.96 m/s), it may be assumed constant and the variation in particle 
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velocity can be obtained again from Eq. (28). The comparison between the numerical and 

analytical particle velocity distributions displayed in Fig. 3(a) confirms once more the 

validity and accuracy of the numerical procedure. The convergence paths for all algorithms 

and over all grid systems used are displayed in Figs. 3(b)-3(h).  In general, higher number of 

iterations is required to reach the desired level of convergence on a given grid as compared to 

the dilute case due to the increased importance of the inter-phase term. The general 

convergence trend is similar to that of the dilute problem with PISO requiring the minimum 

and SIMPLEST the maximum number of iterations. The SIMPLEM algorithm (Fig. 3(e)) is 

seen to require a slightly lower number of iterations on the finest grid as compared to 

SIMPLE (Fig. 3(c)), SIMPLEC (Fig. 3(d)), and SIMPLEX (Fig. 3(c)). As depicted in Figs. 

3(f) and 3(h), the performance of SIMPLEST/PRIME is poor in comparison with other 

algorithms for the same reasons stated above.  

Problem 3: Dilute bubbly flow 

Here a bubbly flow is considered by regarding the continuous phase as water and the disperse 

phase as air. Thus, for the same configuration displayed in Fig. 1(b), the disperse and 

continuous phase density ratio ( ))()( / cd ρρ  is set to 10-3, the bubble inlet volume fraction 

( ))(d
inletr  is assigned the value 0.1, while values for other physical properties and inlet conditions 

are retained as for the previous cases. This is a strongly coupled problem and represents a 

good test for the numerical procedure and performance of the algorithms. Based on the inlet 

conditions, the equilibrium velocity for this strongly coupled problem (Eq. (27)) is 4.6 m/s 

and is realized in a distance too small to be correctly resolved by any of the grid networks 

used. As expected, the axial velocity profiles displayed in Fig. 4(a) indicate that both phases 

reach the equilibrium velocity of 4.6 m/s over a very short distance from the inlet section and 

remain constant afterward. The relative convergence characteristics of the various algorithms 

(Figs. 4(b)-4(h)) remain the same. However, most algorithms require larger number of 
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iterations as compared to the dilute gas solid flow case due to the stronger coupling between 

the phases. Consistently, the PISO (Fig. 4(b)) and SIMPLEST/PRIME (Fig. 4(f)) algorithms 

need the lowest and highest number of iterations, respectively. As in the previous two cases, 

the convergence attributes of SIMPLE (Fig. 4(c)), SIMPLEC (Fig. 4(d)), SIMPLEM, and 

SIMPLEX (Fig. 4(g)) are very similar with SIMPLEM consistently requiring a lower number 

of iterations. The large difference in performance between SIMPLEST/PRIME and the 

remaining algorithms is clearly demonstrated in Fig. 4(h).  

Problem 4: Dense bubbly flow 

A dense bubbly flow is simulated by setting the concentration of bubbles to  while 

holding the values of other physical properties and boundary conditions as in the previous 

case. Coalescence of bubbles which may occur with such high value of void fraction is not 

accounted for here. The analytical solution is the same as in the previous case with the 

equilibrium velocity, as computed from Eq. (27), being 3 m/s. As depicted in Fig. 5(a), the 

equilibrium velocity obtained numerically is exact. With the exception of requiring higher 

number of iterations to reach the desired level of convergence, the performance of the various 

algorithms (Figs. 5(b)-5(h)) vary relatively in a manner similar to what was previously 

discussed and deemed redundant to be repeated. 

