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Abstract

This paper deals with the implementation and testing of seven segregated pressure-based
algorithms for the prediction of incompressible multi-fluid flow. These algorithms belong to the
Geometric Conservation Based Algorithm (GCBA) group in which the pressure correction
equation is derived from the constraint on volume fractions (i.e. sum of volume fractions equals
1). The pressure correction schemes in these algorithms are based on SIMPLE, SIMPLEC,
SIMPLEX, SIMPLEM, SIMPLEST, PISO, and PRIME. The performance and accuracy of these
algorithms are assessed by solving eight one-dimensional two-phase flow problems and
comparing results with published data. The effects of grid size on convergence characteristics
are analyzed by solving each problem over different grid sizes. Results clearly demonstrate the
capability of all GCBA algorithms to predict a wide range of multi-fluid flow situations. Based
on the convergence history plots and CPU-times obtained for the problems solved, the GCBA
can be divided into two groups with the one composed of SIMPLEST and PRIME being

generally less efficient than the second group to which the remaining algorithms belong.
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Nomenclature

coefficients in the discretized equation for ¢™* .
source term in the discretized equation for ¢(k) )
body force per unit volume of fluid/phase k.
the Matrix D operator.

the H operator.

the vector form of the H operator.

inter-phase momentum transfer.

mass source per unit volume.

pressure.

general source term of fluid/phase k.

volume fraction of fluid/phase k.

coefficient equals 1/ A%

surface vector.

time.

interface flux velocity (V(fk).Sf ) of fluid/phase k.

velocity vector of fluid/phase k.

. velocity components of fluid/phase k.

Cartesian coordinates.

Greek Symbols

()
Yo,

F(k)

¢(k)

density of fluid/phase k.
diffusion coefficient of fluid/phase k.

general scalar variable associated with fluid/phase k.
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Ap [¢(k)] the A operator.

Q cell volume.

ot time step.

Subscripts

e, w,. refers to the east, west, ... face of a control volume.

E,W,.. refers to the East, West, ... neighbors of the main grid point.
f refers to control volume face f.

P refers to the P grid point.

Superscripts

C refers to convection contribution.

D refers to diffusion contribution.

() refers to fluid/phase k.

) * refers to updated value at the current iteration.

(k) € refers to values of fluid/phase k from the previous iteration.
(k)’ refers to correction field of phase/fluid k.

Old refers to values from the previous time step.



Introduction

Flows involving multiple distinct phases, known as multi-fluid flows, arise in many industrial
applications [1,2] such as mixing tanks [3-5], bubbly flows [6-8], fluidized beds [9,10],
hydro-transport [11], separators [12-14], and spray drying [15,16] to cite a few. Numerical
simulation is arguably the principal path to a fundamental understanding of these flows,
which may comprise any combination of gas, liquid, and solid phases. A concerted research
effort has been undertaken over the last three decades to develop appropriate numerical
techniques [17-26] capable of simulating such flows. Workers have rigorously enhanced the
depiction of the governing equations [27-31] and exploited the extensive advances that have
been achieved in single-fluid numerical techniques [32-39] to develop reliable multi-fluid
numerical strategies [40,41].

The description of multi-fluid flow begins with the general principles governing the behavior
of matter, namely conservation of mass, momentum, and energy. These principles can be
expressed mathematically at every point in space by local and instantaneous field equations.
Because of their numerical intractability at microscopic level, these equations are averaged in
space and time. Several averaging strategies have been developed (Ishii [28] and Drew [42],
Soo [43], Gidaspow [44]), which led basically to two different methods for describing the
physical processes. In the first approach the n phases are averaged together to obtain
averaged variables for an n-phase mixture, while in the second technique each phase is
averaged separately giving rise to averaged variables for each of the n phases. The latter
procedure, adopted here, yields the multi-fluid model, which is a bit more general and useful.
Even the most simplified models for two-dimensional incompressible multi-fluid flows are
complex, as they involve the solution of 3n (n the number of phases/fluids) coupled partial
differential equations (averaged mass and momentum equations for each fluid) and numerous

constitutive equations. Work on numerical techniques for the simulation of multi-fluid flows



