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This paper addresses the modeling of the phenomenon of particle migration in the flow of monodispersed
non-colloidal suspensions at neglected inertia using the Suspension Balance Model (SBM). The SBM
describes the migration flux of particles as the divergence of the particle stress tensor. It is selected in
this work because of its parameters that can be measured experimentally and its capability to quantify
well the shear-induced migration phenomenon. A recent experiment [10,11] reported measurements
of the different parameters in the SBM, which are used in this work to study their effects on the predic-
tion of the particle migration phenomenon. For that purpose, a two-dimensional solver capable of solving
the set of conservation equations of the SBM using the finite volume method is developed within the
‘‘OpenFOAM�’’ CFD toolbox [34]. The code is validated by simulating the suspension flows in a channel
of rectangular cross-section, and in a wide gap Couette cell. Solutions are generated using the newly mea-
sured SBM parameters, and results are compared to similar ones obtained using the old SBM parameters.
It is found that the new measured parameters have no significant influence on prediction of particle
migration as compared to those proposed in the literature. Finally, the SBM is extended to general
two-dimensional flows through a frame-invariant formulation that takes into account the local kinemat-
ics of the suspension including buoyancy effects. The frame-invariant model is applied to the resuspen-
sion and mixing of a monodispersed suspension in a horizontal Couette cell. The predicted results are
found to be in good agreement with experimental measurements.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The flow of non-Brownian suspensions has captured a lot of
attention over the past few decades as reflected by the numerous
studies on the subject conducted since the 1970s. These suspen-
sions are used in our daily life in many products like paints, cos-
metics, and detergents. They are also observed in a variety of
natural phenomena like mud, fuel, and rivers. This work is con-
cerned with the numerical modeling of monodispersed non-colloi-
dal suspensions made of hard spheres immersed in a Newtonian
liquid at neglected inertia (Re� 1).
The task of modeling concentrated suspensions is a hard one
complicated by the multi-body interactions that have to be taken
into account in order to represent well the observed shear-induced
migration phenomenon. This migration behavior can be seen in the
form of inhomogeneous distribution of particles whenever a
homogeneous suspension is sheared. Therefore understanding
the inhomogeneity of particles distribution in such flows is essen-
tial and crucial for understanding and accurately predicting various
industrial processes.

Many experimental studies have been performed to character-
ize the shear-induced particle migration and to identify the mech-
anisms responsible for it. Measurements taken in different
geometrical configurations (Concentric Couette Cell, cone-plate,
two parallel-disks, channels, etc.) [17,7,36,23,25] demonstrate that
the particles generally migrate from high shear-rate zones to low
shear-rate ones. For example in the Couette cell geometry, mea-
surements of the particle concentrations obtained using different
techniques (e.g. the Nuclear Magnetic Resonance NMR, Particle Im-
age Velocimetry PIV, and Laser Doppler Velocimetry LDV) indicate
the presence of radial migration from zones of high shear rate near
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Nomenclature

a particle radius
Re Reynold’s number
/ volume fraction of particles
/b bulk volume fraction of particles
/m maximum packing volume fraction
_c shear rate
N1 first normal stress difference
N2 second normal stress difference
l suspension dynamic viscosity
g suspension kinematic viscosity
gs normalized suspension viscosity
g0 suspending liquid viscosity
gN normal stress viscosity
gP shear viscosity of the particle phase
Rep particles Reynold’s number
Pe Pelclet’s number
jT thermal energy
q suspension density
q0,qf fluid density
qp particle density
j migration flux
U suspension velocity vector

Up mean velocity vector of the particle phase
E strain rate tensor
R suspension stress tensor
Rf fluid stress tensor
Rp oriented particle stress tensor
Rp 0

general particle stress tensor
FH hydrodynamic force
P particle pressure
Q diagonal tensor of the suspension balance model
vstokes Stokes settling velocity
g gravitational acceleration vector
Pf fluid pressure
p total pressure
n density number of particles
f(/) sedimentation Hindrance function
a fitting parameter in f(/)
k2 parameter of the SBM
k3 parameter of the SBM
KN parameter of the SBM
t time
Cr Courant number
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the inner rotating cylinder toward regions of low shear rate near
the outer stationary cylinder.

Two approaches have been followed in developing models for
predicting particle migration in sheared suspensions, which are de-
noted in the literature by the ‘‘shear induced diffusion model’’
(SIDM) and the ’’Suspension Balance Model’’ (SBM). In the phe-
nomenological SIDM [20,21,36] migration is predicted based on
the net displacement of particles during collisions. This model,
which proposes that this migration is the result of two fluxes in-
duced by gradients of both collision rates and viscosity, is more
phenomenological than quantitative as it introduces several diffu-
sion coefficients that are not easy to obtain neither theoretically
nor experimentally.

The SBM, adopted in this work, explains the particle migra-
tion following a path different than the one followed in SIDM
and allows easier prediction of this phenomenon because most
of its parameters can be measured experimentally. The SBM uti-
lizes normal stresses in its formulation, a significant feature in a
concentrated suspension subject to a shear flow that cannot be
captured by SIDM. It was first proposed by Nott and Brady
[32] and then used by Morris and Brady [30] in the presence
of buoyancy forces, and later by Morris and Boulay [29], and
was restricted to suspensions subjected to simple shear flows.
Later Miller et al. [28] extended this Model to general two-
dimensional flows taking into account the local kinematics of
the suspension.

The physical concept in the SBM is that an inhomogeneous
stress exists due to the particle phase inside the suspension during
the flow. This stress forces the particles to migrate in order to bal-
ance that inhomogeneity. The SBM introduces a migration flux (j)
that is directly proportional to the divergence of the particle stress
tensor (r � Rp). This migration flux is due to variations in the con-
centration of particles (/) in the suspension or shear rate gradients
ð _cÞ, which induce gradients in the particle stress. In other words,
since Rp ¼ f ð/; _cÞ, if the concentration volume fraction is not uni-
form (/ – constant) or if the shear rate is varying ð _c–constantÞ
then a particle migration flux (j) appears. The suspension stress
(R) in the SBM is defined as the sum of both the particle stress
Rp and the fluid stress Rf(i.e.R = Rp + Rf).
The rheological measurements of the two ‘‘suspension normal
stress differences’’ N1 = R11 � R22 and N2 = R22 � R33 and the ‘‘sus-
pension viscosity’’ gs, which are all material functions of the sus-
pension, in addition to one normal component of the stress
tensor (R11, R22, or R33) allow the suspension stress tensor R to
be completely evaluated. Knowing R, the fluid stress tensor Rf

must be also measured to be able to determine the particle stress
tensor Rp that is required in the SBM. Yet, reported experimental
studies on N1 and N2 to calculate the suspension normal stress R
and especially the Rp tensor are rare due to their simultaneous
measuring complexity.

The work conducted by Gadala-Maria [16] showed that the dif-
ference of the normal stress differences (N1 � N2) is proportional to
the shear stress and that N1 and N2 are of the same order of mag-
nitude. Zarraga et al. [48] determined both Normal stress differ-
ences N1 and N2 by exploiting the anti-Weissenberg effect and by
measuring the total force exerted on a rotating cone or disk, on
top of a stationary plane. Their measurements indicated that N1

and N2 are both negative and that N1 � N2
4 . Later Singh and Nott

[44] proposed a technique to measure both N1 and N2 by coupling
data taken from two separate experiments. Results indicated that
N1 and N2 are both negative, and that N1 � N2. Recently, Boyer
et al. [3] using the anti-Weissenberg effect, reported on the varia-
tion of (N1 + 2N2) as a function of /. In addition, Couturier et al. [8]
determined the second normal stress difference N2, by measuring
the deformation of the free surface of a suspension flow in a nar-
row inclined channel. Both studies showed that N1 is of the order
of zero, and N2 is negative.

