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THE NORMALIZED WEIGHTING FACTOR METHOD:
A NOVEL TECHNIQUE FOR ACCELERATING

THE CONVERGENCE OF HIGH-RESOLUTION
CONVECTIVE SCHEMES

M. S. Darwish and F. Moukalled
American University of Beirut, Department of Mechanical Engineering,
P.O. Box 11-0236, Beirut, Lebanon

This article deals with the development of a new method for accelerating the solution of flow
problems discretized using high-resolution convective schemes. The technique is based on
the normalized variable and space formulation (NVSF) methodology and is denoted here by
the nermalized weighting-factor (N\WF) method. In contrast with the weil-known deferred-
correction (DC) procedure, the NWF method is fully implicit and is derived by directly
replacing the control-volume face values by their functional relationships in the discretized
equation. The direct substitution is performed by the introduction of a variable, NWF, that
accounts for the multiplicity of interpolation profiles in HR schemes. The new method is
compared with the widely used DC procedure and is shown to be, on average, four times
Jaster.

INTRODUCTION

In many areas of computational fluid dynamics (CFD), especially convective
heat and mass transfer, the upwind-based class of schemes (hybrid [1], power-law
[2], etc.), denoted here by low-order (LO) schemes, have been and are still widely
used despite their well-known deficiency of being highly diffusive-[3]. The popular-
ity of these methods for steady-state computations stems from a combination of
algorithmic simplicity, fast convergence (implicit terms), and plausible-looking
results (free from oscillations and over- or undershoots). By contrast, a limited
number of problems have been solved using higher-order (HO) schemes, which
suffer convergence difficulties (second-order central) [4] and oscillatory behaviors
(second-order upwind, QUICK scheme) [5].

Over the last decade, researchers have tried to eliminate the shortcomings of
HO schemes. Their work has led to the development of what is known as the
high-resolution (HR) schemes [6, 7], High-resolution schemes denote the class of
composite HO schemes that are bounded and have relatively low numerical
diffusion. The different streams followed in the design of these schemes have been
unified within the context of the normalized variable and space formuiation
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NOMENCLATURE

A coefficients of the discretized Superscripts
equation

B source term in the discretized C convection contribution
equation D diffusion contribution

C convective flux coefficient at LO low-order scheme formulation
control-volume face - ' refers to normalized variables

) functional relationship

J total scalar flux across cell face Subscripts

k intercept in NVD

m slope in NVD C central grid point

Q source term D downstream grid point

RE residual error dc deferred correction

A} surface area of control-volume E,W,N,S refers to neighbors of the P grid
face point

u,v velocity components in the x and e, w,1,s refers to control-volume faces
y directions f refers to control-volume face

r diffusion coefficient NB refers to neighbors

P density P main grid point

¢ general dependent variable U upstream grid point

(NVSF) methodology [8], and a large number of total variational diminishing
flux-limiter (TVD) [9] schemes have already been reformulated using the NVSF
notation [8]. The numerical implementation of these schemes has been simplified
through the use of the deferred-correction (DC) procedure [10], thus preserving
codes based on LO schemes by the addition of a source term that accounts for the
difference in interpolated values between the HR scheme and the LO scheme, at
the price of a reduced convergence rate and an increased computational cost.
These problems meant that the highly diffusive LO schemes remained popular in
spite of their more and more documented inadequacies [11].

A number of attempts have been made to alleviate the above-mentioned
problems, such as the downwind weighting-factor (DWF) method of Leonard [12]
and the wvariable curvature-factor (VCF) procedure of Gaskell and Lau [13].
Neither technique, however, provides an efficient method that can be applied to
the class of HR schemes, which means that the DC procedure has remained the
preferred method for implementing HR schemes.

In this article, the high-computational-cost problem of HR schemes is ad-
dressed and a new technique for accelerating the convergence rate of these
schemes is presented. The new approach, denoted here the normalized weighting-
factor (NWF) method, may be used with any scheme that can be formulated using
the framework of the NVSF methodology (basically, all TVD-based schemes plus a
number of third-order HR schemes). The new NWF method is compared, in terms
of computer time and number of iterations needed to obtain a converged solution,
with the widely used DC procedure. This is done by solving for two test problems
employing a number of HO and HR schemes (QUICK [5], SOU [4], SMART [13],
MINMOD [14], OSHER [15]}, MUSCL [16}, and FROMM [17]). The results
obtained show the superiority of the new NWF method over the DC procedure.
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In what follows, the mathematics of the approach are presented. This is
achieved by briefly describing the discretization procedure of the governing conser-
vation equation and the NVSF methodology. Then, the DC, DWF, and VCF
techniques are reviewed and their deficiencies pointed out. Finally, the new NWF
method is detailed and used along with the DC approach to solve the two test
problems.

