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Synopsis

This paper reports an experimental and numerical study conducted to investigate the behavior of
macroscopic monomodal concentrated suspensions �40%� undergoing a creeping torsional flow
between two rotating plates. An experimental technique based on the detection of tracers by
measurement of light absorption is developed and used to quantify the time evolution of the
particles concentration profiles. Contrarily to results reported in the literature, an outward
migration of the particles is observed. This shear-induced migration is confirmed by viscometric
measurements where an increase in the apparent viscosity of the suspension has been observed for
long periods of shear. Moreover, this increase is found to depend solely on the value of the applied
strain, which is consistent with a shear-induced migration phenomenon. Experimental results are
reproduced using a semi-quantitative model involving the balance of three diffusion fluxes
induced, respectively, by the gradient of viscosity �J��, the gradient of the collision rate between
particles �Jc�, and the flow curvature �Jr�. Steady and transient numerical profiles are obtained
using a finite volume approach. The coefficients of the diffusion fluxes �K� ,Kc ,Kr� are determined
by optimizing the numerical profiles to fit the experimental data. The ratios of these coefficients
�K� /Kc and Kr /Kc� are found to be independent of the flow geometry with their absolute values
being tightly coupled to the direction of particles drift. In particular, the migration coefficients in
the direction of the velocity gradient �in a cylindrical Couette flow� are found to be almost five
times larger than those along the direction of vorticity �in a rotating parallel-plate flow�. © 2005
The Society of Rheology. �DOI: 10.1122/1.2079247�
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I. INTRODUCTION

Hydrodynamic interactions between noncolloidal particles of a concentrated suspen-
sion flowing at low Reynolds number are responsible for macroscopically observed ef-
fects, such as viscous resuspension �Leighton and Acrivos �1986��, particle segregation,
and particle migration �Leighton and Acrivos �1987��. This latter effect—often referred to
as shear induced migration—was first observed by Karnis et al. �1966� who reported
blunted velocity profiles for suspensions flowing through a tube. However, the particles
volume fraction profiles were not quantitatively determined.

Later, Gadala-Maria and Acrivos �1991� reported that the apparent shear viscosity of a
concentrated suspension of non-Brownian neutrally buoyant particles flowing in a Cou-
ette viscometer decreases with time during prolonged shearing at low shear rates. Leigh-
ton and Acrivos �1987� attributed this decrease to a shear-induced migration of particles
across the gap from high shear stress regions to low shear stress regions. Several experi-
mental observations using different techniques confirmed that particle migration often
takes place in flowing suspensions. Using nuclear magnetic resonance imaging �NMRI�,
Abbott et al. �1991� found that particles migrate away from the inner cylinder toward the
outer one where the shear rate is lower. They measured a migration rate proportional to
the shear rate and to the 2.7±0.3 power of the mean particle diameter of sieved particles.
Chow et al. �1994� and Phillips et al. �1992� carried out experiments in Couette flow
geometry with a large reservoir. Their NMRI profiles showed similar results concerning
the radial migration. Furthermore, Chow et al. �1994� noticed that during shearing, par-
ticles moved to the reservoir where they experienced a lower shear rate.

Other experiments have been performed for pressure driven flows where the concen-
tration profiles have been determined either by NMRI �Hampton et al. �1997�; Sinton
et al. �1991�; Altobelli et al. �1991�� or by laser Doppler anemometry �Koh et al. �1994�;
Lyon and Leal �1998��. All of these studies reported the demixion of the initially homog-
enous suspension and a blunted velocity profile associated with an increase of the par-
ticles concentration at the center of the conduit.

The interpretation of the shear-induced migration is still controversial. Two notewor-
thy theories have been proposed to explain the irreversible motion of particles under
inhomogeneous shear rate. The first one, introduced by Jenkins and McTigue �1990�, is
based on the conservation of mass and momentum and the fluctuational energy for the
particular phase. This approach inspired Nott and Brady �1994�—who linked the suspen-
sion pressure to the fluctuational motion of particles in order to introduce nonlocality in
the description of suspension behavior and remove the difficulties in regions of zero-
shear rate. In this model, they derived an energy balance equation and solved it simulta-
neously with the momentum and the mass conservation equations for both particle and
suspension phases, also they incorporated normal stresses in the constitutive equations.
Therefore, there is no diffusive motion of particles which are considered as a material
phase, and migration occurs through the requirement that the macroscopic pressure is
constantly perpendicular to the direction of mean motion. However, it is rather difficult to
implement this model in a numerical solver due to the lack of an explicit convection-
diffusion equation for the volume fraction. Even with the improved boundary condition
suggested by Morris and Brady �1998� to prevent the unrealistic increase of particle
concentration on solid surfaces, numerical predictions did not agree well with experimen-
tal data �Fang and Phan-Thien �1999��. In a similar attempt Mills and Snabre �1995�
introduced nonlocality through the formation of a particle network and ascribed migra-
tion to long-range hydrodynamic interactions and spatial variation of the local stress
tensor.
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Inspired by Nott and Brady‘s approach �1994� as well, Morris and Boulay �1999�
derived a rheological model for steady shear of noncolloidal suspensions including the
normal stresses. They established an equation that may predict the conditions required for
a particle’s migration in curvilinear flows in terms of normal stresses ratios that are
independent of the particle volume fraction. In this case, the entire dependence on par-
ticle volume fraction is captured by a “normal stress viscosity” and the nonlocality aspect
is introduced via a supplementary isotropic stress that is a function of the shear rate
gradient and the normal viscosity.