The Geometric Conservation Based Algorithms for Incompressible Multi-Fluid Flow 5

within a segregated pressure-based approach was initiated independently, following two
distinct tracks, by the CFD group at the Los Alamos Scientific Laboratory [20-21] and by the
Spalding group at Imperial College [17-19,45]. In a recent article, Darwish et al. [40] have
shown that these two approaches and the extensive developments that followed can be
classified under what they denoted by the mass conservation and geometric conservation
formulation, repectively. This designation was based upon the equation used in obtaining the
pressure correction equation, which can be derived either by using the geometric
conservation equation or the overall mass conservation equation. Depending on which
equation is employed, the segregated pressure-based multi-fluid flow algorithms were
classified respectively as either the Geometric Conservation Based family of Algorithms
(GCBA) or the Mass Conservation Based family of Algorithms (MCBA). Moukalled and
Darwish [41] implemented and tested the MCBA family and proved its capability to predict
multi-fluid flow. On the other hand, the GCBA family has not yet been implemented nor
tested.

The objective of the present work is to implement and test seven multi-phase algorithms from
the GCBA family (with their pressure correction schemes based on SIMPLE [46],
SIMPLEST [47], SIMPLEC [48], SIMPLEM [49], PISO [50], PRIME [51], and SIMPLEX
[52]) and to assess their relative performance by solving a total of eight incompressible one-
dimensional two-phase flow problems encompassing dilute and dense gas-solid flows in
addition to bubbly flows on several grid sizes.

In what follows, the governing equations for incompressible multi-phase flows are first
introduced, followed by a brief description of the discretization procedure. Then the
capability of the GCBA algorithms to predict multi-fluid flow phenomena is demonstrated

and their performance characteristics (in terms of convergence history and speed) assessed.
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The Governing Equations

The equations governing incompressible multi-phase flows are the conservation laws of mass

and momentum for each individual fluid, given by:

alr® p®
6’20 +V.(r(k)p(k)u(k)): IV 0
) k) (k)

o\r ,gt u +V.(r(k)p(k)u(k)u(k))= V_[r<k>ﬂ<k)vU(k)]+ r(k)(—VP+ B(k))+ 1 @

where the superscript (k) refers to the k™ phase, % the volume fraction (Q(k)/Q), p™ the
fluidic density, u® the velocity vector, P the pressure shared by all fluids/phases, B® the
body force per unit volume, u the fluid viscosity, and 1§’ represents the interfacial forces
per unit volume due to drag, virtual mass effects, lift, etc...

An adequate manipulation of equations (1) and (2) allows their representation in a unified

equation of a general fluidic scalar variable ¢* as follows:

k k k
6(r( 'pM g ))+V.(r“‘)p(k)u(k)¢“‘)):V.(r(k)r(k)v¢(k))+ roQ® 3)
ot
The above set of differential equations has to be solved in conjunction with constraints on

certain variables represented by algebraic relations. For incompressible laminar multi-phase

flow, these auxiliary relations include the geometric conservation equation (Z r = lj and
k

the interfacial mass and momentum transfers. In this work, only interfacial momentum
transfer is of interest and its closure will be detailed later. Moreover, in order to present a
closed mathematical model, initial and boundary conditions should supplement the above

equations.

Discretization Procedure

The first step in the discretization process consists of integrating the general equation (Eq. (3)

over a differential control volume (Fig. 1(a)) to yield:
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“' ﬁ(r(k)p(k)qﬁ(k))dg N ”V.(r(k)p(k)u(k)¢(k) )dQ
Q Q

a 4
— ()1 (k) (k) ((37e1LY)
[[vAr©r®©vg® Mo + [[rQ“da

where Q is the volume of the control cell. Through the use of the divergence theorem, the

convection and diffusion volume integrals are transformed into surface integrals as:

J‘J‘ a(r(k)g1(:k)¢(|<))dQ N ”(r(k)p(k)u(k)¢(k))-ds
Q aQ (5)

= J-.[ (r(k)F(k)V¢(k) ).dS + ” rQ™dQ
oQ Q
By a trapezoidal-type approximation, the surface integral about the cell faces is set equal to a
summation of fluxes at the cell faces centers, while the volume integral is evaluated at the

cell center. Thus, Eq. (5) becomes:

a(r(k)p(k)¢(k))
ot

These fluxes are then related to the values at the cell centers and their neighboring nodes by

o Z(r“‘)p(k)u“" S — oty g .S): roQh (6)
nb

using a suitable interpolation profile in a local coordinate direction. The profile of the
diffusion term is second order accurate and follows the derivations presented in [53]. For the
convective terms, the High Resolution SMART [38] scheme is employed and applied within
the context of the NVSF methodology [34]. Substitution of the interpolation profiles into Eq.

