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ABSTRACT 

A new collocated finite volume-based solution procedure for predicting viscous 

compressible and incompressible flows is presented. The technique is equally 

applicable in the subsonic, transonic, and supersonic regimes. Pressure is selected as 

a dependent variable in preference to density because changes in pressure are 

significant at all speeds as opposed to variations in density which become very small at 

low Mach numbers. The newly developed algorithm has two new features; (i) the use of 

the Normalized Variable and Space Formulation methodology to bound the convective 

fluxes; and (ii) the use of a high-resolution scheme in calculating interface density 

values to enhance the shock capturing property of the algorithm. The virtues of the 

newly developed method are demonstrated by solving a wide range of flows spanning 

the subsonic, transonic, and supersonic spectrum. Results obtained indicate higher 

accuracy when calculating interface density values using a High-Resolution scheme.    



NOMENCLATURE 

.,a,a EP
φφ  Coefficients in the discretized equation. 

φ
Pb  Source term in the discretized equation for φ. 

Cρ Coefficient equals to 1/RT. 

][D φ  The D operator. 

][φD  The vector form of the D operator. 

Ff Convective flux at cell face 'f'. 

H[φ] The H operator. 

H[φ] The vector form of the H operator. 

i Unit vector in the x-direction. 

j Unit vector in the y-direction. 

C
fJ  Total scalar flux across cell face 'f' due to convection. 

D
fJ  Total scalar flux across cell face 'f' due to diffusion. 

fJ  Total scalar flux across cell face 'f'. 

M Mach number 

P Pressure. 

φQ  Source term for φ. 

R Gas constant. 

fS  Surface vector. 

T Temperature. 

t Time. 

u, v Velocity components in the x- and y- directions. 

fU  Interface flux velocity ( ) . ff .Sv

v ui + vj . 
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x, y Cartesian coordinates. 

GREEK SYMBOLS 

∆[ φ] The ∆ operator. 

Φ Dissipation term in energy equation. 

Γφ Diffusion coefficient for φ. 

Ω Cell volume. 

β Thermal expansion coefficient.  

δt Time step. 

φ~  Normalized scalar variable. 

φ Scalar variable. 

µ Viscosity. 

ρ Density. 

SUBSCRIPTS 

e, w, . Refers to the east, west, … face of a control volume. 

E,W,.. Refers to the East, West, … neighbors of the main grid point. 

f Refers to control volume face f. 

NB Refers to neighbours of the P grid point. 

P Refers to the P grid point. 

SUPERSCRIPTS 

° Refers to values from the previous time step. 

(n) Refers to value from the previous iteration. 
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* Refers to intermediate values at the current iteration. 

‘ Refers to correction field. 

C Refers to convection contribution. 

D Refers to diffusion contribution. 

HR Refers to values based on a HR scheme. 

x Refers to component in x-direction. 

y Refers to component in y-direction. 

φ Refers to dependent variable. 



 

INTRODUCTION 

In Computational Fluid Dynamics (CFD) a great research effort has been devoted to the 

development of accurate and efficient numerical algorithms suitable for solving flows in 

the various Reynolds and Mach number regimes. The type of convection scheme to be 

used in a given application depends on the value of Reynolds number. For low 

Reynolds number flows, the central difference or hybrid scheme is adequate [1]. In 

dealing with flows of high Reynolds number, numerous discretization schemes for the 

convection term arising in the transport equations have been employed 

[2,3,4,5,6,7,8,9,10,11]. On the other hand, the Mach number value dictates the type of 

algorithm to be utilized in the solution procedure. These algorithms can be divided into 

two groups: density-based methods and pressure-based methods, with the former used 

for high Mach number flows, and the latter for low Mach number flows. In density-based 

methods, continuity is employed as an equation for density and pressure is obtained 

from an equation of state, while in pressure-based methods, continuity is utilized as a 

constraint on velocity and is combined with momentum to form a Poisson like equation 

for pressure. Each of these methods is appropriate for a specific range of Mach number 

values. 