On the other hand, a class of phenomenological models have been developed to
describe the shear-induced migration. Leighton and Acrivos �1987� attributed migration
to irreversible interactions due to the particles surface roughness. Indeed, earlier experi-
ments by Arp and Mason �1977� showed that even a slight surface roughness �10−4

radius� could lead to asymmetric trajectories of two colliding spheres. In their model,
Leighton and Acrivos �1987� assumed the existence of two migration fluxes. The first
one, called the collision flux, represents the drift of particles toward regions where the
collision rate is lower and is given by

Jc = − Kca
2� � ��̇�� , �1�

where a is the particle radius, �̇ is the shear rate, � is the concentration of the solid
phase, a� ��̇�� is the variation of the collision rate over a distance of the order of a, and
Kc is the dimensionless diffusion coefficient of the collision flux.

The second flux is the viscosity flux, which can be present if there exists a particle
concentration gradient and thus through a spatial variation of the viscosity. This particle
flux is directed from the high to low viscosity regions. Assuming that the drift velocity is
proportional to the change in viscosity over a distance O�a�, the viscosity flux J� may be
written as

J� = − K�a2�̇
�2

�
� � , �2�

where K� is the dimensionless diffusion coefficient of the viscosity flux, and � the
effective viscosity of the suspension.

However, the above model failed to explain why Chow et al. �1994� observed an
outward migration in cone plate geometry, in spite of a constant shear rate. Furthermore,
Krishnan et al. �1996� and Chapman �1990� noted that in curved geometries one could
not ignore the influence of the streamlines curvature on particles motion. Based on these
observations, Krishnan et al. �1996� proposed a third flux called the curvature flux, Jr to
account for this effect. Since particles interacting in a shear field with curved streamlines
migrate toward regions of lower curvature, they expressed the outward curvature flux as

Jr = + Kr�̇a2�2

r
. �3�

The plus sign indicates that this flux is in the opposite direction of the previous ones. The
balance of the above three fluxes leads to the steady spatial distribution of the particles.
In this approach, the dimensionless diffusion coefficients Kc, K�, and Kr are adjustable
parameters that have to be evaluated by comparing theoretical predictions against mea-
sured experimental concentration profiles. They represent the relative rates of the migra-
tion mechanisms and the final steady-state concentration profiles are uniquely determined
by their ratio. This approach has the advantage of yielding relatively simple expressions
that are capable of describing the complex phenomena associated with the shear-induced
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migration in concentrated suspensions. Although the diagonal normal stresses are not
explicitly represented in this model, they are “indirectly present” through particles aniso-
tropic distribution. In fact upon shearing, nonhydrodynamic forces are developed in the
system due to surface roughness. This leads to flow asymmetric interactions and therefore
to an anisotropic microstructure. A nonsymmetric stress field is then induced and propa-
gates throughout the fluid producing an imbalance in the bulk normal stresses.

Thus, studying the migration phenomenon through particles interactions and displace-
ments captures the essential features of the particles’ behavior and focuses on the origin
of shear-induced migration itself.

Up until now, no clear evidence for particles’ migration in a rotating parallel-plate flow
has been found and it is currently assumed that the outward curvature flux quite exactly
balanced the inward collision flux. Such a conclusion implies equal diffusion coefficients
�Kr=Kc� without any convincing argumentation. This paper reports on an experimental
and numerical study to investigate particles’ migration in concentrated suspensions flow-
ing in a parallel-plate viscometer. The method is accurate enough to determine even low
concentration gradients. We show first experimental evidence on particle migration in
parallel-plate geometry. From the steady concentration profiles, the relative magnitudes
of the fluxes, or equivalently the associated diffusion coefficients, are determined. The
curvature flux is shown to have a higher impact on particles’ drift than the collision flux.
In addition, shear-induced diffusion coefficients are proven to be spatially anisotropic
and, therefore, to depend greatly upon the particles’ drift direction in curved geometries.
Results are validated by demonstrating that the coefficient ratios, Kr /Kc and K� /Kc,
determined in a parallel-plate geometry, represent the concentration profiles obtained by
Phillips et al. �1992� in Couette flow geometry.