NUMERICAL DISCRETIZATION OF THE TRANSPORT EQUATION

The transport equation governing two-dimensional incompressible steady
flows may be expressed in the following form:

V-(piig) =V-(TV) +Q (1)

where ¢ is any dependent variable, u is the velocity vector, and p, I, and Q are
the density, diffusivity, and source terms, respectively. Integrating the above
equation over the control volume shown in Figure 1 and applying the divergence
theorem, the following discretized equation is obtained:

J.+J,+J,+J. =B 2)

where J; represents the total flux of ¢ across cell face f (f = e, w, n, or 5), and B
is the volume integral of the source term (. Each of the surface fluxes J; contains
a convective contribution, J£, and a diffusive contribution, J;°, hence

I =JF +JP (3)

Figure 1. Control volume.
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For purely convective scalar flows (such as those considered in this work), the
diffusion flux, J2, is zero, while the convective flux is given by

ch = (P“. Shpe = Crpy (4)

where 8; is the surface of cell face f, and C; is the convective flux coefficient at
cell face f. As can be seen from Eq. (4), the accuracy of the control-volume
solution for the convective scalar flux depends on the proper estimation of the face
value of ¢; as a function of the neighboring ¢ node values. Using some assumed
interpolation profile, ¢; can be explicitly formulated in terms of its node values by
a functional relationship of the form

& = fldng.Cy) 5)

where ¢y denotes the neighboring ¢ node values (¢g, dw, ¢y, b5, Pp, PeE,
dwwr Puns Psg, €tc.). Substituting Eq. (4) into Eq. (2) for each cell face yields

Ce¢e + Cw¢w + qu’)n + Cs¢s =B (6)

By replacing the face values by their functional relationships [Eq. (5)], Eq. (6) is
transformed after some algebraic manipulations into the following discretized
equation:

App = E AnpbnpBi @)
NB=E,W,N,S,...

where the coefficients A, and Ay, depend on the selected scheme and Bp is the
source term.

While this direct method is appropriate for HO schemes such as the second-
order upwind scheme [4] and the QUICK scheme [5], it is not suitable for HR
schemes, for which a direct substitution of the functional relationships cannot be
performed because of their composite nature; i.e., multiple interpolation profiles
are used with a switching criterion depending on the local flow conditions. To solve
this problem, a number of approaches have been advertised, as described next.

NORMALIZED VARIABLES AND BOUNDEDNESS CRITERION

The main problem associated with HO schemes is boundedness. This defi-
ciency has been removed through the introduction of the convection boundedness
criterion (CBC) [18, 13], which has led to the development of HR schemes in the
context of the NVF [6] and NVSF [8] methodologies. However, boundedness has
been achieved at the expense of the convergence rate. This is so because the
various techniques developed rely directly (DC method) or indirectly (DWF and
VCF methods) on explicit terms. Even though the VCF method may in some cases
be fully implicit, the continuous variation of its curvature factor, when explicitness
exists (as explained later), slows down its convergence rate and reduces its useful-
ness.
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In order to clarify the above statements, the DC, DWF, and VCF methods
should be introduced and discussed. However, their introduction necessitates
knowledge of the CBC, which is presented next along with the NVSF methodology.

Normalized Variables

Figure 2 shows the local behavior of the convected variable near a control-
volume face. The node labeling refers to the upstream, central, and downstream
grid points, designated by U, C, and D, located at distances £, éc, and £, from
the origin, respectively. The values of ¢ at these nodes are designated at ¢y, ¢,
and ¢, respectively. Moreover, the value of the dependent variable at the
control-volume face located at a distance ¢&; from the origin is expressed by ;.
Since a normalized variable and space formulation is sought, the following normal-
ized variables are defined [8]:

¢_¢U §~= §_§U

_— 8
dp — du ép — €y ®

¢ =

Using &, the functional relationships for all schemes of order 3 and less may be
simplified. For example, the functional relationships of the upwind, central differ-
ence, second-order upwind, FROMM, and QUICK schemes are as given in Table 1
[8].