The ultimate goal, however, is to develop a unified algorithm capable of solving flow 

problems in the various Reynolds and Mach number regimes. To understand the 

difficulty associated with the design of such an algorithm, it is important to understand 

the role of pressure in a compressible fluid flow [12]. In the low Mach number limit 

where density becomes constant, the role of pressure is to act on velocity through 

continuity so that conservation of mass is satisfied. Obviously, for low speed flows, the 

pressure gradient needed to drive the velocities through momentum conservation is of 
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such magnitude that the density is not significantly affected and the flow can be 

considered nearly incompressible. Hence, density and pressure are very weakly 

related. As a result, the continuity equation is decoupled from the momentum equations 

and can no longer be considered as the equation for density. Rather, it acts as a 

constraint on the velocity field. Thus, for a sequential solution of the equations, it is 

necessary to devise a mechanism to couple the continuity and momentum equations 

through the pressure field. In the hypersonic limit where variations in velocity become 

relatively small as compared to the velocity itself, the changes in pressure do 

significantly affect density. In this limit, the pressure can be viewed to act on density 

alone through the equation of state so that mass conservation is satisfied [12] and the 

continuity equation can be viewed as the equation for density. This view of the two 

limiting cases of compressible flow can be generalized in the following manner. In 

compressible flow situations, the pressure takes on a dual role to act on both density 

and velocity through the equation of state and momentum conservation, respectively, 

so that mass conservation is satisfied. For a subsonic flow, mass conservation is more 

readily satisfied by pressure influencing velocity than pressure influencing density. For a 

supersonic flow, mass conservation is more readily satisfied by pressure influencing 

density than pressure influencing velocity. 

The above discussion reveals that for any numerical method to be capable of predicting 

both incompressible and compressible fluid flow the pressure should always be allowed 

to play its dual role and to act on both velocity and density to satisfy continuity. 

Nevertheless, through the use of the so-called pseudo or artificial compressibility 

technique [13,14], several density-based methods for fluid flow at all speeds have been 

developed. These methods encountered difficulties in efficiently avoiding the stiff 

solution matrices that greatly degraded their rate of convergence. To overcome this 

problem and ensure convergence over all speed ranges, preconditioning of the 
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resulting stiff matrices was introduced and several methods (e.g. Terkel [15], Choi and 

Merkle [16],Turkel et.al. [17], Tweedt et.al.[18], Van Leer et.al. [19], Weiss and Smith 

[20], Merkle et.al. [21], and Edwards and Liou [22] to site a few) using this promising 

technique have appeared in the literature lately.  

At the other frontier, several researchers [12,23,24,25,26,27,28,29,30,31,32,33,34,35, 

36,37,38] have worked on extending the range of pressure-based methods, with 

various degrees of success, to high Mach numbers following either a staggered grid 

approach [12,23-25] or a collocated variable formulation [26-33].  The method of Shyy 

and Chen [24], developed within a multigrid environment, uses a second-order upwind 

scheme in discretizing the convective terms. Moreover, at high Mach number values, a 

first order upwind scheme is employed for evaluating the density at the control volume 

faces. Yang et al [26] used a general strong conservation formulation of the momentum 

equations that allows several forms of the velocity components to be chosen as 

dependent variables. In the method developed by Marchi and Maliska [27], values for 

density, convection fluxes, and convection-like terms at the control volume faces are 

calculated using the upwind scheme. Demirdzic et al [28], however, used a central 

difference scheme blended with the upwind scheme to evaluate these quantities. Lien 

and Leschziner [29,30] adopted the streamwise-directed density-retardation concept, 

which is controlled by Mach-number-dependent monitor functions, to account for the 

hyperbolic character of the conservation laws in the transonic and supersonic regimes. 

Politos and Giannakoglou [31] developed a pressure-based algorithm for high-speed 

turbomachinery flows following also the retarded density concept. In their method, 

unlike the work of Lien and Leschziner [29,30], the retarded density operates only on 

the velocity component correction during the pressure correction phase. Chen and 

Pletcher [32] developed a coupled modified strongly implicit procedure that uses the 

strong conservation forms of Navier-Stokes equations with primitive variables. Issa and 
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Javareshkian [33] introduced a pressure-based compressible calculation method, using 

TVD schemes, that has a resolution quality similar to that obtained when applied in 

density-based methods. The methods of Karimian and Schneider [34-36] and Darbandi 

and Schneider [37,38] are formulated within a control-volume-based finite element 

framework. While Karimian and Schneider [34-36] used primitive variables in their 

formulation, Darbandi and Schneider [37,38] employed the momentum components as 

dependent variables. 