All experimental studies dealing with the flow of monodi-
spersed suspensions of hard spheres did not provide measure-
ments of the three components ðRp

11;R
p
22; andRp

33Þ of the stress
tensor Rp. Some studies provided measurements of only one of
the three components either through direct or indirect measure-
ments. Deboeuf [12] and Deboeuf et al. [13] provided direct mea-
surements of Rp

33 (that was approximated to the particle pressure
P ¼ � 1

3

� �
TrðRpÞ) for the shearing flow of monodispersed suspen-

sions in Couette cell geometry. Zarraga et al. [48] reported indirect
measurements of the same normal stress component Rp

33

� �
by

studying the resuspension of a settled suspension in a Couette
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flow. Recently, Boyer et al. [4] reported direct measurements of the
Rp

22 component of the particle stress tensor. This lack of available
measurements for the three components of the particle stress ten-
sor Rp has been prevailing since Morris and Boulay [29] reported
their work, which forced them to adjust numerically the parame-
ters in the SBM to fit well the experimental data on migration of
particles.

In addition to experimental studies, numerical studies for calcu-
lating the particle stress components Rp

11;R
p
22;R

p
33

� �
in monodi-

spersed suspensions are scarce too. Yurkovetsky and Morris [47]
performed numerical Stokesian Dynamics (SD) simulations and ob-
tained a particle pressure P (at high Peclet number) close to that
provided by Deboeuf et al. [13]. Using the Force Coupling Method
(FCM), Yeo and Maxey [45] calculated the normal stress differences
N1 and N2 for concentrated monodispersed suspensions of hard
spheres. The same workers [46] performed three-dimensional
numerical simulations of concentrated suspensions of O(1000)
particles in a Couette flow at zero Reynolds number taking into ac-
count the wall effects. Their simulations were performed for / be-
tween 0.20 and 0.40 and their results agreed well with similar ones
reported by Sierou and Brady [43] who adopted the SD approach in
their calculations. Both studies indicate that N1 and N2 have nega-
tive values, and that N1 is of O(N2).

Recently, Dbouk et al. [11] reported direct measurements of the
normal stress differences N1 and N2 in a monodispersed suspension
of hard spheres, and determined most of the parameters required
by the SBM including the stress tensors R, Rf, and Rp along with
their dependence on the volume fraction of particles (/). Their
measurements indicated that N2 has a negative value, while N1

has a positive value. This finding is in contradiction with all previ-
ous results in the literature. In addition, the ratio Rp

22
Rp

11

� �
was found

to be dependent on the volume fraction /.
The main objective of this work is to implement the SBM within

a numerical code capable of predicting simple and general flows of
monodispersed concentrated suspensions and to analyze the ef-
fects the recently measured parameters [10,11] have on the predic-
tion of particle migration. For that purpose, a two-dimensional
solver is developed within the ‘‘OpenFOAM�’’ environment [34]
capable of solving the set of conservation equations of the SBM
using the finite volume method (FVM) [35]. The FVM is a well-
developed numerical approach that guarantees conservation and
is widely used for solving fluid flow problems.

In the remainder of this article the conservation equations of the
SBM along with its newly adjusted parameters, which are based on
the measurements reported by Dbouk et al. [11], are first presented.
This is followed by a brief description of the implementation, as a
new solver in ‘‘OpenFOAM�’’, of the SBM equations along with its
validation by presenting solutions to several concentrated suspen-
sions under simple shearing in one- and two-dimensional domains
(i.e. in a rectangular channel and in a wide gap Couette cell). Then,
following Miller et al. [28], the code is extended to handle general
two-dimensional suspensions for which the flow is no more re-
stricted to be driven by a simple shearing. After validating the gen-
eral code by generating solutions for neutrally buoyant
suspensions in a channel and in a Couette cell, it is extended to ac-
count for buoyancy effects. Finally, it is applied to simulate resus-
pension and mixing of a suspension in a two-dimensional
horizontal Couette cell.
2. Shear-induced migration in simple shear flows

2.1. Constitutive modeling (Governing Equations)

This work is concerned with monodispersed non-colloidal sus-
pensions of hard spheres (radius a >1 lm) that are spread in a
Newtonian Liquid. The flow of these suspensions is viscous (non-

inertial) with low particle Reynolds number Rep ¼ q0 _ca2

g0
� 1

� �

and high Peclet number Pe ¼ 6pg0a3 _c
jT � 1

� �
to represent a non-

Brownian suspension, with jT(J) corresponding to the thermal en-
ergy, _cðs�1Þ the shear rate, and g0 (Pa s) and q0 (kg m�3) the dy-
namic viscosity and density of the Newtonian Liquid phase,
respectively.

The suspension is modeled as a continuous medium and the
flow is considered to be incompressible and laminar with no exter-
nal forces. With the above assumptions, the continuity and
momentum conservation equations governing the flow in the sus-
pension can be written as

r � U ¼ 0; ð1Þ
r � R ¼ 0; ð2Þ

respectively, where U is the suspension mean velocity vector, and R
is the suspension stress tensor. Moreover, a conservation equation
for the particle volume fraction (/) can be written as

@/
@t
þ U � r/ ¼ �r � j; ð3Þ

where j denotes the particle migration flux. So, if one can solve the
system of Eqs. (1)–(3), the evolution of the particle phase (/) can be
tracked in time (t). There are many models in the literature that
provide forms for the particle migration flux j such as the diffusion
models of Phillips et al. [36], and the flow aligned tensor models of
Brady and Morris [5] and Fang et al. [15]. In this work, the Suspen-
sion Balance Model (SBM) of Nott and Brady [32] and Morris and
Boulay [29] is adopted. This model describes the particle migration
flux as the divergence of the particle stress tensor.

2.2. The suspension balance model

The mixture of the two phases (particles + fluid) in this model is
considered as a bulk suspension (continuous medium) that obeys
the laws of conservation of mass and momentum. Through an
averaging procedure, Drew and Lahey [14] obtained the mass con-
servation equation of the particle phase as

@/
@t
þr � ðUp/Þ ¼ 0; ð4Þ

where Up is the local velocity of the particle phase.
The momentum conservation of the particle phase at very small

Reynolds number with no external forces is given by

r � Rp þ nhFHip ¼ 0; ð5Þ

where Rp is the particle stress tensor, and h�ip is the average on the
particle phase. Moreover, in Eq. (5) n is the number density calcu-
lated as

n ¼ 3/
4pa3 ; ð6Þ

and FH is the hydrodynamic drag force on the particles computed
from

FH ’ �6pg0af�1ð/ÞðUp � UÞ; ð7Þ

where f�1(/) denotes the mean resistance since f(/) is the sedimen-
tation hindrance function that represents the mobility of the parti-
cle phase. Miller and Morris [27] used the following form of f(/):

f ð/Þ ¼ 1� /
/m

� �
ð1� /Þa�1

; ð8Þ

where a 2 [2,5] is a fitting parameter that depends on the type of
particles. Eq. (8) is the functional relationship for f(/) adopted here.
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However there exists other forms of f(/) suggested by other work-
ers such as the one used by Davis and Acrivos [9], and Morris and
Boulay [29], which was originally proposed by Richardson and Zaki
[39] and is given by

f ð/Þ ¼ ð1� /Þa; ð9Þ

The difference between the two forms is in the dependence of f(/)
on the maximum packing volume fraction of particles /m. In order
to compare current results with those of Miller and Morris [27],
the /m dependent f(/) (Eq. (8)) was adopted. Miller and Morris
[27] associated their choice of f(/) with the need to ensure that
for bounded flows particle migration ceases when the particle con-
centration approaches maximum packing.