(6) gives the final form of the discretized equation as
k)¢(k) ZAN) (k) 4 B(k) (7)

where the coefficients A and A{Y depend on the selected scheme and B{ is the source

term of the discretized equation . In compact form, the above equation can be written as

09 4 B
P [¢<k)]_ %AN ©

The discretization procedure for the momentum equation yields an algebraic equation of the

®)

form:



The Geometric Conservation Based Algorithms for Incompressible Multi-Fluid Flow 8
ul = H,[u® |- r¥pv, (P) )
Moreover, the phasic mass-conservation equation (Eq. (1)) can be viewed as a phasic volume

fraction equation, which can either be written as:

= Hp[r"‘)] (10)

or as a fluidic continuity equation to be used in deriving the pressure correction equation:

NS R T

where the A operator represents the following operation:

AP[®]:Z®f (12)
Geometric Conservation Based Algorithms (GCBA)

The numbers of equations describing an incompressible n-fluid flow situation are: n
momentum equations, n volume fraction (or mass conservation) equations, and a geometric
conservation equation. Moreover, the variables involved are the n velocity vectors, the n
volume fractions, and the pressure field. It is clear that the n-velocity fields are associated
with the n-momentum equations, i.e. the momentum equations can be used directly to
calculate the velocity fields. The volume fractions could arguably be calculated from the
volume fraction equations, which mean that the remaining equation, i.e. the geometric
conservation equation (the volume fractions sum to 1), has to be used in deriving the pressure
equation, or equivalently the pressure correction equation. This results in what was denoted
[40] by the Geometric Conservation Based Algorithm (GCBA).

The GCBA uses the momentum equations for a first estimate of velocities. However, the
volume fractions are calculated without enforcing the geometric conservation equation.
Hence, the mass conservation equations of all fluids are used to calculate the volume
fractions. As such, the pressure correction equation should be based on the geometric

conservation equation and used to restore the imbalance of volume fractions. The errors in
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the calculated volume fractions are expressed in terms of pressure correction(P’), which is
also used to adjust the velocity and volume fraction fields. The sequence of events in the
Geometric Conservation Based Algorithm (GCBA) is as follows:

e Solve the individual mass conservation equations for volume fractions.

e Solve the momentum equations for velocities.

e Solve the pressure correction equation.

e Correct velocity, volume fraction, and pressure fields.

e Return to the first step and repeat until convergence.

The Pressure Correction Equation

In order for the volume fraction fields to satisfy the compatibility equation and the velocity
and pressure fields the continuity equations, a guess-and-correct scheme is adopted.
Correction is obtained by solving a pressure correction equation, which is derived from the
geometric conservation equation by noticing that initially the volume fraction fields denoted

by r®”, do not satisfy the compatibility equation and a discrepancy exists, i.e.
RESG, =1-> r}" (13)
K
A change to r™®” is sought that would restore the balance. The corrected r value, denoted by

rt (r(k) =r® 4 r(k)'), is such that

> (r)= Z(r“’)—Z(r(“"F1—§(f‘“")= RESG, (14)

k k k

r(k)'

Correction to the volume fraction, , will be associated with a correction to the velocity

and pressure fields, U™ and P’ respectively. Thus, the corrected fields are given as:

r =r® Lr® p=porp, u® =u® +u® (15)

The discretized form of the corrected continuity equation of phase (k) can be written as
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. | old
(Rl )
& i (16)

+ AP((r(k)* +r® )pék)(u‘k’* +u® ).S): I\ﬁlg"’(r;k)* + rp(”)s’zP

Neglecting second order terms, its expanded form reduces to:

(kY (k)