From the aforementioned literature review, it is obvious that in most of the published 

work the first order upwind scheme is used to interpolate for density when in the source 

of the pressure correction equation, exception being in the work presented in [28-31] 

where a central difference method is adopted. In the technique developed by Demirdzic 

et al [28], the second order central difference scheme blended with the upwind scheme 

is used. The bleeding relies on a factor varying between 0 and 1. In the work presented 

in [29-31], the retarted density concept is utilized in calculating the density at the control 

volume faces. This concept is based on factors that are problem dependent and 

requires the addition of some artificial dissipation to stabilize the algorithm (second-

order terms were introduced), which complicate its use.  

To this end, the objective of this paper is to present a newly developed pressure-based 

solution procedure that is equally valid at all Reynolds and Mach number values. The 

collocated variable algorithm is formulated on a non-orthogonal coordinate system 

using Cartesian velocity components. The method is easy to implement, highly 

accurate, and does not require any explicit addition of damping terms to stabilize it or to 

properly resolve shock waves. Moreover, the algorithm has two new features. The first 

one is the use of the Normalized Variable Formulation (NVF) [39] and/or the Normalized 

Variable and Space Formulation (NVSF) [40] methodology in the discretization of the 

convective terms. To the authors’ knowledge, the NVF/NVSF methodologies have 
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never been used to bound the convective flux in compressible flows. Mainly low order 

schemes or the TVD [33,41] formulation has usually been adopted. The second one is 

the use of High-Resolution (HR) schemes in the interpolation of density appearing in 

the mass fluxes in order to enhance the shock capturing capability of the method. 

In what follows the governing equations for compressible flows are presented and their 

discretization detailed so as to lay the ground for the derivation of the pressure-

correction equation. Then, the increase in accuracy with the use of HR schemes for 

density is demonstrated. This is done by comparing predictions, for a number of 

problems, obtained using the third-order SMART scheme [8] for all variables except 

density (for which the Upwind [1] scheme is used) against another set of results 

obtained using the SMART scheme for all variables including density. 

GOVERNING EQUATIONS 

The equations governing the flow of a two-dimensional compressible fluid are the 

continuity equation, the momentum equations, and the energy equation. This set of 

non-linear, coupled equations is solved for the unknowns ρ, v, T and P. In vector form, 

these equations may be written as: 

( ) 0
t

=ρ⋅∇+
∂
ρ∂ v  (1) 

( ) ( ) ( vvvvv
⋅∇µ∇+∇µ⋅∇+−∇=ρ⋅∇+

∂
ρ∂

3
1P )

t
)(  (2) 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

+Φ+⎥⎦
⎤

⎢⎣
⎡ ⋅∇−⋅∇+

∂
∂

β+∇⋅∇=ρ∇+
∂
ρ∂ qPP

t
PTTk

c
1)T(

t
)T(

p

&vvv.  (3) 

where  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

µ=Φ 2
222

3
2

x
v

y
u

y
v

x
u2 .v  (4) 
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and β the thermal expansion coefficient which is equal to 1/T for an ideal gas. In 

addition to the above differential equations, an auxiliary equation of state relating 

density to pressure and temperature (ρ=f(P,T)) is needed. For an ideal gas, this 

equation is given by: 

PC
RT
P

ρ==ρ  (5) 

where R is the gas constant. 

A review of the above differential equations reveals that they are similar in structure.  If 

a typical representative variable is denoted by φ, the general differential equation may 

be written as, 

( ) ( ) φφ +φ∇Γ⋅∇=φρ⋅∇+
∂
ρφ∂ Q
t

)( v  (6) 

where the expressions for Γφ and Qφ can be deduced from the parent equations.  The 

four terms in the above equation describe successively unsteadiness, convection (or 

advection), diffusion, and generation/dissipation effects. In fact, all terms not explicitly 

accounted for in the first three terms are included in the catchall source term Qφ. 

FINITE VOLUME DISCRETIZATION 

The general transport equation (Eq. (6)) is discretized using the control volume 

methodology.  For that purpose, equation (6) is integrated over the control volume 

shown in Fig. 1(a) to yield, upon applying the divergence theorem, the following 

discretized equation: 

( )[ ] ( )[ ] Ω=⋅φ∇Γ−φρ∆+Ωρφ
∂
∂ φφ Q
t PP Sv  (7) 

In the above equation, the ∆ operator is the discretized version of the surface integral 

defined by: 
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[ ] snweP φ+φ+φ+φ=φ∆  (8) 

Hence equation (7) can be written as 

( )[ ] [ ] ( )[ ] ( ) Ω=++++Ωρφ
∂
∂

=∆+Ωρφ
∂
∂ φQJJJJ

t
J

t snwePPP  (9) 

In eq. (9), J f represents the total flux of φ across face 'f' and is given by 

( ) fSv ⋅φ∇Γ−φρ= φ
ffJ  (10) 

where  is the surface vector of cell face “f”. The flux JfS f is a combination of the 

convection flux = (ρvφ)C
fJ f.Sf and diffusion flux = (-ΓD

fJ φ∇φ)f.Sf. 