II. EXPERIMENTAL TECHNIQUES

A. Experimental procedure and setup

Several experimental techniques have been used to study the flow of concentrated
suspensions including NMRI, laser Doppler anemometry, and ultrasound Doppler. How-
ever, most of these techniques require the implementation of cumbersome and expensive
materials and have limited resolutions. To circumvent the problems encountered by pre-
vious experimental methods, a very simple and highly effective technique based on the
detection of tracers by the measurement of light absorption is developed. The suspension
is studied in a home-made shear cell depicted in Fig. 1. It consists of two 10 cm diameter
glass disks, the upper disk is fixed and the lower one is driven at constant angular
velocity by an engine. The distance between the disks is controlled by a micrometer with
an accuracy of about 20 �m and is set to one millimeter. In the conducted experiments,
the angular velocity of the lower plate ranged between 18 rpm and 150 rpm, which
corresponds to values of the Reynolds number between 8�10−4 and 7�10−3, respec-
tively. Thus, the flow is laminar and inertial forces are negligible as compared to viscous
dissipation. The light source is a laser diode �Thorlabs Inc.� with a tuneable power up to
4 mW and a wavelength of 633 nm. The emitted light is detected by a photodiode
�FDS100-Thorlabs Inc.� with a large active area of 13 mm2. The laser beam and the
photodetector are moved together in a radial direction from the outer edge of the disks
toward the center, and the voltage signal of the photodiode is recorded. The initially
loaded suspension is scanned in order to verify that the particle concentration has re-
mained homogeneous during the filling process. Then, to shear the suspension, the lower
disk is rotated at a constant spin rate. After a lapse of time, the rotation is switched off
and the suspension is scanned again.
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The light emitted by the laser diode is partially absorbed by the tracer particles and
then detected by a photodiode that converts it into an electrical signal. The light source
and the photodetector are mounted on a step-by-step engine of constant velocity v
=0.697 mm/s, which allows one to scan the cell along a specific radius. However, due to
the presence of the axis of rotation, it is not possible to scan the central region of the cell
�R�20 mm�. Therefore, the acquisition is made between R1=20 mm and R2=45 mm.

In order to control the temperature, the device is placed in a thermostated box made of
wood covered with 2 cm thick polyurethane sheets. The box is heated by a radiator
connected to a thermostatic bath �Haake-K�, which is controlled by a Pt-100 resistance
thermometer located on the surface of the upper disk. To improve the homogeneity of the
temperature in the box, a fan is placed behind the radiator.

B. Suspension

The suspension is made of 35% clear poly�methylmethacrylate� spheres �PMMA� and
only 5% of tracer particles. The particles, obtained from ICI Acrylics, have a density of
1.18 g/cm3 and, after sieving, their diameter is bounded between 200 and 250 �m. Their
surface roughness has been measured by electronic microscopy. One can see in Fig. 2, the
existence of small excrescences that do not exceed 10−2 to 10−3 the radius but are suffi-
ciently big to break the symmetry of the trajectory of two colliding particles. The tracers
are obtained by infiltration of a PMMA adapted dye inside the clear particles. The dye
�Macrolex blau� is dissolved in acetone, then water is added in order to minimize the
corrosive effect of the solvent. The particles are then soaked in the mixture for 2 mins
under constant mixing, and then rinsed thoroughly and dried in order to eliminate any
residual content of the solvent. This process guarantees a persisting color inside the
particles during long shear experiments and prevents the alteration of the particles surface
aspect.

The suspending fluid must satisfy several constraints. First, it must be rather transpar-
ent because the followup of particles is done by light transmission. Moreover, to avoid

FIG. 1. Experimental setup for the observation of particles migration in rotating parallel-plate flow.
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sedimentation, centrifugal effects, and multiple scattering, the fluid should have the same
density and refractive index as the particles. To fufill these conditions, a three-component
liquid, similar to the one used by Krishnan et al. �1996�, constituted of TritonX-100
�79.915%�, ZnCl2 �13.39%�, and water �6.695%�, is selected. The main disadvantage of
this liquid is its low superficial tension which results in the formation of a multitude of air
bubbles when it is mixed. As a consequence, it is necessary to eliminate these bubbles by
ultrasonic degassing before each experiment.

C. Optimal operating temperature

The refraction index of the suspending liquid is very sensitive to temperature. There-
fore, the matching depends on the accuracy with which the temperature of the suspension
is determined and kept constant during the experiment. Moreover, it is crucial that the
refraction index be matched at the particular laser wavelength used in the experiment,
namely 633 nm. To exactly determine the temperature at which the transmitted light
through the suspension maximizes, the transmission rate as a function of temperature
�T=29 °C–38 °C�, and the wavelength was measured using the experimental device
depicted in Fig. 3�a�.