Convection Boundedness Criterion

Boundedness requires that the approximated finite-volume face value ¢; lies
within the bounds of its neighboring nodes ¢. and ¢p. The violation of the
boundedness is the cause of overshoots and/or undershoots in the computed
results.

The CBC for implicit steady-state flow calculations, as formulated by Gaskell
and Lau [13), may be stated based on the normalized variable analysis as follows.
For a scheme to have the boundedness property, its functional relationship should

be continuous and bounded from below by ¢; = ¢ and from above by unity,
should pass through the point (0,0) and (1, 1) in the monotonic range 0 < ¢ < 1,

Figure 2. Local coordinate system.
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Table 1. Functional relationships for higher-order schemes

Normalized functional relationships

Scheme Nonuniform grid (NVSF) Uniform grid (NVF)
First-order upwinding & = dc P = ¢

E, . 3.
Second-order upwinding & = ?gbc ¢ = 3 ¢c

C

- 1_'f-rd-’ f-f”f.c

Central diff = e + - be =05 e + 0.5
entral difference &y - Z et 1T Z @ $c
- - . - - 1
FROMM scheme &= e + (& — &) &= ¢ + 1
- 'f.f(l - ‘aE() - f-r(ét - EC) = 3. 3
QUICK scheme &= T ¢c + 1-C ¢ = Xd,C + 3

and for e < 0 or ¢ > 1 the functional relationship f(dc) should equal .
Mathematically, these conditions are

f(&) is continuous

f($) =0for g =0

f(d) = 1for b = 1 ©)
1 <f(¢) < ¢ for0 < ¢ < 1

f(q’;) = ¢ for ¢ < 0and ¢ > 1

CBC =

The above conditions may also be described geometrically on a normalized variable
diagram (NVD) as shown in Figure 3. In Figure 4, the linear relations given in
Table 1 are also plotted on a normalized variable diagram. From this plot, it may
easily be seen that the only scheme that fully satisfies the boundedness criterion
[Eq. (9)] is the first-order upwind scheme [2]. Therefore, with the exception of this

CBC

1.0 $C Figure 3. Convective boundedness cri-
terion (CBC).
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NVSF —p» 1-&-%)

& 075
-5y
1-Ec | 0.5
-
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= K 0.375
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% 025 05 075§ 10 f
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Figure 4. Normalized variable diagram (NVD) for several linear
schemes formulated using NVSF.

scheme, other schemes may in general give physically unrealistic results. Further-
more, schemes that have an NVD plot close to the first-order upwind NVD plot
tend to be highly diffusive, while schemes whose NVD plots are near the first-order
downwind NVD plot (the line ¢; =1) tend to be highly compressive.

Normalized Variable and Space Formulation Methodology

Knowing the required conditions for boundedness, the shortcomings of the
HO schemes were eliminated through the development of HR schemes that satisfy
all above requirements, Without going into details, a number of HR schemes were
formulated using the NVSF methodology [8], and the functional relationships for
some of them are given in Table 2. The last columns in Tables 1 and 2 show the
special uniform-grid form of the functional relationships for the HO and HR
schemes obtained by setting £. and & to 0.5 and 0.75, respectively. The NVD
plots of the composite schemes of Table 2 are shown in Figure 5.

IMPLEMENTATION TECHNIQUES FOR
HIGH-RESOLUTION SCHEMES

Having presented the functional relationships of some HR schemes, the DC,
DWEF, and VCF methods used in implementing them are reviewed, followed by a
thorough description of the newly developed NWF method.
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Table 2. Functional relationships of a number of high-resolution schemes (composite schemes)