The migration flux j (Eq. (3)) in the SBM is defined as

j ¼ /ðUp � UÞ; ð10Þ

The final form of the flux j in the SBM is obtained by combining Eqs.
(5), (7) and (10) and is given by

j ¼ 2a2

9g0
f ð/Þ½r � Rp�; ð11Þ

Therefore, the final form of the particle mass conservation equation
(Eq. (3) or (4)) becomes

@/
@t
þ U � r/ ¼ �r � 2a2

9g0
f ð/Þr � Rp

� 	
; ð12Þ

As a primary conclusion, the knowledge of Rp in the SBM and its
variation with / allow predicting the particle migration. In the SBM
the total stress R in the suspension is decomposed into a fluid
phase stress Rf, and a particle phase stress Rp such that

R ¼ Rf þ Rp; ð13Þ

The fluid phase stress Rf is defined as

Rf ¼ �Pf I þ 2g0E; ð14Þ

where E ¼ 1
2 ½r � U þ ðr � UÞ

T � is the local rate of strain tensor, and Pf

is the pressure of the fluid phase.
It should be noted that the SBM presented here has been revis-

ited recently by Lhuillier [22], and Nott et al. [33]. For them, the
particle stress responsible for the migration phenomenon (Eq.
(11)) is only due to the direct contact forces between the particles
(excluding the hydrodynamic part). However, it is possible that
these two models are close at high concentrations where the direct
contact between the particles plays the major role. Morris and Bou-
lay [29] suggested the following constitutive law for the particle
phase stress for shear flows:

Rp ¼ �Rp
nn þ 2g0gPð/ÞE; ð15Þ

where Rp
nn ¼ g0gNð/Þ _cQ is the particle normal stress diagonal ten-

sor, (2g0gP(/)E) is the particle shear stress tensor, gP(/) = (gs(/
) � 1) is the shear viscosity of the particle phase made dimension-
less by the viscosity of the suspending liquid g0, gN(/) is the normal
stress viscosity depending on /, and Q is a parametric diagonal ten-
sor of the form

Q ¼
1 0 0
0 k2 0
0 0 k3

0
B@

1
CA; ð16Þ

that physically captures the anisotropy of the normal stress of the
particle phase. The principal directions of the tensor Q are those
of a viscometric shear flow with 1, 2, and 3 denoting the flow, veloc-
ity gradient, and vorticity directions, respectively.

Therefore it is sufficient to provide the parameters

f ð/Þ;gs;gN; k2 k2 ¼
Rp

22
Rp

11

� �
, and k3 k3 ¼

Rp
33

Rp
11

� �
in the SBM (which in
turn provides, Rf,Rp, R and j) in order to predict the particle migra-
tion in a suspension. The parameters f(/) and gs were modeled in
previous studies, whereas gN, k2, and k3 were never measured be-
fore. Morris and Boulay [29] used a model for f(/) of the form pre-
sented in Eq. (9). It should be noted that f(/) plays no role in the
solutions when seeking the fully-developed flows or steady states
in some cases (such as in one dimensional problems). The relative
suspension viscosity gs(/) was measured experimentally by many
rheologists who suggested different functional relationships for its
calculation. For example, Maron and Pierce [24] found that gs(/) is
well modeled via

gsð/Þ ¼
g
g0
¼ 1� /

/m

� ��2

; ð17Þ

where /m is the maximum possible packing volume fraction of par-
ticles, which depends strongly on the particles shape and interac-
tion. It is measured and found to be between 0.58 and 0.72 for
monodispersed suspensions of hard spheres. Morris and Boulay
[29] suggested the following relation for gs(/):

gsð/Þ ¼
g
g0

¼ 1þ 2:5
/
/m

� �
ð/mÞ 1� /

/m

� ��1

þ 0:1 1� /
/m

� ��2

; ð18Þ

with /m = 0.68. In addition, they proposed an expression for gN(/)
of the form

gNð/Þ ¼ KN
/
/m

� �2

1� /
/m

� ��2

; ð19Þ

where KN is a fitting parameter that was set at 0.75. Moreover, they
adjusted numerically the parameters in the SBM to fit well the
experimental data of Phillips et al. [36] for particle migration in a
Couette cell, and obtained a constant value of k2 equals to 0.8. For
k3, they explained how the weakness or the absence of migration
observed for the flow of a suspension in a torsional flow between
two parallel-disks, implies that k3 must be a constant equal to 0.5.

All parameters gs(/), gN(/), k2(/), and k3(/) can be obtained if
and only if N1(/), N2(/), gs(/), and all components of the particle
stress tensor Rp(/) are known. Reported measurements of N1(/)
and N2(/) are scarce and contradictory. In addition, complete mea-
surements of all components of Rp(/) have never been reported
due to its complexity, which prevented workers from acquiring a
complete set of values based on measurements for the parameters
needed in the SBM.

The two normal stress differences in a suspension are defined,
based on the isotropy of the fluid stress Rf

11 ¼ Rf
22 ¼ Rf

33

� �
, as

N1 ¼ R11 � R22 ¼ Rp
11 � Rp

22 ¼ �g0gN
_cð1� k2Þ; ð20Þ

N2 ¼ R22 � R33 ¼ Rp
22 � Rp

33 ¼ �g0gN
_cðk2 � k3Þ; ð21Þ

The definitions of R, Rf, and Rp in Eqs. (13)–(15), in addition to the
above definitions in Eqs. (20) and (21), yield a bulk suspension
stress R in the SBM of the form

R ¼ Rf þ Rp ¼ �PI � g0gN
_cQ þ 2g0gsE; ð22Þ

where P is the suspension pressure. Thus measuring N1(/), N2(/),
gs(/), and Rp(/), and using Eqs. (19)–(21) one can get all parame-
ters (gs(/), gN(/), k2(/), and k3(/)) needed in the SBM, which are
all material functions of a suspension (see [11]).

Recent measurements conducted by the authors of this article
[11], indicated that N2 < 0 and N1 > 0. This last finding of a positive
N1 is in contradiction with all previously reported values in the lit-
erature. An objective of this paper is to analyze the effect of this po-
sitive value for N1 on the prediction of particle migration via the
SBM. In addition, the study Dbouk et al. [11] involved a complete
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Fig. 2. (a) Space discretization in the control volume method; (b) A typical control
volume.
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measurement of the particle stress tensor Rp(/) which provided
gN, k2, and k3 as functions of the volume fraction of particles /
and are given by

gNð/Þ ¼ 1:08
/
/m

� �2

1� /
/m

� ��2

; ð23Þ

k2ð/Þ ¼ 0:81
/
/m

� �
þ 0:66; ð24Þ

k3ð/Þ ¼ �0:0088
/
/m

� �
þ 0:54; ð25Þ

with /m = 0.58. A higher value of KN = 1.08 is measured compared to
the value of 0.75 reported by Morris and Boulay [29] [Eq. (19)].
Moreover, Eqs. (24) and (25) indicate that k2 and k3 are functions
of the volume fraction / of the particles and not constants as as-
sumed previously (Fig. 1). It should be mentioned here that /m is
extremely difficult to evaluate experimentally and it is a crucial
parameter in the rheology of suspension flows. Since everything
in the SBM model adopted in the current study scales like the
parameter /

/m

� �
, it was decided to keep this representation for all

measured parameters of the SBM [i.e. Eqs. (23)–(25)].