I s ’ s ’
e Lo )0y, +A[(r* p®ut S+ pu W)
&

(17)
(0* 00 )_ (o 400 P
~ MO = _(rp Prp ) égrp Prp ) Q, —AP[(I’(k)*p(k)U (k)*)]+ MROr0" )
Writing u$’" as a function of P’, the correction momentum equations become
ul =H, [u“]-r"DYVP - 1 DIVPe (18)
Substituting Eq. (18) into Eq. (17), rearranging, and discretizing one gets
i = Ho[r]=
AL r09 50 H[u™]-r"DOVPY)
e — ' DOVp! | (19)
Y
(0* () )_ (0 00 Ol
+(rp Pe )é,grp Pe ) QP+AP[(F(k)*p(k)U (k)*)]_ MROFO'
where R =1/A%.
Neglecting volume fraction correction to neighboring cells, equation (19) reduces to:
Ag| 1" (k)[H[U(k)y]— r(k)*D(k)VP,].S
_r'poyp’
[ = R r’DVvP (20)

AR o e o) dena,

Substituting this equation into the geometric conservation equation, the pressure correction

equation is obtained as

AP [r(k)*p(k)(H[u(k)'] _ r(k)*D(k)VP' _ r(k)'D(k)VP').S

T S

= RESG, (21)

If the H[u(k)'] term in the above equation is retained, there would result a pressure correction

equation relating the pressure correction value at a point to all values in the domain. To

facilitate implementation and reduce cost, simplifying assumptions related to this term have
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been introduced. Depending on these assumptions, different algorithms are obtained. These
algorithms were detailed in [40] to which interested readers are referred. Following the
(k) (kY
up andr,

calculation of the pressure correction field, are obtained using the following

equations

w = —r D, (P

= —RS”(AP[(r(k)p(k)uw).SD (22)

Results and Discussion

The performance of the various multi-fluid Geometric Conservation Based Algorithms is
assessed in this section by solving eight one-dimensional two-phase flow problems. These
problems can be broadly classified as: (i) horizontal particle transport, and (ii) vertical
particle transport. Results are presented in terms of the CPU-time needed for the residuals to
reach a set level and of the convergence history. Moreover, in order to assess the performance
of the various algorithms with increasing grid density solutions are generated using four grid
systems of sizes 20, 40, 80, and 160 control volumes . Results are compared against available
numerical/theoretical values. The residual of a variable ¢® at the end of an outer iteration is

defined as:

RES!) =" | A

cv

= Apdi - BY (23)
NB

For global mass conservation, the imbalance in mass is defined as:

RES. —ZZ| (:p1") &r(k)pék)) Q= A[r® pou ] rtopeo (24)

All residuals are normalized by their respective inlet fluxes. Computations are terminated
when the maximum normalized residuals of all variables drop below a very small number &,
which is set to 10®. In all problems, the first phase represents the continuous phase (denoted

by a superscript (c)), which must be fluid, and the second phase is the disperse phase
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(denoted by a superscript (d)), which may be solid or fluid. Unless otherwise specified the
HR SMART scheme is used in all computations reported in this study. For a given problem,
all results are generated starting from the same initial guess, since in iterative techniques
different initial guesses might require different computational efforts.

Many runs were performed so as to set the control parameters of each algorithm near
optimum values. The CPU times are reported in the form of charts and normalized by the
time needed by the residuals of GCBA-SIMPLE to reach the set level on the coarsest grid.
Horizontal particle/bubble transport

The physical situation is illustrated in Fig. 1(b) with the gravitational acceleration set to zero.
Air-particle and bubbly flows are modeled by correctly setting the densities of the continuous
and disperse phases. Diffusion within both phases is neglected and drag, which is the sole

driving force for the particle-air/bubble-water motion, is calculated as:

c 3 C c c
1©) = 1 () = 220 @ )\/s,ip(u“”—u( )) (25)
81,
Vaip :Hu(d) —u® (26)

with the drag coefficient (Cp) assigned the value of 0.44. Since diffusion is neglected, the
GCBA-SIMPLEST and GCBA-PRIME becomes identical and reference will be made to
GCBA-SIMPLEST only. The task is to calculate the particle/bubble-velocity distribution as a
function of position. If the flow field is extended far enough (L=2m), the particle/bubble and

fluid phases are expected to approach an equilibrium velocity given by:

— r©) () (d)y(d)
Uequilibrium - rinletuinlet + IFinletuinlet (27)

Problem 1: Dilute gas-solid flow

The first case considered is that of dilute gas-solid flow. The physical properties and

boundary conditions of the two phases are: P/ p® =2000, r,=1 mm, V. =5m/s,

inlet
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V@ =1m/sim/s,and r')) =107°. Due to the dilute concentration of the particles, the free

inlet inlet
stream velocity is more or less unaffected by their presence, the equilibrium velocity is nearly
equal to the inlet free stream velocity, and the variation of the particle velocity u'® as a
function of the position x and the properties of the two phases is given by [54]:

(©) 3 @ C V.©

© _ (d)] Vi _ 3P Co © _ (d)] inlet
LnB/inlet u +V(c) _u(d) - g p(d) r x+Ln inlet Vinlet +V(c) _V(d) (28)
p

inlet inlet

inlet

The accuracy of the numerical procedure is demonstrated in Fig. 2(a) by comparing the
predicted particle velocity distribution against the analytical solution given by Eq. (28). As
shown, the two solutions are indistinguishable. The convergence histories of the various
GCBA over the four grid networks used are displayed in Figs. 2(b)-2(h). For all algorithms,
the required number of iterations increases as the grid size increases, with PISO (Fig. 2(b))
requiring the minimum and SIMPLEST/PRIME (Fig. 2(f)) the maximum number of
iterations on all grids. This performance of SIMPLEST/PRIME is due to the explicit
methodology followed in solving the momentum equations. The convergence histories of
SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX (Figs. 2(c), 2(d), 2(e), and 2(g),
respectively) are very similar with SIMPLEM (Fig. 2(e)) requiring the lowest number of
iterations. The convergence paths of the various algorithms over a grid of size 80 C.V. are

compared in Fig. 2(h) and the above observations are easily inferred from the figure.

Problem 2: Dense gas-solid flow

A dense gas-solid flow is simulated by setting the concentration of particles (r(d))to 107

inlet
while retaining all other boundary conditions and physical properties as for the previous test
case. Even though the particle volume fraction is low, the ratio of disperse phase and
continuous phase mass loadings is large (r(d)p(d)/ rp© :20). Thus the disperse phase
carries most of the inertia of the mixture. Due to the small variation in the gas velocity (i.e.

the equilibrium velocity is 4.96 m/s), it may be assumed constant and the variation in particle
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velocity can be obtained again from Eq. (28). The comparison between the numerical and
analytical particle velocity distributions displayed in Fig. 3(a) confirms once more the
validity and accuracy of the numerical procedure. The convergence paths for all algorithms
and over all grid systems used are displayed in Figs. 3(b)-3(h). In general, higher number of
iterations is required to reach the desired level of convergence on a given grid as compared to
the dilute case due to the increased importance of the inter-phase term. The general
convergence trend is similar to that of the dilute problem with PISO requiring the minimum
and SIMPLEST the maximum number of iterations. The SIMPLEM algorithm (Fig. 3(e)) is
seen to require a slightly lower number of iterations on the finest grid as compared to
SIMPLE (Fig. 3(c)), SIMPLEC (Fig. 3(d)), and SIMPLEX (Fig. 3(c)). As depicted in Figs.
3(f) and 3(h), the performance of SIMPLEST/PRIME is poor in comparison with other

algorithms for the same reasons stated above.

Problem 3: Dilute bubbly flow
Here a bubbly flow is considered by regarding the continuous phase as water and the disperse

phase as air. Thus, for the same configuration displayed in Fig. 1(b), the disperse and

continuous phase density ratio (p(d)/ p(C)) is set to 107, the bubble inlet volume fraction

(r,f]?e)t) is assigned the value 0.1, while values for other physical properties and inlet conditions

are retained as for the previous cases. This is a strongly coupled problem and represents a
good test for the numerical procedure and performance of the algorithms. Based on the inlet
conditions, the equilibrium velocity for this strongly coupled problem (Eq. (27)) is 4.6 m/s
and is realized in a distance too small to be correctly resolved by any of the grid networks
used. As expected, the axial velocity profiles displayed in Fig. 4(a) indicate that both phases
reach the equilibrium velocity of 4.6 m/s over a very short distance from the inlet section and
remain constant afterward. The relative convergence characteristics of the various algorithms

(Figs. 4(b)-4(h)) remain the same. However, most algorithms require larger number of
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iterations as compared to the dilute gas solid flow case due to the stronger coupling between
the phases. Consistently, the PISO (Fig. 4(b)) and SIMPLEST/PRIME (Fig. 4(f)) algorithms
need the lowest and highest number of iterations, respectively. As in the previous two cases,
the convergence attributes of SIMPLE (Fig. 4(c)), SIMPLEC (Fig. 4(d)), SIMPLEM, and
SIMPLEX (Fig. 4(g)) are very similar with SIMPLEM consistently requiring a lower number
of iterations. The large difference in performance between SIMPLEST/PRIME and the

remaining algorithms is clearly demonstrated in Fig. 4(h).