From equation (9), it is obvious that the total fluxes are needed at the control volume 

faces where the values of the dependent variables are not available and should be 

obtained by interpolation. Therefore, the accuracy of the solution depends on the proper 

estimation of these values as a function of the neighboring φ node values.  

The discretization of the diffusion flux  does not require any special consideration 

and the method adopted here is described in Zwart et al. [

D
fJ

42]. 

The discretization of the convection flux is, however, problematic and requires special 

attention. The convection flux of φ through the control volume face “f” may be written as: 

( ) ffff
C
f FJ φ=⋅φρ= Sv  (11) 

where φf stands for the mean value of φ along cell face “f”, and Ff= (ρv.S)f is the mass 

flow rate across face f. Using some assumed interpolation profile, φf can be explicitly 

formulated by a functional relationship of the form: 

φ f = f(φnb)  (12) 

where φnb denotes the φ values at the neighboring nodes. The interpolation profile 

should be bounded in order not to give rise to the well-known dispersion error problem 

[2]. In this work, HR schemes formulated in the context of the NVSF methodology, 
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which is explained in the next section, are used. For the representation of the unsteady 

term, the grid-point value of φ is assumed to prevail throughout the control volume and 

the time derivative is approximated using a Euler-implicit formulation.    

The discretized equation, Eq. (9), is transformed into an algebraic equation at the main 

grid point P by substituting the fluxes at all faces of the control volume by their 

equivalent expressions. Then, performing some algebraic manipulations on the 

resultant equation, the following algebraic relation, linking the value of the dependent 

variable at the control volume center to the neighboring values, is obtained:  

φφφ +φ=φ ∑ P
)P(NB

NBNBPP baa  (13) 

In the above equation,  are the coefficients multiplying the value of φ at the 

neighboring nodes NB=(E, W, N, and S) surrounding the central node P,  is the 

coefficient of φ

φ
NBa

φ
Pa

P, and  contains all terms that are not expressed through the nodal 

values of the dependent variable (e.g. the source term Q

φ
Pb

φ, the pressure gradients in the 

momentum equations, terms involving known values of φ etc. ...).  

For the solution domain as a whole there results a system of N equations in N 

unknowns, where N is the number of control volumes.  Many techniques exist for 

solving large systems of linear equations that may be classified as direct or iterative 

methods.  The use of direct methods is not appropriate in the present context because 

they require much more storage than iterative methods and are usually more expensive 

computationally.  Owing to the non-linear nature of the set of equations, the discretized 

equations are solved by the use of iterative methods.  Current iterative methods differ 

with respect to storage requirement and degree of implicitness, such as the point-by-

point successive over-relaxation method [43], the strongly implicit procedure of Stone 

[44] and its variations, the Incomplete Cholesky Conjugent Gradient (ICCG) [45], or the 

Multigrid Method of Brandt [46] to site a few.  Although these methods have their own 
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desirable attributes, the degree of simplicity of their implementation in a computer code 

is approximately inversely proportional to their rate of convergence. The algorithm used 

in this work is the TDMA [47].  

THE NVSF METHODOLOGY FOR CONSTRUCTING HR SCHEMES 

As mentioned earlier, the discretization of the convection flux is not straightforward and 

requires additional attention. Since the intention is to develop a high-resolution 

algorithm, the highly diffusive first order UPWIND scheme [1] is excluded. As such, a 

high order interpolation profile is sought. The difficulties associated with the use of such 

profiles stem from the conflicting requirements of accuracy, stability, and boundedness. 