As shown in Fig. 3�a�, the studied suspension �1� is laid on a transparent slide and then
introduced into a heating cell �2� connected to a temperature regulating system �8�. The
heating cell is put along with the sample on an Olympus BH-2 microscope �3�. The
transmitted light through the sample is collected via an objective and then analyzed by a
monochrometer �4� adapted for the visible range �0.5 �m–0.7 �m�. The value of the
analyzed wavelength can be adjusted by modifying the position of the grating, which is
controlled by an appropriate mechanical device �5�. The analyzed light reaches a photo-
multiplicator �6�, and is then converted into an electrical signal by an HP multimeter �7�.
For a fixed temperature, T, measurements of transmitted light were realized for wave-
lengths between 500 and 750 nm. After every measurement, the value of the transmission
rate for �=633 nm is selected. Figure 3�b� shows that the transmission at 633 nm maxi-
mizes at T=32 °C.

This temperature is high enough for the viscosity of the suspending liquid to be rather
low �1.8 Pa s�. However, keeping the suspension at this temperature for several hours

FIG. 2. Electronic microscopy picture of the surface of a PMMA particle.
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implies the risk of evaporating the suspending fluid and mostly the water contained in it.
This change in the fluid composition will modify the refraction index of the liquid. To
avoid this problem, we built a system that can guarantee an airtight measure cell. This
ensured reproducible measurements for short experiments �4–5 h�. For longer experi-
ments, we observed an alteration of the turbidity of the sheared suspension which means
that this system is not effective for long shearing, it must be improved in order to have a
complete sealing of the cell.

D. Turbidity experiments

In this section, it will be shown that neglecting scattering by the clear particles is
justified considering the influence of the tracers on the transmission of light through the
suspension.

The transmitted intensity by a suspension at time t=0, Is
0, is given by

Is
0 = I0e−kx�m, �4�

where I0 is the intensity transmitted by the suspending fluid, �m is the mean volume
fraction of the particles, x is the suspension width, and k is a coefficient depending on the
particles size and absorption. In order to avoid errors due to the attenuation of the beam
by reflection on the plates or some parallelism defaults, the transmitted intensity at an
instant t , Is

t , is normalized by the first acquisition Is
0. The transmission rate is defined as

T= Is
t / Is

0 and the value of the local concentration is calculated as a function of T, �m,
and x:

T =
Is

t

Is
0 = ekx��m−�� ⇒ ��r,t� = �m −

1

kx
ln�T� . �5�

Figure 4 compares the variation of transmission, as a function of the concentration of
dyed particles, in two suspensions: The first one �Suspension I� contains 20% of clear
particles and dyed particles whose concentration varies between 1 and 10%, while the
second one �Suspension II� contains only dyed particles with the same volume fraction as
in Suspension I.

We note that Suspension �I� presents a higher absorption than Suspension �II�. How-
ever, this attenuation does not exceed 5% of the total absorption, which implies that the
absorption of light by the tracers dominates widely the scattering by the white particles.

FIG. 3. �a� Experimental device for the measurements of transmission at �=633 nm. �b� Transmission of light
vs temperature for �=633 nm through a 40% concentrated suspension.

1435Particle migration in a suspension



III. EXPERIMENTAL RESULTS

A. Transient profiles of particles volume fraction: Light transmission
measurements

The transmission measurements are made at t=0, 30, 60, 120, and 210 min for �̇
=40 s−1 and �m=40%. Figure 5 presents the initial and steady-state concentration profile
reached after 210 min corresponding to a strain of value 5�105 and an inhomogeneous
particle concentration profile. A significant migration of the particles is observed from the
center to the periphery of the disks where the shear rate is higher and streamlines have
lower curvature. The increase in volume fraction at the edge is almost 10% of its initial
value. The complete variation ���max−��min� of particle concentration across the mea-
sured area is of 18%. The experimental profile shows local variation of the volume
fraction values. These fluctuations have various origins as the local variation of the

FIG. 4. Turbidity measurements versus the concentration of tracers particles for a suspension containing only
the tracer particles �II� and a suspension containing the tracers plus 20% of clear particles �I�.

FIG. 5. Steady-state profile reached after 210 min for �=40% and �̇=40 s−1.
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refractive index of the suspension or fluctuations resulting of the finite particle size effect
fitting across the gap and short time oscillations of the laser beam. In any case, these
variations in local particle concentrations are bounded between 1.7 and 5%, which is
sufficiently lower than the 18% observed across the disk. In Couette flow, the experimen-
tal profiles obtained by Phillips et al. �1992� show almost a 40% absolute variation of the
particles volume fraction. Thus, the intensity of the migration in this geometry is almost
twice that in parallel plate which may explain why, in NMR measurements, authors
succeeded in noticing shear-induced migration for the former and not for the latter ge-
ometry.

B. Torque measurements

Viscometric measurements are carried out in the same geometry using a Carrimed
CSL100 rheometer. The suspension used for torque measurements consists of particles of
smaller diameter 10±1 �m �Bangslabs� concentrated up to 40% in the same suspending
fluid as in the light transmission experiments. The particles used in this set of experiments
are smaller than the ones used in the light transmission experiments as the rheometrical
device is smaller in this case. Besides, these small particles are highly monodisperse
which will prevent any false interpretation of the results due to particles size segregation.
The suspension is introduced into the gap �fixed at 500 �m� between the two parallel
disks. It is very sensitive to moisture, evaporation, and temperature fluctuations. Its be-
havior may change during the experiment if the composition of the suspending liquid
changes. Therefore, we had to isolate the setup completely, and carefully control the
temperature to a precision of 0.1 °C.