Normalized functional relationships

Composite
schemes Nonuniform grid (NVSF) Uniform grid (NVF)
b2 o< £ 3 1
=4 0< de< £ oz O
i © c>c > %c 0<¢c<3
MINMOD or - - - - .
$r=e 1-6 .  $i—fc o - $p=(1, 1 LA
Soucoup 2 + > <1 sPc+t s TR dc<1
]_§C¢C l“fc §C<¢C % 2 2
(;c elsewhere ¢c elsewhere
& & ) o,
Z% 0<¢C<:E: 7% 0<éc<g
OSHER be = fe . be = 2 .
* 1 %<¢C<l o 1 3 <9<l
f -
b elsewhere ¢c elsewhere
3 3 3 1
28 — . . - -
fr_ Ec% 0<¢C<g 2éc 0<dc<y
éc 2 s
- - - - E_ o - . - Q"’c + - - ‘ZC < -
MUSCL bi=lder(f-d) Fedo<i+ic-& b= 4 4 4
3 -
1 L+ - << ! -4—<¢C<l
dc elsewhere e elsewhere
£l - 3fc+ 26 . . £
S e 2 e go< it
£l - &) 3
Ei(1 - ) Y - .1
Stk 124 f.') c £9<¢C<£TC 3de O<éc< g
&l - £0) 3 143
E(E = £ 3q§ . 3 1 b < 5
. - . . z -k -
SMART o= 4 ECETED X+ =) d=(d°cT8 §°%C°%
1-£c 5 -
éc ! 5 <l
1 = + éc — £ -
e b= te) bc elsewhere
<pc<l
dc elsewhere

The Deferred-Correction Method

One way to simplify the implementation of HR schemes is through the use of
the DC procedure of Rubin and Khosla [10]. The DC method is a compacting
technique that enables the use of HR schemes in codes initially written for LO
schemes. Using this procedure, Eq. (2) is rewritten as

JO 4+ jLO 4 yLO 4 jlO
=By + [C.(3° - $) + C,($L° — ¢,)
+C(dr° — ) + C(9L° — 9] (10)
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where ¢/° is the face value obtained through the use of a LO scheme, usually the
upwind scheme [1], J1C is the total flux of ¢J°, ¢; is the celi face value calculated
using the chosen HR scheme, and the bracketed terms represent the extra source
term added due to the DC procedure. Substituting the value of the cell flux
obtained from the functional relationship of the LO and HR schemes at hand, the
DC technique results in an equation similar in form to Eq. (6), but where the
coefficient matrix is pentadiagonal (for two dimensions) and always diagonally
dominant, since it is formed using the LO (e.g., upwind) scheme. The discretized
equation, Eq. (7), becomes

Apdp = Y Aypdng + Bp + By, (1
NB

where now the coefficients A, and Ay, are obtained from a first-order (upwind)
discretization, NB=(E, W, N, S) and B, is the extra deferred-correction source
term, This compacting procedure is simple to implement, however, because as the
difference between the cell face values calculated with the LO scheme and that
calculated with the HR scheme becomes larger, the convergence rate diminishes.
This effect can be easily estimated on a NVD; the difference between the upwind
line and that of the chosen HR scheme is the normalized difference between the
cell face values. The larger this difference is, the lower the convergence rate will
be.

4 rd
1.0 1.0 P
’ ,
’ - ’
~ ’
& ’ ¢¢ z,
e rd
rd '
, ’
’ ’
4 ’
. ,
/ ’
e
0 MINMOD 0 MUSCL
’ éc 10 ’ $ 10
(@) &)
4 rd
1.0 7 1.0 p;
s s
. ,
-’ ~ s
- , [ ’
€
‘, K .
’ . ’
4 rd
s ’
4 ’
’ ’
4 ’
0 OSHER 0 - SMART
s’ e 7 -
¢C 1.0 Qc 1.0

© @

Figure 5. NVD plots for varicus HR schemes using the NVF
and NVSF methodologies.
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The Downwind-Weighting-Factor Method

The downwind weighting-factor (DWF) method [12] of Leonard generates a
compact implicit set of coefficients suitable for tridiagonal solution methods. After
explicitly computing the HR scheme estimate of ¢; or the normalized value of ¢,

(¢;), the DWF is defined as:

'f’r_‘f’c ‘Jaf_d-’c
DWF = = 12
$p—dc 1= ¢ 12

It is clear that the face-value ¢; may be written in terms of the known DWF as
¢; = DWF¢, + (1 — DWF) ¢ (13)

where ¢ and ¢ are to be computed. Thus, by replacing the cell face value of ¢
in Eq. (6) by the above equation, Eg. (6) becomes (for C,,C, > 0 and C,,C, < 0)

C,[DWE, ¢ + (1 - DWE,)¢,] + C,[DWF, ¢, + (1 — DWE,) ¢y ]
+ C,[DWF, ¢y + (1 — DWE,)¢,] + C,IDWE. ¢, + (1 — DWE)¢s] = B
(14)

which can be transformed after some algebraic manipulations into a form similar

to Eq. (7):