5.0)( =d
inletr

CPU time: Horizontal particle/bubble transport 

As depicted in Fig. 6, the normalized CPU times required by the various algorithms increase 

with increasing grid density. For the dilute gas-solid problem (Fig. 6(a)), it is hard to see any 

noticeable difference in the CPU times of SIMPLE, SIMPLEM, and SIMPLEX. The 

SIMPLEC and PISO algorithms require slightly lower and higher computational efforts, 

respectively, as compared to SIMPLE. The worst performance is for SIMPLEST which 

degenerates to PRIME in the absence of diffusion and results in a fully explicit solution 

scheme. For the dense gas-solid flow (Fig. 6(b)), the computational times needed by 
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SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX are nearly identical. PISO, however, 

requires higher computational effort (50% more than SIMPLE on the finest meshes (80 and 

160 C.V.)). The computational effort needed by SIMPLEST/PRIME is however the most 

extensive and is nearly 500% the one needed by SIMPLE on the finest mesh.   

The normalized CPU time of SIMPLEST/PRIME for the bubbly flow problems (Figs. 6(c) 

and 6(d)) is lower than in the previous two problems due to a higher rate of increase in the 

time needed by other algorithms (the computational time of all algorithms has increased). 

The relative performance of the various algorithms is nearly as described earlier with the time 

required by of PISO, SIMPLE, SIMPLEC, and SIMPLEX being on average the same. The 

SIMPLEST/PRIME algorithm however, requires nearly 400% (Fig. 6(c)) and 150% (Fig. 

6(d)) the time needed by SIMPLE on the finest mesh for the dilute and dense bubbly flow, 

respectively. The best performance for the dense bubbly flow problem is for SIMPLEM, 

which requires about 50% less effort on the finest mesh than SIMPLE. 

Vertical particle/bubble transport 
For the configuration shown in Fig. 1(b), the gravitational acceleration g is considered to be 

operating in the negative x-direction and assigned the constant value of 10 m/s2. The length 

of the computational domain is extended to L=20m in order to allow the particle/bubble 

phase to reach its final settling velocity relative to the continuous phase, at which the 

gravitational force balances the drag force [54]. Unlike the horizontal transport problems, 

diffusion in the continuous phase is retained. Moreover, the inter-phase drag force is 

calculated using Eqs. (25) and (26) and the drag coefficient, CD, is considered to be particle 

Reynolds number dependent and calculated as: 

)(

2
Re44.0

Re
24

c
slipp

p
p

D

Vr
withC

ϑ
=+=  (29) 
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Problem 5: Dilute gas-solid flow 

The material properties and boundary conditions considered for this case are given by: 

mmrp
ccd  1 ,10 ,1000/ 5)()()( === −ϑρρ  (30) 

5)()()( 10 ,/ 10 ,/ 100 −=== d
inlet

d
inlet

c
inlet rsmVsmV  (31) 

The large velocity boundary condition is used to ensure that the solid phase does not exit the 

inlet. The predicted air and particle velocity distributions depicted in Fig. 7(a) are in excellent 

agreement with similar predictions reported in [45]. As shown in Figs. 7(b)-7(h), the mass 

residuals tend to slightly increase at the beginning of the iterative process, stagnate over a 

number of iterations (this number increases with increasing grid size), and then decrease 

rapidly to the desired level of convergence. This behavior is also true for the horizontal case 

discussed earlier and is attributed to the approximations introduced to the pressure correction 

equation especially with regard to neglecting second order correction terms, which may be 

important at the beginning of the iterative process. Once these neglected terms become 

unimportant, the rate of convergence increases significantly. Retaining these terms could 

have improved the convergence rate but this has not been considered in this work.  

As depicted in Fig. (7), the number of iterations required for the solution to reach the desired 

level of convergence is very close to that needed in the similar horizontal transport case. This 

is equally true with regard to the relative performance of the various algorithms. The 

performance of SIMPLEST (Fig. 7(f)) and PRIME (Fig. 7(g)) is very close due to the fact 

that the implicitness introduced by the diffusion of the continuous phase does not seem to be 

that important. However, both require on the finest mesh almost 430% the number of 

iterations needed by SIMPLE. The number of outer iterations needed by SIMPLEX and 

SIMPLEC is very close to that of SIMPLE, while SIMPLEM entails lower number of 

iterations. Again, PISO requires the lowest number of iterations. 
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Problem 6: Dense gas-solid flows 