3. Numerical procedure

3.1. Numerical technique (the finite volume method)

The coupled system of conservation Eqs. (1)–(3) governing the
flow and particle migration in the monodispersed suspension is
solved numerically using a collocated finite-volume method.
Checkerboard pressure and velocity fields are eliminated through
the use of the Rhie-Chow interpolation [38] technique for the cal-
culation of the mass fluxes across the control-volume faces. Pres-
sure–velocity coupling is accomplished through the use of the
SIMPLE algorithm [35]. Solutions are obtained by subdividing the
physical space into a number of control volumes with grid points
placed at their geometric centers (Fig. 2a). The discretized equa-
tions are first integrated over a control volume (Fig. 2b) to obtain
a discretized description of the conservation law. Then, an interpo-
lation profile is used to reduce the integrated equations to alge-
braic equations by expressing the variation in the dependent
variable and its derivatives in terms of the grid point values. The
approximation scheme produces an expression for the face value
which is dependent on the nodal values in the vicinity of the face.
An algebraic equation is obtained in every control volume with
their collection forming a system that is solved iteratively to pro-
duce the numerical solution.
Fig. 1. Variation of k2(/) and k3(/) with /.
3.2. Implementation of the SBM in ‘‘OpenFOAM�’’

In this paper, the above described numerical solution algorithm
is implemented in the ‘‘OpenFOAM�’’ (Open Field Operation and
Manipulation) CFD Toolbox [34], which is an open source software
package with a modular code design that allows the user to custom-
ize and extend its functionality to develop a suitable solver for the
problem under consideration. As mentioned above, the developed
code allows solving Eqs. (1) and (2) via the SIMPLE algorithm. The
full system of Eqs. (1)–(3) is solved iteratively. The second order
Crank–Nicolson [6] transient scheme is used for the discretization
of the unsteady term @/

@t

� �
while satisfying the stability criterion

(i.e. Cr < 1;Cr ¼ DtjUj
Dx is the Courant number). Moreover, the Crank–

Nicolson scheme is also adopted for the discretization in time of
the diffusion term. In this case physically plausible results are guar-
anteed by enforcing the term g Dt

Dx2 to be less than 1 i:e:g Dt
Dx2 < 1

� �
.

Since a fixed grid is used, the value of Dx is chosen and the value
of Dt is computed during simulation as the minimum of the two

computed values i:e:Dt ¼ MIN Dx2

g ; Dx
jUj

h i� �
. In space, the Laplacian

operator (r2), representing the diffusion term, is discretized using
the second order Gaussian integration scheme, which is the only
choice of discretization available in ‘‘OpenFOAM�’’. The scheme re-
quires the selection of an interpolation procedure for the diffusion
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coefficient (i.e. g) and the gradient at the control volume faces. In the
calculations, a second order unbounded and conservative interpola-
tion procedure is adopted. The discretization of the divergence oper-
ator (r�) is performed using the ‘‘Gauss’’ discretization approach,
which requires a selection of the interpolation scheme for the
dependent field. For that purpose, the bounded first order upwind
scheme is used for the calculation of the convective terms, and the
second order, unbounded, conservative scheme is employed as an
interpolation scheme for the tensorial terms, i.e. r � Rp. Similarly,
the ‘‘Gauss linear’’ scheme is used for the interpolation of the gradi-
ent terms, i.e.rp.

3.3. Validation of implementation in OpenFOAM�

3.3.1. Suspension flow in a rectangular cross-section conduit
Numerical simulations using the developed code in ‘‘Open-

FOAM�’’ for the pressure-driven flow of a suspension in a conduit
of rectangular cross-section are compared with the numerical re-
sults reported by Miller [26] and Miller and Morris [27]. In addition,
predictions are compared with the experimental data presented by
Lyon and Leal [23] who measured the concentration distribution of
the particles using laser-Doppler velocimetry (LDV). In the experi-
ments they used monodispersed spherical polymethyl-methacry-
late (PMMA) particles, large enough to neglect Brownian effects,
and of diameters between 50 and 100 lm. Moreover, the particles
were immersed in a Newtonian liquid (Triton X-100+ UCON 75-H)
of dynamic viscosity g0 = 0.48 Pa s at 20 �C, and of density qf = 1.19 -
g cm�3 which was equal to that of the PMMA particles (qp = qf � q)
in order to prevent any sedimentation problems.

The conduit of rectangular cross section was of length L and of
width 2H. Consequently, different experimental parameters were
chosen in a way to neglect inertia, i.e. Rep << 1 where Rep is the
particles Reynolds number for channel flow defined in a way sim-
ilar to that for tube flow [23,18] as

Rep ¼
4
3

q
g

a3

H2 Umax ð26Þ

where Umax is the maximum velocity in the suspension and a the
averaged particle radius.

The aspect ratio L
H

� �
was chosen in a way to ensure that the

measured profiles were at fully developed state. Nott and Brady
[32] showed that the profiles are fully developed if

L
H

� �
	 1

12gð/Þ
H
a

� �2

ð27Þ

where g(/) stands for the dependence of the shear-induced
diffusion coefficient on the bulk particle concentration. After
a good fitting to their experimentally measured diffusion coeffi-
cients, Leighton and Acrivos [20,21] and later Chapman [7]
found that g(/) is best described by the following functional
relationship:

gð/Þ ¼ 1
3

/2 1þ 1
2

e8:8/

� �
ð28Þ

Some zones during the flow may be experiencing a zero shear rate
such as at the channel center-line. In this latter situation, the model
predicts concentration profiles with a cusp representing a singular-
ity at / = /m. This singularity is localized in a narrow zone whose
size is of the order of magnitude of the particle size, where the
description of the suspension as a continuum medium makes no
sense any more. In order to eliminate this singularity at the channel
center-line, a non-local shear rate _cNL [27] is defined and added to
the local shear rate _c in Eq. (22), such that

_cNL ¼ as
Umax

H
ð29Þ
where as is equal to 0, e, or e2 and e ¼ a
H.

The physical domain, schematically depicted in Fig. 3a, is subdi-
vided into 100 
 20 control volumes. The grid is uniformly distrib-
uted in the y direction, but non-uniformly discretized in the x
direction with an expansion ratio of 1:50 in the flow direction, in
order to better capture the different properties at the inlet of the
conduit. The imposed boundary conditions on the conservation
equations (Eqs. (1)–(3)) are displayed in Fig. 3b.

In order to check the implementation of the SBM in ‘‘Open-
FOAM�’’, the problem was solved using the same model parame-
ters ‘‘Case(1)’’ suggested by Miller and Morris [27], and are given
by

Case(1): gNð/Þ ¼ 0:75 /
/m

� �2
1� /

/m

� ��2
, gs ¼ 1� /

/m

� ��2
, f ð/Þ ¼

1� /
/m

� �
ð1� /Þa�1, /m = 0.68, a = 4, k2 = 0.8, k3 = 0.5,

and as = e.

Steady state fully developed particle concentration profiles are
compared in Fig. 3 with similar results reported by Miller and Mor-
ris [27] for a conduit with H

a ¼ 18. Fig. 4a–c compare / profiles at
x
L ¼ 0:85 obtained with suspensions having initial concentrations
with values of /b = 0.30, 0.40, and 0.50, respectively. Fig. 4d com-
pares the variation of / for the various initial bulk concentrations
along the centerline of the conduit. As shown, current numerical
results are in good agreement with those reported by Miller and
Morris [27] validating the implementation of the SBM in ‘‘Open-
FOAM�’’. By comparing the numerical predictions obtained using
the SBM with the experimental data of Lyon and Leal [23]
(Fig. 4a–c), a large difference near the walls is seen. This difference
is attributed to the indirect measurements of the volume fraction
(/) values using the LDV.

It may be of interest to mention that the calculation time for the
cases presented in this part varied between 1 and 30 min
(1 min 6 tcalc 6 30 min) with a CPU of 1 GHz. The higher the /b va-
lue was, the greater the computational time became, due to the
need to decrease the time step (dtcalc).

For the same problem, solutions are obtained using values for
the parameters of the SBM obtained from the measurements per-
formed by the authors ‘‘Case(2)’’ [11], which are given by

Case(2): gNð/Þ ¼ 1:08 /
/m

� �2
1� /

/m

� ��2
, gs ¼ 1� /

/m

� ��2
, f ð/Þ ¼

1� /
/m

� �
ð1� /Þa�1, /m = 0.68, a = 4, k2 ¼ 0:81 /

/m

� �
þ

0:66, k3 ¼ �0:0088 /
/m

� �
þ 0:54, and as = e.

Profiles presented in Fig. 5 indicate that there is little difference
between the results in Case(1) (proposed SBM parameters) and
that in Case(2) (measured SBM parameters) for the predictions of
the particle steady concentration profiles across the channel
(Fig. 5a–c). Nevertheless, a small difference is observed in the pre-
dictions of the particle steady concentration profiles along the cen-
terline of the channel (Fig. 5d), especially at low values of the bulk
volume fraction in the inlet region (x/L < 0.2). The new values of
parameters [Case(2)] tend to enlarge more the centerline steady
concentration region.