Apdp = Y, Awpdns t+ B 15)
NB=E,W,N,S§

While Eq. (15) has a compact stencil, it was found from experience that the DWF
method is highly unstable, and necessitates a very low underrelaxation factor. In
order to see clearly the cause of this instability, the one-dimensional form of Eq.
(15) is written for a purely convective-flow problem without a source and is given
by (for C,>0and C, <)

Apdp = Ap P +AW¢)w (16)
where
Ap, = C.(1 —- DWE) + CywDWF,
Ag = —C,DWE, an
Ay = —-C,(1 — DWE,)

Without loss of generality, assume that DWE, = DWE, = DWF. Then Eq.
(16) shows that A, becomes negative once the DWF > 0.5 leading to unphysical
results [note that DWF > 0.5 whenever ¢; > 0.5(¢¢ + ¢y, which is the case for
all HR schemes when ¢ > &1 This is due to placing large emphasis on the
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downwind value as opposite to upwinding. Stated differently, a relation [Eq. (13)]
that may not be true is being enforced on ¢;. That is, even though ¢; is calculated
based on the CBC, rewriting it as a weighted average of ¢, and ¢; via the DWF
may cause problems due to its resemblance to the central difference scheme. In
addition to the aforementioned problem, the calculation of the DWF based on the
evaluation of ¢; using the available neighboring ¢ values adds some explicitness
to the formulation and slows down the rate of convergence. ’

The Variable-Curvature-Factor (VCF) Method

The variable-curvature-factor technique was originally developed by Gaskell
and Lau [13] and then reformulated by Leonard and Mokhtari [12]. In the context
of the NVSF methodology, the equation for the normalized face value is written as

- l_éf~+éf_£(:

i - VCF

= = Pc
1—§C 1-§c

- ﬁ] (18)

¢

Rearranging gives

{[(0 - &)/( - &) be + (& - &)r(1 - &)} - &
1- (J’c/gc)

VCF = 61%))

For the case of the QUICK scheme, replacing ¢; by its functional relationship in
Eq. (19) gives

VCF = [fr - ‘fc)(_l - §f) (20)

Similar VCF expressions may be obtained for other schemes. For example, VCF =
for the second-order differencing scheme, while it is a function of ¢. for the
upwind scheme.

Thus, the value of VCF is usually computed from an equation similar to Eq.
(20) based on the current value of ¢.. Then Eq. (18) is denormalized and written
in terms of the “to-be-computed” values as

£p— & £ ¢ £p— &
= | e + ‘—Cqbo} —VCF[%— by — ———(dc — dy)
ép — &c

2 £ — £o & — £y

(21)

The cell-face values [Eq. (21)] are then substituted in Eq. (6) for the different
control-volume faces. After some algebraic manipulation, an equation with a
computational stencil involving five points in each direction is obtained as follows:

Apdp = h> Angdnp + By (22)
NB=E,W,N,S,EE, WW, NN, S5
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The main problem associated with this method is the need to underrelax the
VCEF factor to avoid oscillations in the iterative solution process. The reason is that
composite schemes for which the NVD plot do not pass through the point (£, &)
have a VCF that is constantly varying with ¢;. The coefficients of Eq. (22) that
depend on the VCF of the cell faces are thus continuously changing, even for small
changes in ¢;. This means that important underrelaxation to the VCF factor is
needed, leading to a decrease in the convergence rate. Even the upwind scheme,
when implemented using this technique, yields an expanded stencil with a relatively
low convergence rate.

The New Normalized Weighting-Factor Method

As can be seen, the DC method may result in large source terms that are
explicitly calculated, whereas the VCF method requires important underrelaxation
to enforce convergence. The DWF method, however, suffers two important draw-
backs. First, in calculating the DWF, the value of ¢, is used and is calculated from
the functional relationship of the HR scheme based on the currently available
estimates of the neighboring node values. This introduces some explictness into the
formulation. Second, negative A, coefficients arise whenever the DWF is greater
than 0.5. The normalized weighting-factor method is based on the NVSF methodol-
ogy and is developed keeping the above shortcomings in mind. As can be seen on
the NVD diagram, nearly all HR schemes can be written as a set of linear
equations of the form

b =md + k (23)

where m and k are constants (slope and intercept of the linear function, depending
on geometric quantities only) within any interval of ¢;, with the number of the
intervals depending on the HR scheme used. For example, by equating Eq. (23) to
the NVSF form of the MINMOD scheme, Table 2, the values of m and & are given
by:

(—511] 0 < ¢ < &

éc

(m,k) = 1-§ g”f ~ £ . B (24)
(1,0) elsewhere

Furthermore, Eq. (23) could also be written as

b=y _ b= ¢y
¢’D"¢U ¢'U_¢'U

+k (25)

which yields
¢ =m(dc — dy) + k(Pp — ) + ¢y =mee + kdpp + (1 —m — K¢y (26)
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where ¢, ¢p, and ¢ are the upstream, downstream, and central node values of
¢ near the control-volume face at hand. Obviously, these values depend on the
flow direction. Defining the following switches,

Cf+ - max(oscf)
27
C; = —max(0, —C;)

and substituting the ¢; value for each of the control-volume faces, as given by Eq.
(26) into Eq. (6), the following discretized equation is obtained:

CiHim,pp + kepp + (1 —m, — k) y]
+ Colm g + k. dp + (1 — m, — kYdgg]
+Cllmy,dp + kg + (1 —m, — kel
+ Colmydw +kobp+ (1 —m, —k,)Ydyw]
+ Crlmydp + kyby + (1 —m, — k)]
+ Cilmady + ke + (1 —m, —kJnyl
+ Cm,pp + ks + (1 —my — k) dy]
+ Colmps + kbp + (1 —m, — k)] = B 28)

After some algebraic manipulations, Eq. (28) is written in the form

Apdp = E ANB‘f’NB + Bp 29
NB=E,W,N,S EE, WW,NN,SS

where the coefficients are given by

Ap=[Cim, +Cim, +Cim + Cim,+ Clk, + Cyk, + Cok, + C; k]
Ag = —[Clk, + C m,+ C} (1 —m, — k,)]

Ay = -[Clk, +Com,+CI( —m, — k)]

Ay = —[Clk, + Cim, + C; (1 —m, — k)] (30)
Ag = —[Cthk, + Com, + CH(1l — m, — k)]

Ay = —Cn—(l -m, —k,) Ags = '_Cs—(l —my = ks)

The values of m and k for a number of HO and HR schemes are listed in Table 3
along with their values for the special case of uniform grid.
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Table 3. NWF relationships for the schemes of Tables 1 and 2

Normalized weighting-factor relationships

Scheme Nonuniform Grid (NVSF) Uniform grid (NVF)
UPWIND [m, k] =[1,0] [m, k) =[1,0]
f-[ 3
SOuU [m, k] = | —.0 [m,kl=]=,0
| éc 2
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As can be seen, the resulting discretized equation [Eq. (29)] has a computa-
tional stencil involving five grid points in each coordinate direction, which is solved
here by applying iteratively the pentadiagonal matrix algorithm (PDMA) in each
coordinate direction.

Since for all HR schemes the value of m is greater than that of & (Figure 5),
except in a narrow region of the NVD close to the downwind line as explained
next, the value of A, is always positive and instability does not arise. Along the
downwind line of the NVD, where (m, k) = (0,1), a valuc of zero for the A,
coefficient is obtained. In this case (m, k) is set to (M,1 — M¢,), where M is
usually set to the value of m in the previous interval in the composite scheme.

It is also worth mentioning that the NWF method can be combined with the
deferred-correction technique when using the Super-C scheme of Leonard [19]. In
this case the value of By is less important than it would be if the combination was
between the hybrid and fifth-order scheme, and hence higher URF can be used.

To elaborate further, in contrast to the DWF and VCF techniques, the new
NWF method is fully implicit, except in a narrow region close to the downwind
line, and numerically stable since it guarantees positive A, coefficients. The test
problems presented next show the effectiveness, high rate of convergence, and
virtues of this approach.

TESTS AND RESULTS

The performance of the various HO and HR convective schemes imple-
mented using both the DC and NWF methods is examined in this section by
solving two test problems. Results were obtained by covering the physical domain
with a 20 X 20 highly nonuniform grid. In addition, calculations were also per-
formed for the special case of a uniform grid. This was intended to check whether
the performance of the method is independent of the grid used. In both tests,
computational results were considered converged when the residual error (RE),
defined as

RE=Y @D

Apdp — { p Axgdyp + Bp + quc]
NB=E,W,N, S, EE, WW, NN, §§

oo ‘
(a) (b

Figure 6. (a) Pure convection of a double-step scalar disconti-
nuity. (b) Nonuniform grid used for the NVSF solution.
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where g = 1 for the DC approach and g = 0 for the NWF method, became
smaller than 0.001.