The torque applied on the upper disk is given by

C = �
0

R

2	r2
�r�dr = 2	
�

h
�

0

R

����r��r3dr . �6�

Figure 6 illustrates the general trends of the time dependent normalized torque during the
flow and the effect of shear rate on the viscosity curve.

FIG. 6. Normalized viscosity of the suspension vs time for �=40% and �̇=40 s−1.
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After 16 h of shearing at 40 s−1, the torque has increased by about 43% of the initial
value indicating an increase in the volume fraction of the particles at the periphery and
thus an outward shear-induced migration. To confirm that this increase is related to a
migration phenomenon, several viscometric measurements have been made with different
shear rates, and the measured normalized variation of the applied torque as a function of
the normalized strain is plotted in Fig. 7. In particular, it is seen that the increase in the
torque is identical for all shear rate values ��̇=25 s−1, 30 s−1, and 55 s−1� and depends
only on the applied strain. This fact is reflected by the unique curve obtained. These
results are directly compared in Fig. 7 with the torque calculated from the values of ��r�
obtained through light transmission experiments via the viscosity model. The curves
show similar behavior in both experiments, however, a shift toward low torque values is
observed for the calculated torque in light transmission experiments. An explanation
would be the rheological law used to calculate the viscosity values. In fact, this law might
not accurately describe the behavior of the studied suspension. A more precise estimation
of the maximum packing volume fraction and the exponent would most probably lead to
better estimation of the torque. Nevertheless, these results confirm that shear induced-
migration observed in light absorption technique corresponds to an increase of the torque
with the applied strain.

These results are contradictory to experimental observations reported in the literature
in this geometry. Indeed, the previous studies concerning the migration of particles in
monodisperse suspensions in parallel-plate geometry did not reveal any significant
change in the particle distribution in parallel-plate flow. However, it should be mentioned
that Chow et al. �1994� have made the only direct measurement of the concentration
profiles in this geometry using NMRI technique, which is not accurate enough to reveal
such a low concentration gradient as air bubbles give the same signal as solid particles.

FIG. 7. Normalized torque values vs normalized strain values. Comparison between rheological tests and light
transmission experiments.
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Furthermore, the migration is very slow and its long characteristic time explains why
Chapman �1990� did not observe any migration during his rheological measurements.

IV. NUMERICAL MODELING

This section presents the numerical calculation procedure used to compute the con-
centration profiles based on the model described in the Introduction. This model is easily
adapted to predict particles behavior in various systems and flow patterns, thereby serv-
ing as a handy tool to design and analyze experiments.

After the presentation of the constitutive equations, a brief description of the numeri-
cal method and algorithm used in the simulations is given. The benchmarking between
the numerical results and experimental profiles is then discussed in Sec. IV.

A. Basic equations

1. Conservation equations

Though the particle migration leads to a nonuniform distribution of particles across the
flow field, the density of the suspension remains constant since the particles are neutrally
buoyant. Considering the suspending fluid as Newtonian and incompressible, the total
stress in the suspension is given by


 = �����̇ . �7�

The mass and momentum conservation equations can be written as

� . v = 0, �8�

�

�t
��v� + � . ��vv� = � . �� � v� − ��P� + S �9�

where v is the velocity vector, � is the viscosity of the suspension, P is the pressure, and
S is the source term, which includes all the volume forces, applied to the suspension. The
convection term in this equation is not linked to the experimental work achieved in this
study as we are concerned with laminar flow fields. However, the equation is kept in this
form in order to be implemented for more general flow fields in the numerical solver.

2. Diffusion equation

Based on the expressions of the diffusive fluxes described in the Introduction, the time
evolution of the solid particles concentration profile is given by

��

�t
= −

�

�r
�Kc�a2 � ���̇� + K�a2�̇

�2

�
� � − Kr�̇a2�2

r
� . �10�

The momentum and concentration equations are coupled through a concentration depen-
dent relative viscosity. Various models for the viscosity of concentrated suspensions are
available �Kreiger and Dougherty �1959�; Probstein et al. �1994�; Cohen et al. �1997��,
the particular choice of any of these models is not expected to affect the solution quali-
tatively. Using the empirical expression for the viscosity suggested by Krieger and
Dougherty �1959�, the relative viscosity of the suspension is given by
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�s = �1 −
�

�m
	−1.82

, �11�

where �m is the maximum packing concentration for a monodisperse suspension which is
assumed to be equal to 0.68.