The effects of using the two different forms of f(/) given by Eqs.
(8) and (9) on particle migration in the channel are studied by
using the following SBM parameters [Case (20)] and comparing re-
sults to those obtained previously [Case(2)]:

Case(20): gNð/Þ ¼ 1:08 /
/m

� �2
1� /

/m

� ��2
, gs ¼ 1� /

/m

� ��2
, f(/

) = (1 � /)a, /m = 0.68, a = 4, k2 ¼ 0:81 /
/m

� �
þ 0:66,

k3 ¼ �0:0088 /
/m

� �
þ 0:54, and as = e.



Fig. 3. (a) Grid system used in the two-dimensional channel of rectangular cross-section; (b) Boundary conditions used in the computations.
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Results presented in Fig. 6a–c show that the form of f(/) has no
effect on the particle steady concentration profiles across the chan-
nel for all values of /b considered (i.e. 0.3 6 /b 6 0.5). Nevertheless,
a small difference is observed in the predictions of the particle
steady concentration profiles along the centerline of the channel
(Fig. 6d), especially in the inlet region (x/L < 0.2).

One may ask if a comparison when / reaches /m (in the absence
of any experimental data) could not discriminate between the dif-

ferent model parameters (f(/), gs, gN, k2 k2 ¼
Rp

22
Rp

11

� �
, and

k3 k3 ¼
Rp

33
Rp

11

� �
). In fact, as was mentioned previously in Dbouk

et al. [11], it was extremely difficult to extract trusted measure-
ments when / is greater than 0.81/m. Accordingly, it would be un-
safe to extrapolate these experimental results for higher
concentrations. For that reason, future experiments are certainly
needed to better capture the SBM parameters at high concentra-
tions, with their measurements conducted alongside the evolution
of migration.

3.3.2. Suspension flow in a cylindrical Couette cell
As a second check for the correct implementation of the SBM in

‘‘OpenFOAM�’’, the flow of a suspension in a cylindrical Couette
cell is considered. The physical situation is schematically depicted
in Fig. 7 and represents the flow of a suspension between two con-
centric cylinders, where the inner cylinder is rotating with an
angular velocity X, while the outer cylinder is stationary. Initially,
the suspension has a uniform distribution of particles in the radial
direction between the two cylinders with / = /b. During the flow, it
is observed that the particles migrate toward the outer cylinder.
The modeled situation is the one experimentally studied by Phil-
lips et al. [36] in which the inner and outer radii of the Couette cell
are 0.64 cm and 2.38 cm, respectively, the cavity length is 25 cm,
and the suspension is composed of PMMA spheres of mean diam-
eter 2a = 675 lm, suspended in a Newtonian liquid mixture of dy-
namic viscosity g0 = 9.45 Pa s at 23.15 �C, and of density
qf = qp = q = 1.182 g cm�3. Using the NMR technique, they were
able to perform direct measurements of the volume fraction of par-
ticles in the gap between the cylinders.

In the numerical simulations, the cylinders are assumed to be of
infinite length and body forces to be negligible, thus reducing the
problem to a one-dimensional one with variation occurring in
the radial direction. The wedge-type geometry defined in ‘‘Open-
FOAM�’’ was used due to the axi-symmetric geometry of the prob-
lem. The domain, shown in Fig. 7a, is subdivided into 20 control
volumes of equal size, while the boundary conditions used are dis-
played in Fig. 7b. It should be mentioned here that for the flow in a
Couette cell geometry the orientation in the code of the tensor Q
(Eq. (16)) is given by

Q ¼
k2 0 0
0 1 0
0 0 k3

0
B@

1
CAðh; r; zÞ; ð30Þ

This is required in order to respect the orientation of the principal
directions in the SBM for simple shear flows (i.e. 1, 2, and 3 denoting
the flow, velocity gradient, and vorticity directions, respectively).

For direct comparison of results, the problem was first solved
using the same model parameters suggested by Morris and Boulay
[29] ‘‘Case(1A)’’, and are given by



Fig. 4. Comparison of steady state concentration profiles at x
L ¼ 0:85 (a)–(c) obtained numerically using the SBM [Case(1)] with similar experimental data and numerical

results reported in the literature for particle migration in a conduit of rectangular cross-section for /b values of (a) 0.3, (b) 0.5, and (c), 0.5; (d) Comparison of numerical
[Case(1)] steady state concentration profiles along the center line of the channel with similar numerical results reported in the literature for the various values of /b.
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Case(1A): gNð/Þ ¼ 0:75 /
/m

� �2
1� /

/m

� ��2
, gsð/Þ ¼ 1þ 2:5 /

/m

� �
ð/mÞ

1� /
/m

� ��1
þ 0:1 1� /

/m

� ��2
, f(/) = (1 � /)a, /m = 0.68,

a = 4, k2 = 0.8, k3 = 0.5, and as = 0.

It is to be noted here that since the flow is one-dimensional, k3

has no role to play and has no effect on the results. Transient and
steady state profiles of the particles volume fraction in a suspen-
sion with bulk concentration of value /b = 0.55 and a particle of
size a

Rout
¼ 0:0143 are depicted in Fig. 8. Fig. 8a compares the parti-

cle distribution profiles after 200 revolutions of the inner cylinder,
while profiles in Fig. 8b are after the lapse of 12,000 revolutions. As
shown, the SBM predicts the correct direction of migration of par-
ticles toward the outer cylinder, and quantifies well the particles
distribution in the gap. Results generated in this work using
‘‘OpenFOAM�’’ are closer to the experimental data of Phillips
et al. [36] than the one-dimensional numerical simulations re-
ported by Morris and Boulay [29]. The small differences between
current numerical profiles and those obtained by Morris and Bou-
lay [29], may be due to different interpolation schemes as the
number of grid points used in the numerical solution is small.
By solving the conservation equations of mass and momentum
in a cylindrical coordinate system, a semi-analytical solution for
the concentration of particles at steady state is obtained as [29]

gNð/Þ
gSð/Þ

¼ qð/Þ ¼ Acr
1þk2
k2 ; ð31Þ

where Ac is a constant that should be determined by requiring /(r)
to average to the imposed bulk concentration such that

/bp R2
o � R2

i

� �
¼
Z Ro

Ri

/ðrÞ2prdr: ð32Þ

The solution is semi-analytic as it requires knowledge of the func-
tion q(/) in order to calculate /. In this work, the suggested expres-
sions for gN(/) and gS(/) [Case(1A)] are used to find the expression
for q(/).

The steady state concentration profiles shown in Fig. 8c indicate
that numerical results obtained with ‘‘OpenFOAM�’’ fall on top of the
semi-analytic profile generated using Eqs. (31) and (32), and are in
excellent agreement with the semi-analytic profile reported by Mor-
ris and Boulay [29] and the measured data of Phillips et al. [36].