The only difference between this case and the previous one is in the particles’ volume 

fraction, which is set to . Predicted air and particle velocity profiles are displayed 

in Fig. 8(a) while mass residuals are presented in Figs. 8(b)-8(h). Higher number of iterations 

is needed in comparison with the dilute case due to the higher mass-loading ratio. Besides 

that, the convergence behavior is similar to the previous cases with SIMPLEST (Fig. 8(f)) 

and PRIME (Fig. 8(g)) requiring the highest number of iterations and PISO (Fig. 8(b)) the 

lowest number of iterations. The number of iterations needed by SIMPLE, SIMPLEC, and 

SIMPLEX (compare Figs. 8(c), 8(d), and 8(h)) is very close. The SIMPLEM algorithm (Fig. 

8(e)) needs on the finest mesh about 25% less iteration than SIMPLE (Fig. 8(c)).  

2)( 10−=d
inletr

Problem 7: Dilute bubbly flows 

In this problem, the continuous phase is water and the disperse phase is air. With the 

exception of setting  to 10)()( / cd ρρ -3,   to 1, and  to 0.1, other physical 

properties are the same as those considered earlier. This is a very difficult problem to get 

convergence to unless the proper under-relaxation is used. By starting with relatively high 

under-relaxation factors, the number of iterations needed with all algorithms was found to be 

very high. In order to get feasible solutions, the under-relaxation factors during the first 20 

iterations were set to 0.05 and then increased to the desired values. This was found to greatly 

improve the convergence rate and to generate solutions with nearly the same computational 

effort as in the previous cases. In addition, this treatment has greatly improved the 

performance of SIMPLEST and PRIME and has decreased their required number of 

iterations to values similar to those needed by other algorithms (Figs. 9(b)-9(h)). In fact, 

SIMPLEST and PRIME are performing slightly better than SIMPLE for this particular 

problem. Overall, none of the algorithms shows an outstanding superiority in performance 

over others.  

)()(  d
inlet

c
inlet VandV )(d

inletr
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Problem 8: Dense bubbly flows 

The results for this problem, which are obtained by setting the volume fraction at inlet to 0.5 

for the physical situation, material properties, and boundary conditions used in the previous 

case, are presented in Fig. 10. It was possible to get feasible solutions (i.e with reasonable 

computational time) only when under-relaxing by inertia (i.e. through the use of false time 

steps). For the results presented in Fig. 10, a time step (∆t) of value 10-4 s is used for the 

velocity field of the dispersed gas phase, ∆t=1 s for the volume fractions, and ∆t=0.01 s for 

the velocity field of the liquid phase for the grids of sizes 20 and 40 C.V. and ∆t =0.05 for all 

variables and for both phases with the dense grids (i.e. 80 and 160 C.V.). The predicted liquid 

and gas velocity distributions, which are in excellent accord with published data, are depicted 

in Fig. 10(a). The trend of convergence seems to be different than what has been presented so 

far with the convergence histories of the various algorithms (Figs. 10(b)-10(h)) being similar 

and requiring nearly the same number of iterations. It is also noticed that the number of 

iterations needed on the finest mesh is smaller than the numbers needed on the grids of sizes 

40 and 80 C.V. Nevertheless, it was possible to obtain solutions with all GCBA algorithms.  

CPU time: Vertical particle/bubble transport 

As in the horizontal configuration, the normalized CPU times for the vertical particle 

transport problems displayed in Fig. 11 increase with increasing grid density. For the dilute 

and dense gas-solid flow problems (Figs. 11(a) and 11(b)), the relative performance of the 

various algorithms is similar. For the dilute case (Fig. 11(a)), the efficiency of PRIME is 

slightly better than SIMPLEST (due to the use of an explicit algebraic-equation solver), both 

however are about four times more expensive than all other algorithms whose performance is 

very comparable (i.e. of the same order of magnitude) with SIMPLEM being the least 

expensive (7% less than SIMPLE on the finest mesh) and PISO the most expensive (9.5% 

more than SIMPLE on the finest mesh). The same is true for the dense gas-solid case (Fig. 
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11(b)) with the performance of SIMPLE, SIMPLEC, SIMPLEM, SIMPLEX, and PISO being 

closer. 