Problem 4: Dense bubbly flow

A dense bubbly flow is simulated by setting the concentration of bubbles to 'Y =0.5 while

inlet
holding the values of other physical properties and boundary conditions as in the previous
case. Coalescence of bubbles which may occur with such high value of void fraction is not
accounted for here. The analytical solution is the same as in the previous case with the
equilibrium velocity, as computed from Eq. (27), being 3 m/s. As depicted in Fig. 5(a), the
equilibrium velocity obtained numerically is exact. With the exception of requiring higher
number of iterations to reach the desired level of convergence, the performance of the various
algorithms (Figs. 5(b)-5(h)) vary relatively in a manner similar to what was previously

discussed and deemed redundant to be repeated.

CPU time: Horizontal particle/bubble transport

As depicted in Fig. 6, the normalized CPU times required by the various algorithms increase
with increasing grid density. For the dilute gas-solid problem (Fig. 6(a)), it is hard to see any
noticeable difference in the CPU times of SIMPLE, SIMPLEM, and SIMPLEX. The
SIMPLEC and PISO algorithms require slightly lower and higher computational efforts,
respectively, as compared to SIMPLE. The worst performance is for SIMPLEST which
degenerates to PRIME in the absence of diffusion and results in a fully explicit solution

scheme. For the dense gas-solid flow (Fig. 6(b)), the computational times needed by
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SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX are nearly identical. PISO, however,
requires higher computational effort (50% more than SIMPLE on the finest meshes (80 and
160 C.V.)). The computational effort needed by SIMPLEST/PRIME is however the most
extensive and is nearly 500% the one needed by SIMPLE on the finest mesh.

The normalized CPU time of SIMPLEST/PRIME for the bubbly flow problems (Figs. 6(c)
and 6(d)) is lower than in the previous two problems due to a higher rate of increase in the
time needed by other algorithms (the computational time of all algorithms has increased).
The relative performance of the various algorithms is nearly as described earlier with the time
required by of PISO, SIMPLE, SIMPLEC, and SIMPLEX being on average the same. The
SIMPLEST/PRIME algorithm however, requires nearly 400% (Fig. 6(c)) and 150% (Fig.
6(d)) the time needed by SIMPLE on the finest mesh for the dilute and dense bubbly flow,
respectively. The best performance for the dense bubbly flow problem is for SIMPLEM,
which requires about 50% less effort on the finest mesh than SIMPLE.

Vertical particle/bubble transport

For the configuration shown in Fig. 1(b), the gravitational acceleration g is considered to be
operating in the negative x-direction and assigned the constant value of 10 m/s>. The length
of the computational domain is extended to L=20m in order to allow the particle/bubble
phase to reach its final settling velocity relative to the continuous phase, at which the
gravitational force balances the drag force [54]. Unlike the horizontal transport problems,
diffusion in the continuous phase is retained. Moreover, the inter-phase drag force is
calculated using Egs. (25) and (26) and the drag coefficient, Cp, is considered to be particle

Reynolds number dependent and calculated as:

2r V.,
C, = 2% 1044 with Re, = —2*® (29)

Re, 9©




The Geometric Conservation Based Algorithms for Incompressible Multi-Fluid Flow 17

Problem 5: Dilute gas-solid flow

The material properties and boundary conditions considered for this case are given by:

P/ p® =1000,9° =107, r, =1mm (30)
V.9 =100m/s, Vi) =10m/s, 1) =107 (31)

The large velocity boundary condition is used to ensure that the solid phase does not exit the
inlet. The predicted air and particle velocity distributions depicted in Fig. 7(a) are in excellent
agreement with similar predictions reported in [45]. As shown in Figs. 7(b)-7(h), the mass
residuals tend to slightly increase at the beginning of the iterative process, stagnate over a
number of iterations (this number increases with increasing grid size), and then decrease
rapidly to the desired level of convergence. This behavior is also true for the horizontal case
discussed earlier and is attributed to the approximations introduced to the pressure correction
equation especially with regard to neglecting second order correction terms, which may be
important at the beginning of the iterative process. Once these neglected terms become
unimportant, the rate of convergence increases significantly. Retaining these terms could
have improved the convergence rate but this has not been considered in this work.