Fig. 5. Comparison of steady state concentration profiles at x
L ¼ 0:85 (a)–(c) obtained numerically using the SBM [Case(1)] and modified SBM [Case(2)] for particle migration

in a conduit of rectangular cross-section for /b values of (a) 0.3, (b) 0.4, and (c), 0.5; (d) Comparison of steady state concentration profiles along the center line of the channel
obtained with the SBM [Case(1)] and modified SBM [Case(2)] for the various values of /b.
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The values of the parameters in the SBM were changed here to
the experimentally measured values [11] and solutions were gen-
erated using two different functional relationships for gs(/) sug-
gested by Maron and Pierce [24] and Morris and Boulay [29] and
resulting in two sets of coefficients that are designated by
‘‘Case(2A)’’ and ‘‘Case(2B)’’, respectively, and are given by

Case(2A): gNð/Þ ¼ 1:08 /
/m

� �2
1� /

/m

� ��2
, gsð/Þ ¼ 1� /

/m

� ��2
,

f ð/Þ ¼ 1� /
/m

� �
ð1� /Þa�1, /m = 0.68, a = 4,

k2 ¼ 0:81 /
/m

� �
þ 0:66, k3 ¼ �0:0088 /

/m

� �
þ 0:54, and

as = 0.
Case(2B): gNð/Þ ¼ 1:08 /

/m

� �2
1� /

/m

� ��2
, gsð/Þ ¼ 1þ 2:5 /

/m

� �
ð/mÞ

1� /
/m

� ��1
þ 0:1 1� /

/m

� ��2
, f ð/Þ ¼ 1� /

/m

� �
ð1� /Þa�1,

/m =

0.68, a = 4, k2 ¼ 0:81 /
/m

� �
þ 0:66, k3 ¼ �0:0088 /

/m

� �
þ

0:54, and as = 0.
Fig. 9a and b compare the profiles for qð/Þ ¼ gNð/Þ
gSð/Þ

and /, respec-
tively, for Case(1A), Case(2A), and Case(2B). The profile for q(/)
used by Morris and Boulay [29] falls in between the profiles ob-
tained with the current measurements [11]. The use of the latest
data for gN(/) shows acceptable predictions for the particle migra-
tion at 200 revolutions. Nevertheless, these predictions deviate
more and more away from the experimental profiles provided by
Phillips et al. [36] as the inner cylinder reaches 12,000 revolutions.
Here, one should not forget that the bulk concentration is /b = 0.55
and the maximum packing volume fraction is /m = 0.68. However,
in the conducted experiments, the range of the bulk concentration
of particles for which the measurements were taken was less than
0.47 (/b < 0.47), where after constituting the equation for gS(/), re-
sulted in a value for /m � 0.58. Moreover, Fig. 9 shows clearly that
the form of the suspension viscosity gS (/) affects more the predic-
tion of migration in a Couette cell gap than the normal suspension
viscosity gN(/). This becomes more apparent as steady state is ap-
proached after many revolutions of the inner cylinder.



Fig. 6. Comparison of steady state concentration profiles at x
L ¼ 0:85 (a–c) obtained numerically using the modified SBM [Case(2)] and modified SBM [Case(20)] for particle

migration in a conduit of rectangular cross-section for /b values of (a) 0.3, (b) 0.4, and (c), 0.5; (d) Comparison of steady state concentration profiles along the center line of the
channel obtained with the modified SBM [Case(2)] and modified SBM [Case(2)] for the various values of /b.

T. Dbouk et al. / Journal of Non-Newtonian Fluid Mechanics 198 (2013) 78–95 87
4. The SBM for general flows

The formulation of the SBM presented so far is applicable to
cases of simple shear flows of non-Brownian suspensions. This lim-
itation on the use of the model is due to its formulation in a coor-
dinate system that requires its axes to be aligned with the flow,
velocity gradient, and vorticity directions. If the model is to be used
for two-phase suspensions in general geometries, where the flow is
not necessarily of the simple shear type, it requires modifications.
Following the efforts of Miller et al. [28], the process of developing
a two-dimensional frame-invariant version of the modified SBM
presented in the previous sections, which is valid for modeling sus-
pension flows in general two-dimensional geometries, is described
next.

4.1. Frame-invariant suspension kinematics

The suspension flow kinematics represents the local motion or
behavior that a local zone of the suspension (fluid-particles) may
undergo. It is the zone where the particles immersed in the fluid
may be going away from each other, approaching each other, col-
liding, or even rolling over each other aligning in a preferred posi-
tion by the flow between both the compression and the tension
axes, as schematically depicted in Fig. 10. Therefore, in the general
flow of a suspension, the local kinematics can vary between pure
extension and solid-body rotation, with simple shear representing
an equal balance between them. Brady and Morris [5] and Morris
and Katyal [31] related the appearance of shear-induced normal
stresses in suspensions to the breaking of fore-aft symmetry of
the pair-particle microstructure. Since this symmetry is expressed
in terms of the driving flow, it is essential to relate the particle
stress Rp to the local kinematics of the flow. The local kinematics
between shearing and extending suspension flows is presented
here following the work of Miller et al. [28] that was inspired by
the work of Schunk and Scriven [42] and Bird et al. [1] on polymers.
The basic idea is to develop an anisotropic particle stress Rp0 using
the local kinematics of the flow.

4.1.1. Kinematic ratio
The local kinematics of the suspension is characterized by the

local material deformation rate ð _cÞ and the relative rotation (xrel)
defined as

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E : E
p

; ð33Þ

xrel ¼
x
2
�W; ð34Þ

where E is the rate of strain tensor,x the local vorticity (x =r
 U)
and x

2

� �
the local angular velocity of a fluid element, and W the local

rotation of the axes of the rate of strain given by

W ¼ ei 

@ei

@t
þ U � rei

� 	
; ð35Þ



Fig. 7. (a) Schematic of the physical domain for the suspension flow in a Coutte cell
problem; (b) computational domain and boundary conditions used in the numerical
solution of the suspension flow in a Coutte cell problem.
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In Eq. (35) ei is an eigenvector corresponding to an eigenvalue Ki of
E satisfying

ðE � KiÞ � ei ¼ 0; ð36Þ

Since both xrel and W are calculated using the same frame of refer-
ence, their difference (xrel) produces a frame invariant measure of
rotation [26]. Moreover, as the interest here is in quasi-stationary
flows, the term @ei

@t in Eq. (35) is neglected. Furthermore, these two lo-
cal kinematic effects ( _c and xrel) are accounted for through a single
kinematic ratio ðq̂kÞ, which, following Ryssel and Brunn [40], is de-
fined as

q̂k ¼
2jxrelj

ð _c=2Þ þ jxrelj
ð37Þ

Eq. (37) indicates that q̂k varies between 0 and 2 according to the
flow local kinematic state. For a flow in pure extension
q̂k ¼ 0ðjxrelj ¼ 0Þ, in simple shear q̂k ¼ 1 jxrelj ¼ _c

2

� �
, and in solid

body rotation q̂k ¼ 2ð _c ¼ 0Þ.

4.1.2. Compression–tension coordinates and transition matrix
To represent the stress in terms of local kinematics in two-

dimensional situations, the eigenvectors ei are defined as the prin-
cipal axes of the rate of the strain tensor E, where the subscript
i � t stands for the tension axis corresponding to the positive
eigenvalue of E(Ki�t > 0), and i � c for the compression axis corre-
sponding to the negative eigenvalue of E(Ki�t < 0) as shown in
Fig. 11a and b. Consequently, the transformation relation that
maps the general Cartesian system (ex,ey,ez) to the local frame of
reference (et,ec,ez) is given by the transition Matrix Tm as

Tm ¼ et

et1

et2

0

0
B@

1
CAjec

ec1

ec2

0

0
B@

1
CAjez

0
0
1

0
B@

1
CA

2
64

3
75; ð38Þ

with the inverse matrix (Tm)�1, which is equal to its transpose (Tm)T

due to the symmetry of E, mapping the local frame of reference (et, -
ec,ez) back to the Cartesian system (ex,ey,ez).