At steady state, ��
�t =0 hence,

1

�̇
� �̇ +

1

�
� � +

K�

Kc

1

�
� � −

Kr

Kc

1

r
= 0. �12�

Integrating Eq. �12�, one obtains the following relation between the local variables
�r ,� ,� , �̇� and their boundary values �Rw, �w, 
w, and �̇W�:

�̇�

�̇w�w

= ��w

�
	k�� r

Rw
	kr

, �13�

where k�=
K�

Kc
and kr=

Kr

Kc
. To calculate the transient profiles, Eq. �10� is solved using the

finite volume method outlined next.

B. Numerical method

Numerical profiles are generated using a finite volume technique devised by Patankar
�1980�. Finite volume methods have gained a wide popularity due to their conservative
properties and modest storage and computational effort requirements making it possible
to simulate complex problems on desktop workstations. The starting point of this method
is to write all governing equations in the form of a general transport equation for the field
variable � as

�����
�t

+ � . ��v�� = � . �� � �� + S�, �14�

where ��� is the diffusion flux of the scalar variable � , S� is the source term, and
�v� is the convection flux. The expressions for �, �, and S� for a particular meaning of
� can be deduced from the parent equation.

In this procedure, the solution domain is subdivided into a number of control volumes
with a grid point located at their centers. Integrating Eq. �14� over a cell of volume V
bounded by Surface A and applying the divergence theorem, the following conservation
equation in integral form is obtained:

�
V

�

�t
����dV + 


A

��vi�� . nidS = 

A

����� . ndS + �
V

S�dV , �15�

where n is the outward unit normal vector.
With suitable profile interpolation in each coordinate direction for the variables whose

values are unknown on the control volume faces, Eq. �15� is transformed into the fol-
lowing algebraic equation:

aP
t �P

t = �
nb

anb
t �nb

t + aP
0 �P

t−�t + bt, �16�

where the subscript P represents the current node, the subscript nb is the neighboring
nodes to the P grid point, t is the current time, �t is the time step, and the coefficients aP

t ,
anb

t , and aP
0 are found from grid geometry and the current kinematics. A similar equation

results at each P grid point and the set of these equations forms a system of nonlinear
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algebraic equations that is solved iteratively using a line-by-line Thomas algorithm
�Patankar �1980��.

V. DETERMINATION OF THE DIFFUSION COEFFICIENTS

In this section, the theoretical predictions obtained by solving the phenomenological
constitutive equation are compared against the experimental concentration profiles. At
steady state, the tuning parameters are the coefficient ratios k�=K� /Kc and kr=Kr /Kc. In
order to fit their experimental profiles, Phillips et al. �1992� did not take into account the
existence of the curvature flux, hence the only influencing parameter considered was
K� /Kc, which was found to be of 0.66. On the other hand, Krishnan et al. �1996� did not
observe significant spatial variation of particles volume fraction and hence suggested that
the inward collision flux balances quite exactly the outward curvature flux which implies
that Kr�Kc. Tetlow et al. �1998� discussed the dependence of the magnitude of K� /Kc on
the local particle volume fraction and found that for concentrated suspensions flowing in
a wide Couette device, this ratio can be modeled as a linear function of the local particle
concentration. However, they did not take into consideration the influence of streamlines
curvature on particle drift in adjusting their parameter and, therefore, none of the reported
values can model our experimental results.

A. Parallel-plate flow

In a parallel-plate device, the shear rate varies from zero at the center of the flow �r
=0� to its maximum value at the edge �r=R0� , �̇0:

�̇ =
r�

H
, �17�

where � is the angular velocity of the rotating plate �the upper one being fixed�, and H
is the gap width between the two plates.

The boundary condition on � is given by the conservation of the mean volume

fraction of particles through the gap: �̄= 2
R0

2 
0
R0r��r�dr, and a no flux condition at the

edge �n.J=0�. All length scales are normalized by R0, velocities by R0�̇ and time by
�R0 /a�2 / �̇0Kc.

1. Steady-state profile

The values of kr and k� are obtained by fitting the experimental steady concentration
profile with the numerical solution of Eq. �10�. Figure 8 shows that the best numerical fit
is obtained for kr=Kr /Kc=1.95 and k�=K� /Kc=2.1.

2. Transient profiles: Determination of Kc

The transient profiles allow determining the value of Kc, the collision flux coefficient,
and therefore to estimate the values of the three diffusion coefficients since their ratios
are already known from the steady profiles. The simulations are performed using a di-
mensionless time step �t̂=3.2�10−5 /Kc. For a given transient experimental profile, a
search is conducted to find the best numerical fit. Then identifying the numerical and
experimental times, the value of Kc is evaluated and eventually those of Kr and K�.

At a strain of 1.4�105�texp=60 min�, the numerical fit is given for a time t=200/Kc

�see Fig. 9�. Comparing numerical and experimental times, one deduces the value of the
collision diffusion coefficient: t� texp⇒Kc�0.05. Therefore, the migration coefficients
in this geometry are found to be 0.105 for K� and 0.0975 for Kr.
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The outward observed migration as well as the coefficients values indicate that the
streamlines’ curvature has a higher impact on the particle migration than on the shear rate
gradient.