Pure Convection of a Double-Step Profile
Figure 6a shows the first benchmark test problem, consisting of a pure

convection of a transverse double-step profile imposed at the inflow boundaries of
a square computational domain. The nonuniform grid network used in conjunction

Time

1&?

12

10

o op b B

&)

Figare 7. Time comparison for test 1: (o) uniform grid;
(b} nonuniform grid.
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Figare 8. Comparison of number of iterations for test 1:
(a) uniform grid; {b) nonuniform grid.

with the NVSF methodology is depicted in Figure 6b. The governing conservation
equation of the problem is

g 3
(pug) + ﬁ(’{f“ﬁ =0 (32)
dx ay

where ¢ is the dependent variable and u and v are the Cartesian components of
the uniform velocily v, which, in this problem is taken to be at an angle of 45° with
respect to the horizontal and of magnitude equal to 1.414. It should be mentioned
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(a) ()]

Figure 9. (a) Pure convection of an elliptic profile by a
uniform velocity field. (6) Nonuniform grid used for the
NVSF solution.

here that converged results obtained with HO schemes showed over- and under-
shoots.

Comparisons of the computational time and iterations obtained for the NVF
and NVSF solutions of the problem using the various HO, HR, and upwind
schemes are shown in Figures 7 and 8. The data was normalized with respect to the
values obtained from the upwind scheme for which a value of 1 was set. It can be
seen very clearly that important economies in computational cost (Figures 7a and
7b) and number of iterations (Figures 8a and 8b) are achieved by using the NWF
technique with uniform and nonuniform meshes. This is due to the implicitness
and numerical stability of the technique, which always results in a diagnonally
dominant system of equations. Further, it was possible with the NWF, and for all
schemes, to obtain converged solutions with an underrelaxation factor of 0.9. For
the DC procedure, however, the optimum underrelaxation factor was not greater
than 0.45 for some of the schemes.

Quantitatively, Figures 7 and 8 show, on average, the NWF method to be four
times as fast as the DC method. Furthermore, the distribution of the grid does not
affect the performance of the method {(compare Figures 7a and 7b and Figures 8a
and 85b).

Convection of an Elliptic Profile in an Oblique Velocity Field

This second problem, illustrated in Figure 94, was used in order to test the
acceleration rate of the NWF method for a profile involving a gradually decreasing
gradient. The nonuniform grid employed is displayed in Figure 956. The governing
equation of the problem is the same as for test 1 [Eq. (32)]. The elliptic profile is
generated using the following equation:

72
1_(1 )

= for2 €j <12 (33)
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Figure 10. Time comparison for test 2: (a) uniform grid;
(b3 nonuniform grid,

The normalized time and number of iterations needed to solve the problem on
uniform and nonuniform meshes using the various schemes are depicted in Figures
10 and 11, respectively. The trend of results is similar to that of test 1, with a slight
increase or decrease in the acceleration rate depending on the scheme. In all cases,
however, the NWF method is much faster than the DC method (for uniform and
nonuniform grids), with the average acceleration rate being around 4 to 1. This
once more shows the superiority of the new NWF method over the DC technique.
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Figore 11. Comparison of number of iterations for test 2
{a) uniform grid; (b) nonuniform grid.

CONCLUDING REMARKS

A new NWF method for accelerating the rate of convergence of convective
flow problems discretized using HR schemes was presented. The approach is fully
implicit and is applicable to the classes of NVSF and TVD schemes. The numerical
implementation of the technique resulted in a discretized equation with a computa-
tional stencil of five points in each coordinate direction, which was solved using the
PDMA. The method was compared qualitatively with the DWF and VCF methods
and was shown to be superior. Quantitative assessment of the new technique
against the DC procedure was performed by solving for two test problems. An
average acceleration rate of 4 to 1 was obtained. With such a decrease in
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computational cost, the NWF method may become a serious competitor to the
upwind class of schemes, and will eventually decrease their undeserved popularity.
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