4.2. Anisotropic Particle Stress (Rp0) in the SBM

The Rp
nn tensor of the SBM [Eq. (15)] valid for simple shear flows

only, is set up in a two-dimensional compression–tension coordi-
nate system (et,ec,ez), and extended to a new anisotropic tensor
Rp 0

dependent on q̂k and valid for general flows. This extension
provides a frame of reference independent of the two-dimensional
geometry of the flow, but strongly dependent on the local kine-
matic state of the suspension flow. The extension of Rp

nn to Rp0 is
done as follows:

Rp
nn

ex; ey; ez
¼

Rp
11 0 0
0 Rp

22 0
0 0 Rp

33

2
4

3
5 ¼ g0gNð/Þ _c

1 0 0
0 k2ð/Þ 0
0 0 k3ð/Þ

2
4

3
5;
ð39Þ

Rp

et ; ec; ez
¼

Rp
11
þRp

22
2

N1
2 0

N1
2

Rp
11þRp

22
2 0

0 0 Rp
33

2
664

3
775; ð40Þ

Rp0

et ; ec; ez
¼

Rp
11þRp

22
2 � Btðq̂kÞ N1

2 � Cðq̂kÞ 0
N1
2 � Cðq̂kÞ

Rp
11þRp

22
2 � Bcðq̂kÞ 0

0 0 Rp
33

2
664

3
775; ð41Þ

In Eq. (41), Btðq̂kÞ and Bcðq̂kÞ are the functions that weight the par-
ticle normal stress in the tension and compression directions,
respectively, with Rp

33 being the stress component in the out-of-
plane direction. Moreover, Cðq̂kÞ corresponds to the tangential
stress weighting function. The values for Btðq̂kÞ;Bcðq̂kÞ, and Cðq̂kÞ
adopted in this work are the ones suggested by Miller et al. [28]
and are summarized in Fig. 11c. The physical explanation behind
the choice of the values for these weighting functions and their var-
iation with q̂k is as follows:

� Simple shear flow: In a simple shear flow situation, q̂k ¼ 1
and the values are set to Bt = Bc = C = 1 such that the tensor
Rp0 after being transformed to the Cartesian coordinate sys-
tem goes back to be equal to Rp

nn.
� Pure extension: In this case Bt is set to zero since during a

pure extension [see Fig. 11a], the particles are far away
from each other and the normal stress along the exten-
sional axis is almost zero. Nonetheless C, which represents
the tangential stress, should also be set to zero.

� Rotation: When q̂k > 1. it is assumed that rotation plays no
role and all weighting coefficients are set to 1
(Bt = Bc = C = 1).

� Combination of shear and extension: For 0 < q̂k < 1, the
weighing functions Bt, Bc, and C are linearly interpolated
to account for the local kinematics between the compres-
sion and tension axes (Fig. 11c).



Fig. 8. Comparison of concentration profiles obtained numerically using the SBM [Case(1)] with similar numerical and experimental results reported in the literature for
particle migration in a Couette cell geometry at (a) 200 revolutions, (b) 12,000 revolutions, and (c) steady state.
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Finally, it should be noted that the tensor Rp0 is mapped back
from the local coordinate system to the general Cartesian coordi-
nate system using the transformation matrix Tm such that

Rp0

ex; ey; ez
¼ Tm �

Rp0

et ; ec; ez
� T�1

m ; ð42Þ
4.3. Validation

The above-described frame-Invariant two-dimensional SBM
was implemented in ‘‘OpenFOAM�’’. The validity of the code is
established in this section by comparing results generated using
the frame-invariant code to previous results obtained with the
frame-dependent code for the suspension flows in a wide gap Cou-
ette cell [36] and a channel of rectangular cross-section [23].

Note that, even though the flow of the suspensions in these
geometries is of the simple shear type, the intention is simply to
compare results in order to validate the new code for the transfor-
mation of the tensor Rp0 [Eq. (42)] between the local (et,ec,ez) and
the general (ex,ey,ez) coordinate systems. The comparison of results
is displayed in Fig. 12a for the suspension flow in a rectangular
channel and in Fig. 12b for the flow in a wide gap Couette cell.
As shown in both figures, results are on top of each other indicating
correct implementation of the frame-invariant model.
5. The SBM extended to include buoyancy effects

5.1. Conservation equations for buoyant suspensions

Developments in the previous sections dealt with the general
flow of neutrally buoyant suspensions for which the particle and
fluid phases are of equal densities. The question arises regarding
the effects the difference in density might have on particle migra-
tion in buoyant suspensions (qp – qf). Such situations occur, for
example, during viscous resuspension when a fluid flows past an
initially settled bed of heavy particles, to disturb and resuspend
the sediment layer. The problem was first reported by Gadala-Mar-
ia [16] and later investigated experimentally and numerically by
Leighton and Acrivos [19], Leighton and Acrivos [20,21], Schaflin-
ger et al. [41], Rao et al. [37]. To account for that phenomenon,



Fig. 9. (a) Comparison of q(/) profiles obtained using different functional relationships of gN; (b) comparison of concentration profiles at 200 and 12,000 revolutions obtained
numerically using different values of the SBM parameters [Case(1A), Case(2A), and Case(2B)] with experimental values reported in the literature for particle migration in a
Couette cell geometry.

90 T. Dbouk et al. / Journal of Non-Newtonian Fluid Mechanics 198 (2013) 78–95
which is the true general case in nature, buoyancy effects should
be included in the transport conservation equations [Eqs. (1)–(3)]
of the SBM.

Let the particle and fluid phase densities be designated by qi
p

and qi
f , respectively. Based on the particle phase volume fraction

(/), the mixture density q can be written as

q ¼ qp þ qf with qp ¼ /qi
p and qf ¼ ð1� /Þqi

f ð43Þ

The suspension mass and momentum conservation equations be-
come, respectively,

r � U ¼ 0; ð44Þ

and

r � Rþ Dqig/ ¼ 0; ð45Þ

where

Dqi ¼ qi
p � qi

f ; ð46Þ

is the difference in material densities, and g is the gravitational
acceleration. Moreover, inclusion of buoyancy effects in the trans-
port equation of the particle phase results in
@/
@t
þ U � r/ ¼ �r � jtotal; ð47Þ

with

jtotal ¼ j þ jg ; ð48Þ

where j is the migration flux defined previously in Eq. (11) and jg

the migration flux due to buoyancy, which is modeled as a Stokes
single particle velocity vstokes multiplying a hindered settling func-
tion f(/), given by

jg ¼ f ð/Þv stokes/; ð49Þ

f(/) is the same hindrance function defined previously in Eq. (8),
and vstokes is the Stokes velocity written in terms of the particle ra-
dius (a), the density difference (Dqi), the gravitational acceleration,
and the viscosity of the pure fluid as

vstokes ¼
2
9

a2Dqig
g0

; ð51Þ

To this end, the code developed for the frame-invariant model pre-
sented in the previous section was extended to include buoyancy
effects following the changes described above.



Fig. 10. Different types of flow in suspensions varying between shearing and extending.

Fig. 11. The compression and tension coordinate system in (a) pure extension and (b) simple shear flows; (c) variation of C, Bt, and Bc with the kinematic ratio q̂k .
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5.2. Validation: viscous resuspension and two-dimensional mixing

Further validation of the frame-invariant model and the addi-
tion of the buoyancy effects is presented here by simulating the
two-dimensional resuspension and mixing in a horizontal Couette
cell experimentally investigated by Rao et al. [37].

In the experiment, Rao et al. [37] used PMMA particles of radius
a = 397 lm and of density qi

p ¼ 1:18 g cm�3, suspended in a newto-
nian liquid (glycerol/water solution) of density qi

f ¼ 1:253 g cm�3

and of viscosity l0 = 0.588 Pa s. Measurements of the particle con-
centration profiles during the de-mixing of an initially 20% well-
mixed suspension were performed via the NMR imaging tech-
nique. The suspension was placed between two concentric hori-
zontal cylinders with the inner cylinder of radius Rin = 0.64 cm
and the outer cylinder of radius Rout = 2.54 cm (a wide-gap Couette
cell) where gravity, before rotating the inner cylinder, acted on the
suspension causing the particles to float toward the upper surface
of the outer cylinder qi

p < qi
f

� �
. Then, the suspension was sheared

horizontally in the Couette cell by rotating the inner cylinder and
the concentration profiles were measured.