The relative magnitude of the migration coefficients, kr and k�, is expected to be the
same for any rotational geometry. In particular, the results obtained in rotating parallel-
plate flow should fit the steady profiles observed in Couette flow. To confirm it, numerical
predictions in Couette flow using current parameters are compared next against experi-
mental measurements reported by Phillips et al. �1992�.

B. Couette flow

A Couette flow between two concentric cylinders ��=Ri /R0� separated by a large gap
is considered. The inner cylinder rotates with an angular velocity �, while the outer

FIG. 8. Comparison between the steady experimental profile obtained in parallel-plate geometry and the best
numerical fit for �=40%, Kr /Kc=1.95, and K� /Kc=2.1.

FIG. 9. Comparison between the transient experimental profile at �=1.4�105 and the best numerical fit with
Kc=0.05, K�=0.105, and Kr=0.0975.
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cylinder is fixed. It is assumed that the cylinders are long enough for the flow to be
unidirectional and that the variation of the particles concentration is only radial. The
radial component of the momentum equation in cylindrical coordinates can be written as

1

r2

�

�r
�r2
r�� = 0 ⇒ 
r� =

C

r2 , �18�

where C is an integration constant which depends on the geometry. The local shear rate
is given by

�̇ = C/r2� . �19�

C is evaluated by writing �̇ in terms of the velocity v� to obtain:

�̇ = r
d

dr
�v�

r
	 =

C

�r2 . �20�

Integrating Eq. �20� from the inner to the outer wall and with no-slip conditions at the
solid boundaries yields:

C =
− �

�
�R0

R0

�1/r3��dr

, �21�

with the shear rate computed using Eqs. �20� and �21�, Eq. �10� is solved using the finite
volume numerical procedure described earlier to predict the time evolution of the con-
centration profiles.

In the following, using the previously established coefficients ratios, theoretical pre-
dictions are compared against the experimental profiles obtained by Phillips et al. �1992�
for a suspension flowing in a large gap Couette device with an average volume fraction
of 55% and average particle diameter of 675 �m.

1. Steady-state profile

Substituting �̇ in Eq. �13� by its expression given by Eq. �20�, we obtain an equation
with two tuning parameters k� and kr

�

�w
= ��w

�
	k�−1� r

Rw
	kr+2

. �22�

Using Krieger’s and Dougherty empirical expression for the relative suspension viscosity,
the following expression for the steady concentration profile is derived:

�

�w
= �1 − �w/0.68

1 − �/0.68
	1.82�1−k��� r

Rw
	kr+2

. �23�

Equation �23� is used in conjunction with the following particles average volume faction
condition:

�̄ =
2

Rmax
2 − Rmin

2 �
Rmin

Rmax

r��r�dr �24�

to iteratively update the particle concentration at the walls ��w� during the numerical
solution of Eq. �10�.

Phillips et al. �1992� conducted NMRI measurements on the same geometry and
performed simulations of the steady-state and transient profiles. The experimental results
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definitely show the presence of shear-induced migration through highly nonuniform par-
ticle concentration profiles at steady state, with maximum concentration near the outer
wall. The steady state was reached after 800 revolutions of the inner cylinder.

Figure 10 presents a comparison between Phillips et al. �1992� experimental profile
and current numerical predictions using the diffusion coefficient ratios �kr=Kr /Kc=1.95
and k�=K� /Kc=2.1� determined in parallel-plate geometry. The very good agreement is
a validation of the values obtained for both ratio values, kr and k�, and confirm as well
that experimental profiles obtained with transmission light technique are correlated to
profile obtained with NMR on a different rotational geometry by the same diffusion
coefficient ratios.

2. Transient profiles: Determination of Kc

Figure 11 presents the time evolution of the concentration profiles obtained with an
integration dimensionless time step of �t̂=1.6�10−5 normalized by the characteristic
time 
= �R0 /a�2 /Kc� with a /R0=2�10−2 and �=17 rpm. Numerical profiles show par-
ticle migration from the inner cylinder toward the outer cylinder and very weak evolution
of the concentration profiles after 640 revolutions. The steady state is independent of �,
the rotational velocity of the inner cylinder, only the number of revolutions n=�t /2	 is
significant.

Comparing current predictions to Phillips et al. �1992� transient profiles, we obtain the
best fit of the experimental data as Kc�0.25—which leads to a viscosity coefficient K� of
0.525 and a curvature coefficient Kr of 0.487. For these values, it is possible to numeri-
cally reproduce all transient experimental profiles for n=50, 100, 200, and 800 revolu-
tions.