For the vertical bubbly flows, a noticeable change in the normalized time chart (Figs. 11(c) 

and 11(d)) is depicted, with the performance of SIMPLEST and PRIME showing good 

improvements while the performance of the remaining algorithms deterioration. As depicted, 

the CPU times needed by the various algorithms are of the same order of magnitude with 

SIMPLEM being slightly more expensive. 

By comparing the behavior of the various algorithms in all problems, it is clear that the 

performance of SIMPLE, SIMPLEC, SIMPLEM, SIMPLEX, and PISO is consistent and 

require, on average, similar computational effort. The performance of the SIMPLEST and 

PRIME algorithms was comparable to SIMPLE for upward bubbly flows only and were, in 

general, the most expensive to use on all grids and for all physical situations presented here. 

Most importantly however, is the fact that all these algorithms can be used to predict multi-

phase (in this case two-phase) flow. 

Closing Remarks 

The implementation of seven GCBA algorithms for the simulation of incompressible multi-

fluid flow was accomplished. The performance and accuracy of these algorithms were 

assessed by solving a variety of one-dimensional two-phase flow problems. For each test 

problem, solutions were generated on a number of grid systems. Results obtained 

demonstrated the capability of all algorithms to deal with multi-fluid flow situations. The 

convergence history plots and CPU-times presented, indicated similar performances for all 

algorithms with the exception of SIMPLEST and PRIME.  
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Figure Captions 

Fig. 1   (a) Control volume, (b) the prolongation only,  and (c) FMG strategies, and  

(d) Physical domain for the gas-particle transport problem. 

Fig. 2   (a) Comparison between the analytical and numerical particle velocity distributions, 

(b)-(g) convergence histories on the different grid systems, (h) and convergence  

histories on the 80 C.V. grid for the horizontal dilute gas-solid flow problem. 

Fig. 3   (a) gas and particle velocity distributions, (b)-(g) convergence histories on the  

different grid systems, (h) and convergence histories of the various algorithms on the  

80 C.V. grid for the horizontal dense gas-solid flow problem. 

Fig. 4   (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different  

grid systems, (h) and convergence histories of the various algorithms on the 80 C.V.  

grid for the horizontal dilute bubbly flow problem. 

Fig. 5   (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different  

grid systems, (h) and convergence histories on the 80 C.V. grid for the horizontal  

dense bubbly flow problem. 

Fig. 6 Normalized CPU-times for the horizontal (a) dilute gas-solid, (b) dense gas-solid,  

(c) dilute bubbly, and (d) dense bubbly flow problem. 

Fig. 7  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the  

different grid systems for the vertical dilute gas-solid flow problem. 

Fig. 8  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the 

different grid systems for the vertical dense gas-solid flow problem. 

Fig. 9 (a) gas and particle velocity distributions; and (b)-(h) convergence histories on the  

different grid systems for the vertical dilute bubbly flow problem. 

Fig. 10 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the 

 different grid systems for the vertical dense bubbly flow problem. 

Fig. 11 Normalized CPU-times for the vertical (a) dilute gas-solid, (b) dense gas-solid,  

(c) dilute bubbly, and (d) dense bubbly flow problem. 
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Fig. 1   (a) Control volume, (b) Physical domain for the gas-particle transport  

 problem. 
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                             (e)                                                           (f)                                                           (g)                                                          (h) 

Fig. 2   (a) Comparison between the analytical and numerical particle velocity distributions, (b)-(g) convergence histories on the different grid systems,  

(h) and convergence histories on the 80 C.V. grid for the horizontal dilute gas-solid flow problem. 
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Fig. 3   (a) gas and particle velocity distributions, (b)-(g) convergence histories on the different grid systems, (h) and convergence histories of the various 

algorithms on the 80 C.V. grid for the horizontal dense gas-solid flow problem. 