The boundary conditions at the initial state and the two-dimen-
sional mesh in the xy-plane of this case are presented in Fig. 13a
and b, respectively. As shown in Fig. 13a, the initial bulk concentra-
tion over the domain of area S is computed as the area weighted
average of the initial concentrations in the two parts of the domain
of areas S1 = 0.34S and S2 = 0.66S and is given by

S1

S
/1�bulk þ

S2

S
/2�bulk ¼ /bulk-initial ¼ 0:20 ðS ¼ S1 þ S2Þ; ð52Þ

In the simulations, the parameters of the SBM were assigned the
following values:

gNð/Þ ¼ 1:08 /
/m

� �2
1� /

/m

� ��2
;gs ¼ 1� /

/m

� ��2
;

f ð/Þ ¼ 1� /
/m

� �
ð1� /Þa�1

/m ¼ 0:63;a ¼ 4; k2 ¼ 0:81 /
/m

� �
þ 0:66;

k3 ¼ �0:0088 /
/m

� �
þ 0:54; as ¼ 0

8>>>>>>>><
>>>>>>>>:

ð53Þ

The calculation time, using the grid system displayed in Fig. 13b, for
any single case was of the order of tcalc. � 6 h under a single CPU of
1GHz. The time step was fixed at dtcalc. = 0.005 that assured a cou-
rant number Cr < 1.



Fig. 12. (a) Comparison of the steady state particle concentration profile obtained
using both the frame-dependent and frame-invariant SBM for the suspension flow
in a conduit of rectangular cross-section at x

L ¼ 0:85 and for /b = 0.4; (b) Comparison
of the steady state particle concentration profile obtained using both the frame-
dependent and frame-invariant SBM for the suspension flow in a Couette cell
geometry for /b = 0.4.

Fig. 13. (a) Schematic of the physical domain and initial and boundary conditions
for the viscous re-suspension and two-dimensional mixing problem; (b) the two-
dimensional grid system used in the numerical solution of the viscous re-
suspension and two-dimensional mixing problem.
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Maps of the simulated concentration fields are compared in
Figs. 14 and 15 with similar ones obtained experimentally by Rao
et al. [37] via NMR imaging. Figs. 14a1–d1 and 15a1–d1 show
the NMR images of the / fields, while Figs. 14a2–d2 and 15a2–
d2 display the corresponding simulated fields obtained with the
modified SBM. Fig. 14 compares results at turn number 0, 45,
135, and 225 of the inner cylinder, while Fig. 15 presents similar
comparisons at turns 315, 405, 495, and 585. As shown good agree-
ments between the experimental and numerical results is ob-
tained. This can be seen more clearly if one, for example,
compares the thickness and position of the concentrated zone
being mixed with the suspending liquid (red tail in Numerical
SBM figures which is near the outer cylinder of the horizontal Cou-
ette Cell). Furthermore, an asymmetry in the concentration profiles
is observed, which is in accord with experimental measurements
and is due to buoyancy effects.

In Eq. (53) a value of 0.63 is used for the maximum packing vol-
ume fraction /m. To justify the use of this value, additional compu-
tations were performed to study the effects of the maximum
packing volume fraction /m on mixing in the suspension. For that
purpose, the values for the parameters in the SBM were fixed to
those in Eq. (53) except for /m and computations were performed
for two different values of 0.61 and 0.64 assigned for that param-
eter. The results generated are displayed in Fig. 16a1 and a2 for
/m = 0.61 and in Fig. 16b1 and b2 for /m = 0.64, respectively. Re-
sults after 45 turns of the inner cylinder are shown in Fig. 16a1
and b1 and after 135 turns in Fig. 16a2 and b2. It can be inferred
from these figures that numerically mixing occurs either faster or
solwer than in the actual experiments depending on the choice
of the maximum packing volume fraction value /m. A higher value
of /m results in mixing occuring earlier than reported experimen-
tally. This is an indication of the importance of /m in the numerical
simulations.

Results reported in Figs. 13 and 14, obtained with a value for
/m = 0.63, are the closest to the experimental NMR data. This is
easily seen by comparing both numerical and experimental pro-
files at the early stages of mixing (i.e. after 45 turns of the inner
cylinder shown in Fig. 14a2 and b2). The choice made for this last
value of /m stays always reasonable since it lies between 0.58 and
0.64 which are the only two values for /m reported by Rao et al.
[37] without any measurement. Moreover, the reported maximum
packing volume fraction /m for suspensions of hard spheres has
been varying in the literature between 0.58 and 0.72. This range
of /m was either by choice or based on some old measurements
of the settling-velocity in resuspension and batch sedimentation
experiments, or just by measuring the suspension viscosity, which
is fitted by a mathematical law that diverges at a certain value of
/m. The value of /m depends sharply on the surface roughness of
the hard spheres being studied. This surface roughness affects well
the interaction between the particles and thus the microstructure
orientation which induces a further effect on the global behavior
of the suspension (migration) during the flow [2].



Fig. 14. Comparison of the particle concentration maps obtained experimentally using NMR imaging (a1)–(d1) with numerical ones (a2)–(d2) obtained using the modified
SBM with buoyancy effects at [(a1), (a2)] 0, [(b1), (b2)] 45, [(c1), (c2)] 135, and [(d1), (d2)] 225 turns of the inner cylinder for the viscous re-suspension and two-dimensional
mixing problem.

Fig. 15. Comparison of the particle concentration maps obtained experimentally using NMR imaging (a1)–(d1) with numerical ones (a2)–(d2) obtained using the modified
SBM with buoyancy effects at [(a1), (a2)] 315, [(b1), (b2)] 405, [(c1), (c2)] 495, and [(d1), (d2)] 585 turns of the inner cylinder for the viscous re-suspension and two-
dimensional mixing problem.
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The capturing by the SBM of the different physical
features involved in this problem (Figs. 14 and 15) is good de-
spite the fact that a two-dimensional model is used to solve a
real three-dimensional problem (the Couette Cell here is consid-
ered of infinite length in the horizontal direction). Nevertheless,
it will be interesting to simulate more problems in the
near future using this two-dimensional frame-invariant SBM
(including buoyancy effects) in order to further study suspen-
sion flows of non-Brownian hard spheres in more complex
geometries.



Fig. 16. Numerical concentration maps obtained using the modified SBM with buoyancy effects, for the viscous re-suspension and two-dimensional mixing problem, after
[(a1), (b1)] 45 and [(a2), (b2)] 135 turns of the inner cylinder for /m = 0.61 [(a1), (a2)] and /m = 0.64 [(b1), (b2)].
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6. Closing remarks

The coefficients of the two-dimensional Suspension Balance
Model (SBM) of Nott and Brady [32] and Morris and Boulay [29]
were modified based on recently performed measurements [11].
In these measurements it was found that the normal stress differ-
ences in these suspensions are such that N2 < 0 and N1 > 0. This
finding of a positive N1 is in contradiction with all reported results
in the literature. However, this was found to have little effect on
the model predictions for the shear-induced particle migration in
simple shear flows. In addition, measured values resulted in a high-
er value of KN = 1.08 compared to the value KN = 0.75 that was used
previously by Morris and Boulay [29]. Moreover, it was also found
that k2 and k3 are not constants as it was assumed previously, but
are dependent on the volume fraction of particles /. The two-
dimensional SBM was implemented in ‘‘OpenFOAM�’’ [34] and
was shown to capture well the physical features involved in the
shear-induced particle migration in simple shear flows. In fact,
numerical results obtained with the modified coefficients suggest
that the simplification introduced by Morris and Boulay [29] of
assigning constant values to k2 and k3 in the SBM, rather than con-
sidering them functions of /, is appropriate. Furthermore, the va-
lue of the measured normal stress viscosity coefficient KN is not
far away from the one previously used in the SBM.

The two-dimensional model was extended into a frame-invari-
ant environment and implemented also in ‘‘OpenFOAM�’’. The
frame-invariant model, capable of dealing with general geometries,
was extended to include buoyancy effects. Results predicted by the
model indicated that it can capture well the physical features in-
volved in the shear-induced particle migration even in geometries
where the flow of the suspension is general, and where buoyancy is
present. This was demonstrated by solving numerically the two-
dimensional resuspension and mixing in a horizontal Couette Cell
problem and comparing simulation results with measured data. Fi-
nally, it can be stated safely that the two-dimensional model
described well the physical behavior of the different suspension
flows simulated in this paper, and could be tested further by sim-
ulating additional general flows in more complex geometries.
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