3. Discussion

The opposite directions of the collision and the curvature fluxes explains why, in a
torsional flow, the magnitude of the migration is much smaller than in a Couette flow
geometry. Furthermore, in the former geometry, the migration is much slower. Indeed,
despite the fact that the coefficient ratios used to fit the steady-state profiles in Couette

FIG. 10. Benchmarking between Phillips et al. �1992� experimental steady profile in Couette flow ��� and the
numerical steady profile �—� obtained with Kr /Kc=1.95, K� /Kc=2.1 and �=55%.
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and parallel-plate flow are the same, the absolute value of the three coefficients are
clearly different. The diffusion coefficients are about five times higher in Couette flow
than in parallel-plate geometry. This is not a surprising result since the diffusion coeffi-
cients values are expected to depend on the particles’ interaction rate and particles’
deviation after each collision—which is very different whether the particles drift is par-
allel or perpendicular to the plane of shear.

In fact, particles’ migration occurs in the plane �r ,��, along the velocity gradient
direction, in Couette flow where the particles’ drift is higher than that in the direction of
vorticity, which is the particles’ drift direction in parallel-plate flow. This observation may
be connected to previous studies concerned with self-diffusion process of colloidal and
non-Brownian spheres. These include the experimental work for shear-induced self-
diffusion of non-Brownian particles �Leighton and Acrivos �1987�; Breedveld et al.
�1998��, computations via Stokesian dynamics simulations �Bossis and Brady �1987�;
Pesche �1998�; Phung �1993�� and the theoretical work preformed by Brady and Morris
�1997� and da Cunha and Hinch �1996�. The latter performed pair trajectory calculations
to evaluate both the shear-enhanced and down gradient diffusivities in a dilute sheared
suspension of spheres with small-scale surface roughness. They, predicted that the diffu-
sion in the direction of velocity gradient �D�� is almost one order of magnitude greater
than that in the direction of vorticity �D��. Brady and Morris �1997� analyzed the pair
distribution function under the combined influence of weak Brownian motion and an
interparticle force of hard-spheres type. The magnitude of the predicted diffusivities in
the vorticity direction were very similar in both approaches, and both studies found the
diffusivity in the velocity gradient direction to be much larger than in the vorticity
direction. On the other hand, experimental measurements of particles self-diffusivity in
concentrated suspensions �Breedveld et al. �1998�� have displayed a ratio of about 1.7
between the two coefficients. It is noteworthy that the coefficients of self-diffusion are
quite different from the shear-induced collective diffusivity especially at high concentra-
tions where the particles interactions become important. This may explain the scatter with
the value obtained for the ratio of both coefficients in this study comparing to the ones
estimated through theory or experimental work concerned with self-diffusivity. However,

FIG. 11. Numerical fit of Phillips et al. �1992� experimental transient profiles in Couette flow device.

1445Particle migration in a suspension



even if self-diffusion and collective diffusion represent distinct physical processes, we
believe that they have the same origin which is particles’ drift due to surface roughness or
equivalently short-range repulsive force.

VI. CONCLUSION

We present, in this study, first experimental evidence of the outward migration of
particles in concentrated suspensions submitted to a flow between two parallel plates. The
migration observed in this study implies that the outward curvature flux has a greater
amplitude than the inward collision flux.

The experimental method based on light absorption is highly sensitive on tracers’
volume fraction and allow the observation of a concentration gradient around 18% after
210 min of continuous shearing. This result is confirmed with the torque measurements
on similar suspensions using a rheometric standard device with an accurate control of the
temperature. The behavior of the macroscopic suspension was only strain dependent
which confirmed a migration phenomenon.

Due to the low values of the diffusion coefficients in this geometry and to the antago-
nism in the flux directions, the migration characteristic time is much longer than in a
Couette flow, and the steady particles concentration gradient is significantly lower. This
fact may explain why previously reported experiments in the literature did not reveal any
migration in this geometry.

Using the phenomenological model, we determined the values of the three diffusion
coefficients through numerical simulations in both the parallel-plate flow �Kc�0.05,
K��0.105, and Kr�0.0975� and Couette flow �Kc�0.25, K��0.525, and Kr�0.487�.
Furthermore, it was shown that their ratios �K� /Kc=2.1 and Kr /Kc=1.95� fitted also the
steady concentration profiles in both geometries. This result shows that the particles
migration is spatially anisotropic, its magnitude being highly related to the particles drift
direction. This model is quite easy to implement in a numerical solver and describes quite
well the complex behavior of suspensions through particles interactions, even if it lacks
possibilities when the general flow fields are considered.

These are promising results for monodisperse suspensions. Extensive experiments
should be achieved using different volume fractions and particle diameters in order to
establish whether this techniques is efficient for lower or higher volume fraction, and to
study the dependence of diffusion fluxes with the particles size. Moreover, it would be
interesting to have experimental profiles of other rotational geometries, such as cone
plate, in order to verify that the migration coefficient ratios established in this study are
independent of the studied rotational geometry. At present, experiments are conducted
using bidisperse suspensions, the results will be discussed in a future publication.
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