As depicted in Fig. (7), the number of iterations required for the solution to reach the desired
level of convergence is very close to that needed in the similar horizontal transport case. This
is equally true with regard to the relative performance of the various algorithms. The
performance of SIMPLEST (Fig. 7(f)) and PRIME (Fig. 7(g)) is very close due to the fact
that the implicitness introduced by the diffusion of the continuous phase does not seem to be
that important. However, both require on the finest mesh almost 430% the number of
iterations needed by SIMPLE. The number of outer iterations needed by SIMPLEX and
SIMPLEC is very close to that of SIMPLE, while SIMPLEM entails lower number of

iterations. Again, PISO requires the lowest number of iterations.
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Problem 6: Dense gas-solid flows

The only difference between this case and the previous one is in the particles’ volume

fraction, which is set to r'{y =107, Predicted air and particle velocity profiles are displayed

in Fig. 8(a) while mass residuals are presented in Figs. 8(b)-8(h). Higher number of iterations
is needed in comparison with the dilute case due to the higher mass-loading ratio. Besides
that, the convergence behavior is similar to the previous cases with SIMPLEST (Fig. 8(f))
and PRIME (Fig. 8(g)) requiring the highest number of iterations and PISO (Fig. 8(b)) the
lowest number of iterations. The number of iterations needed by SIMPLE, SIMPLEC, and
SIMPLEX (compare Figs. 8(c), 8(d), and 8(h)) is very close. The SIMPLEM algorithm (Fig.

8(e)) needs on the finest mesh about 25% less iteration than SIMPLE (Fig. 8(¢)).

Problem 7: Dilute bubbly flows

In this problem, the continuous phase is water and the disperse phase is air. With the

exception of setting p @/ p® to 107, V2 and V.2 to 1, and r'® to 0.1, other physical

inlet inlet inlet
properties are the same as those considered earlier. This is a very difficult problem to get
convergence to unless the proper under-relaxation is used. By starting with relatively high
under-relaxation factors, the number of iterations needed with all algorithms was found to be
very high. In order to get feasible solutions, the under-relaxation factors during the first 20
iterations were set to 0.05 and then increased to the desired values. This was found to greatly
improve the convergence rate and to generate solutions with nearly the same computational
effort as in the previous cases. In addition, this treatment has greatly improved the
performance of SIMPLEST and PRIME and has decreased their required number of
iterations to values similar to those needed by other algorithms (Figs. 9(b)-9(h)). In fact,
SIMPLEST and PRIME are performing slightly better than SIMPLE for this particular
problem. Overall, none of the algorithms shows an outstanding superiority in performance

over others.
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Problem 8: Dense bubbly flows

The results for this problem, which are obtained by setting the volume fraction at inlet to 0.5
for the physical situation, material properties, and boundary conditions used in the previous
case, are presented in Fig. 10. It was possible to get feasible solutions (i.e with reasonable
computational time) only when under-relaxing by inertia (i.e. through the use of false time
steps). For the results presented in Fig. 10, a time step (At) of value 10 s is used for the
velocity field of the dispersed gas phase, At=1 s for the volume fractions, and At=0.01 s for
the velocity field of the liquid phase for the grids of sizes 20 and 40 C.V. and At =0.05 for all
variables and for both phases with the dense grids (i.e. 80 and 160 C.V.). The predicted liquid
and gas velocity distributions, which are in excellent accord with published data, are depicted
in Fig. 10(a). The trend of convergence seems to be different than what has been presented so
far with the convergence histories of the various algorithms (Figs. 10(b)-10(h)) being similar
and requiring nearly the same number of iterations. It is also noticed that the number of
iterations needed on the finest mesh is smaller than the numbers needed on the grids of sizes

40 and 80 C.V. Nevertheless, it was possible to obtain solutions with all GCBA algorithms.