Solutions predicted with high order profiles tend to provoke oscillations in the solution 

when the local Peclet number is high in combination with steep gradients of the flow 

properties. To suppress these oscillations, many techniques have been advertised and 

may be broadly classified into two groups: the flux blending method [48,49,50,51] and 

the composite flux limiter method [8,39-41,52], the latter being the one adopted here. In 

this technique, the numerical flux at the interface of the computational cell is modified 

by employing a flux limiter that enforces boundedness. The formulation of high-

resolution flux limiter schemes on uniform grid has recently been generalized by 

Leonard [39,52] through the Normalized Variable Formulation (NVF) methodology and 

on non-uniform grid by Darwish and Moukalled [40] through the Normalized Variable 

and Space Formulation (NVSF) methodology. The NVF and NVSF methodologies have 

provided a good framework for the development of HR schemes that combine simplicity 

of implementation with high accuracy and boundedness. Moreover, to the authors’ 

knowledge, the NVSF formulation has never been used to bound the convection flux in 

compressible flows. It is an objective of this work to extend the applicability of this 
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technique to compressible flows. Therefore, before introducing the high-resolution 

algorithm, a brief review of the NVSF methodology is in order.   

Fig. 1(b) shows the local behavior of the convected variable near a control-volume face. 

The node labeling refers to the upstream, central, and downstream grid points 

designated by U, C, and D, located at distances ξU, ξC and ξD from the origin, 

respectively.  The values of φ at these nodes are designated by φU, φC and φD 

respectively.  Moreover, the value of the dependent variable at the control volume face 

located at a distance ξf from the origin is expressed by φf.  With this notation, the 

normalized variables are defined as follows: 

~ ~
φ

φ φ
φ φ

ξ
ξ ξ

ξ ξ
=

−
−

=
−
−

U

D U

U

D U
 (14) 

The use of the above-normalized parameters simplifies the functional representation of 

interpolation schemes (Fig. 1(c)) and helps defining the stability and boundedness 

conditions that they should satisfy.  

Based on the normalized variable analysis, Gaskell and Lau [8] formulated a convection 

boundedness criterion (CBC) for implicit steady flow calculation. This CBC states that 

for a scheme to have the boundedness property its functional relationship should be 

continuous, should be bounded from below by φ~f  = φ~C , from above by unity, and 

should pass through the points (0,0) and (1,1), in the monotonic range (0< φ~C <1), and 

for 1<φ~C  or  φ~C <0, the functional relationship f(φ~C ) should equal  φ~C  .  These 

conditions are shown graphically in Fig. 1(d). 

Knowing the required conditions for boundedness, the shortcomings of High Order (HO) 

schemes were eliminated through the development of HR schemes satisfying all above 

requirements.  Without going into details, a number of HR schemes were formulated 

using the NVF/NVSF methodologies and the functional relationship for the SMART 
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scheme [8] extensively used in this work is given below.  For more details the reader is 

referred to Darwish and Moukalled [40]. 

SMART 

( )
( )

( )
( )

( ) ( )

( )

~

~ ~ ~

~ ~
~ ~

~

~ ~

~ ~
~

~ ~ ~

~
~

~
~
~

~ ~

~
~

~ ~ ~

~

φ

ξ ξ ξ

ξ ξ
φ φ

ξ

ξ ξ

ξ ξ
φ

ξ ξ ξ

ξ

ξ
φ

ξ

ξ
ξ ξ

ξ

ξ
ξ ξ φ

φ

f

f C f

C C
C C

C

f f

C C
C

f f C

C

C
C

C

f
f C

C

f
f C C

C elsewhere
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− +

−
< <

−

−
+

−

−
≤ < + −

+ − ≤ <

⎧

⎨

⎪
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⎪
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⎪
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⎪
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⎪

1 3 2

1
0

3

1

1 1 3
1
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 (15) 

HIGH RESOLUTION ALGORITHM 

The need for a solution algorithm arises in the simulation of flow problems because a 

scalar equation does not exist for pressure. Rather, the pressure field acts indirectly on 

the velocity field to constrain it to satisfy the continuity equation. Hence, if a segregated 

approach is to be adopted, coupling between the u, v, ρ, and P primitive variables in the 

continuity and momentum equations will be required. Evidently, the whole set of 

equations could be solved directly (after linearization) since the number of equations 

equals the number of unknowns. However, the computational effort and storage 

requirements needed by such an approach are often prohibitive. This has forced 

researchers to seek less expensive methods and resulted in the development of several 

segregated solution algorithms [1,53,54,55,56,57,58,59].  Recently, Moukalled and 

Darwish presented a unified formulation of these algorithms [60]. 

The segregated algorithm adopted in this work is the SIMPLE algorithm [1,53] which 

involves a predictor and a corrector step. In the predictor step, the velocity field is 

calculated based on a guessed or estimated pressure field. In the corrector step, a 
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pressure (or a pressure-correction) equation is derived and solved. Then, the variation 

in the pressure field is accounted for within the momentum equations by corrections to 

the velocity and density fields.  Thus, the velocity, density, and pressure fields are 

driven, iteratively, to better satisfying the momentum and continuity equations 

simultaneously and convergence is achieved by repeatedly applying the above-

described procedure. 