 



The Geometric Conservation Based Algorithms  for Incompressible Multi-Fluid Flow 32 

Axial Distance

V
el

oc
ity

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

5

Liquid

Gas

Iteration

M
as

s
R

es
id

ua
ls

50 100 150 200
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.
PISO

160 C.V.
80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

100 200 300 400 500
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLE

160 C.V.
80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

100 200 300 400
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEC

160 C.V.
80 C.V.

40 C.V.

 

                             (a)                                                           (b)                                                           (c)                                                          (d) 

Iteration

M
as

s
R

es
id

ua
ls

100 200 300
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEM

160 C.V.
80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

500 1000 1500
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEST

160 C.V.
80 C.V.

40 C.V.

Iteration
M

as
s

R
es

id
ua

ls

100 200 300 400
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEX

160 C.V.
80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

200 400 600 800
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

PISO

SIMPLE

SIMPLEC

SIMPLEM

SIMPLEST

SIMPLEX

80 c.v.
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Fig. 4   (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different grid systems, (h) and convergence histories of the various 

algorithms on the 80 C.V. grid for the horizontal dilute bubbly flow problem. 
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Fig. 5   (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different grid systems, (h) and convergence histories on the 80  

C.V. grid for the horizontal dense bubbly flow problem. 



 

simple
simplec

simplem

simplex

piso simplest-prime

20 C.V.

80 C.V.0

20

40

60

80

100

120

140

160

Dilute gas-solid flow

simple
simplec

simplem

simplex

piso simplest-prime

20 C.V.

80 C.V.0

20

40

60

80

100

120

Dense gas-solid flow

 

(a)                                                                      (b) 

simple
simplec

simplem

simplex

piso simplest-prime

20 C.V.

80 C.V.0

10

20

30

40

50

60

Dilute bubbly flow

simple
simplec

simplem

simplex

piso simplest-prime

20 C.V.

80 C.V.0

5

10

15

20

25

Dense bubbly flow

 

(c)                                                                      (d) 

 

Fig. 6 Normalized CPU-times for the horizontal (a) dilute gas-solid, (b) dense gas-solid, (c) dilute bubbly, 

and (d) dense bubbly flow problem. 

 



Vertical Distance

V
el

oc
ity

0 5 10 15 2010

20

30

40

50

60

70

80

90

100

Gas

Solid

Iteration

M
as

s
R

es
id

ua
ls

50 100 150 20010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

PISO

160 C.V.

80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

50 100 150 200 250 300 35010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLE

160 C.V.

80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

50 100 150 200 250 300 35010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEC

160 C.V.

80 C.V.

40 C.V.

 

                             (a)                                                           (b)                                                           (c)                                                          (d) 

Iteration

M
as

s
R

es
id

ua
ls

50 100 150 200 25010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEM

160 C.V.

80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

500 1000 150010-8

10-7

10-6

10-5

10-4

10-3

10-2

20 C.V.

SIMPLEST

160 C.V.

80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

500 1000 150010-8

10-7

10-6

10-5

10-4

10-3

10-2

20 C.V.

PRIME

160 C.V.

80 C.V.

40 C.V.

Iteration

M
as

s
R

es
id

ua
ls

50 100 150 200 250 300 35010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

20 C.V.

SIMPLEX

160 C.V.

80 C.V.

40 C.V.

 

                             (e)                                                           (f)                                                           (g)                                                          (h) 

Fig. 7 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dilute gas-solid flow  

problem. 
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Fig. 8  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dense gas-solid flow 

 problem. 
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Fig. 9  (a) gas and particle velocity distributions; and (b)-(h) convergence histories on the different grid systems for the vertical dilute bubbly flow problem. 
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Fig. 10  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dense bubbly flow problem. 
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Fig. 11 Normalized CPU-times for the vertical (a) dilute gas-solid, (b) dense gas-solid, (c) dilute bubbly, and 

(d) dense bubbly flow problem. 

 



 

 