CPU time: Vertical particle/bubble transport

As in the horizontal configuration, the normalized CPU times for the vertical particle
transport problems displayed in Fig. 11 increase with increasing grid density. For the dilute
and dense gas-solid flow problems (Figs. 11(a) and 11(b)), the relative performance of the
various algorithms is similar. For the dilute case (Fig. 11(a)), the efficiency of PRIME is
slightly better than SIMPLEST (due to the use of an explicit algebraic-equation solver), both
however are about four times more expensive than all other algorithms whose performance is
very comparable (i.e. of the same order of magnitude) with SIMPLEM being the least
expensive (7% less than SIMPLE on the finest mesh) and PISO the most expensive (9.5%

more than SIMPLE on the finest mesh). The same is true for the dense gas-solid case (Fig.



The Geometric Conservation Based Algorithms for Incompressible Multi-Fluid Flow 20

11(b)) with the performance of SIMPLE, SIMPLEC, SIMPLEM, SIMPLEX, and PISO being
closer.

For the vertical bubbly flows, a noticeable change in the normalized time chart (Figs. 11(c)
and 11(d)) is depicted, with the performance of SIMPLEST and PRIME showing good
improvements while the performance of the remaining algorithms deterioration. As depicted,
the CPU times needed by the various algorithms are of the same order of magnitude with
SIMPLEM being slightly more expensive.

By comparing the behavior of the various algorithms in all problems, it is clear that the
performance of SIMPLE, SIMPLEC, SIMPLEM, SIMPLEX, and PISO is consistent and
require, on average, similar computational effort. The performance of the SIMPLEST and
PRIME algorithms was comparable to SIMPLE for upward bubbly flows only and were, in
general, the most expensive to use on all grids and for all physical situations presented here.
Most importantly however, is the fact that all these algorithms can be used to predict multi-

phase (in this case two-phase) flow.

Closing Remarks

The implementation of seven GCBA algorithms for the simulation of incompressible multi-
fluid flow was accomplished. The performance and accuracy of these algorithms were
assessed by solving a variety of one-dimensional two-phase flow problems. For each test
problem, solutions were generated on a number of grid systems. Results obtained
demonstrated the capability of all algorithms to deal with multi-fluid flow situations. The
convergence history plots and CPU-times presented, indicated similar performances for all

algorithms with the exception of SIMPLEST and PRIME.
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Figure Captions

Fig. 1

Fig. 2

Fig.3

Fig. 4

Fig. 5

Fig. 6

(a) Control volume, (b) the prolongation only, and (¢) FMG strategies, and

(d) Physical domain for the gas-particle transport problem.

(a) Comparison between the analytical and numerical particle velocity distributions,
(b)-(g) convergence histories on the different grid systems, (h) and convergence
histories on the 80 C.V. grid for the horizontal dilute gas-solid flow problem.

(a) gas and particle velocity distributions, (b)-(g) convergence histories on the
different grid systems, (h) and convergence histories of the various algorithms on the
80 C.V. grid for the horizontal dense gas-solid flow problem.

(a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different
grid systems, (h) and convergence histories of the various algorithms on the 80 C.V.
grid for the horizontal dilute bubbly flow problem.

(a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different
grid systems, (h) and convergence histories on the 80 C.V. grid for the horizontal
dense bubbly flow problem.

Normalized CPU-times for the horizontal (a) dilute gas-solid, (b) dense gas-solid,

(c) dilute bubbly, and (d) dense bubbly flow problem.

Fig. 7 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the

different grid systems for the vertical dilute gas-solid flow problem.

Fig. 8 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the

Fig. 9

different grid systems for the vertical dense gas-solid flow problem.
(a) gas and particle velocity distributions; and (b)-(h) convergence histories on the

different grid systems for the vertical dilute bubbly flow problem.

Fig. 10 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the

different grid systems for the vertical dense bubbly flow problem.

Fig. 11 Normalized CPU-times for the vertical (a) dilute gas-solid, (b) dense gas-solid,

(c) dilute bubbly, and (d) dense bubbly flow problem.
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C.V. grid for the horizontal dense bubbly flow problem.
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Fig. 7 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dilute gas-solid flow

problem.
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Fig. 9 (a) gas and particle velocity distributions; and (b)-(h) convergence histories on the different grid systems for the vertical dilute bubbly flow problem.
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Fig. 10 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dense bubbly flow problem.
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Fig. 11 Normalized CPU-times for the vertical (a) dilute gas-solid, (b) dense gas-solid, (c) dilute bubbly, and

(d) dense bubbly flow problem.