Before presenting the  pressure correction equation, the discretized momentum 

equations are first written in the following notationally more suitable form: 

( )

( ) .j

.i

P
v
P

)P(NB
NB

v
NBP

v
P

P
u
P

)P(NB
NB

u
NBP

u
P

Pbvava

Pbuaua

∇Ω−+=

∇Ω−+=

∑

∑
 (16) 

This form can be simplified to 

[ ]
[ ]

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

∇
∇

⎭
⎬
⎫

⎩
⎨
⎧

−=
⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

.j

.i

P

P

P

P

P

P

P

P

P
P

D[v]0
0D[u]

vH
uH

v
u

 (17) 

where  

( ) [ ] φφ

φφ

Ω

Ω
=φ

+φ
=φΩ∇

Ω
=∇

∑
∫

P
P

P

)P(NB
PNBNB

PP a
][D

a

ba
HPd1P       (18) 

In the above equations, Ω is the volume of cell P, and the subscripts e, w, n, and s refer 

to values at the east, west, north, and south faces of the control volume (Fig. 1(a)). 

Defining the vector forms of the above operators as, 

[ ] ( ) ( )
( )

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

∇

∇
=⎥

⎦

⎤
⎢
⎣

⎡
∇
∇

=∇⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

y
P

x
P

P

P
P

P

P
P

P

P
P

P

P
P
P

P
]v[D0
0]u[D

]v[H
]u[H

.j

.i
DvH  (19) 

the momentum equations in vector form become 

( )PPPP P][ ∇−=− DvHv  (20) 

For the calculation of the mass fluxes across the control volume faces ( )  and 

for checking mass conservation, the values of the velocity components are needed 

fffU .Sv=
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there. In order to avoid oscillations which may result if a simple linear interpolation 

method is used, a special interpolation practice is employed as suggested by Rhie [61], 

Peric [50], and Majumdar [62].  

THE PRESSURE CORRECTION EQUATION  

As mentioned earlier, the convergence in the segregated approach is driven by the 

corrector stage where a pressure (or a pressure-correction) equation is solved.  

Therefore, the first phase in developing a segregated solution algorithm is to derive 

such an equation. The key step in the derivation is to note that in the predictor stage a 

guessed or estimated pressure field from the previous iteration, denoted by , is 

substituted into the momentum equations. The resulting velocity field, denoted by , 

which now satisfies the momentum equations, will not in general satisfy the continuity 

equation.  Thus, a correction is needed in order to obtain velocity and pressure fields 

that satisfy both equations. Denoting the pressure, velocity, and density corrections by 

P', v'(u', v'), and ρ', respectively, the corrected fields are obtained from: 
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Before the pressure field is known, the velocities obtained from the solution of the 

momentum equations are actually  and  rather than u and v.  Hence the equations 

solved in the predictor stage are: 
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while the final solution satisfies 

( )PPP P][ ∇−=− DvHv P  (23) 

Subtracting the two sets of equation (23) and (22) from each other yields the following 

equation involving the correction terms: 
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( )PPPP P][ ′∇−=′−′ DvHv  (24) 

Combining Eq. (24) with the discretized form of the continuity equation and substituting 

density correction by pressure correction, as obtained from the equation of state, the 

pressure-correction equation is obtained and is given by: 
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The usual practice is to neglect the second order correction term . This does not 

affect neither the convergence rate (i.e. it is considerably smaller than other terms) nor 

the final solution, since at the state of convergence the correction fields vanish. 

Furthermore, if the  term in the above equation is retained, there will result a 

pressure correction equation relating the pressure correction value at a point to all 

values in the domain. To facilitate implementation and reduce cost, this term is 

neglected in SIMPLE. Therefore, the final form of the pressure-correction equation is: 
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From the above equation, it is clear that the starred continuity equation appears as a 

source term in the pressure correction equation. Moreover, in a pressure-based 

algorithm, the pressure-correction equation is the most important equation that gives 

the pressure, upon which all other variables are dependent. Therefore, the accuracy of 

the predictions depends on the proper estimation of pressure from this equation. 

Definitely, the more accurate the interpolated starred density ( ) values at the control 

volume faces are, the more accurate the predicted pressure values will be. The use of a 

central difference scheme for the interpolation of  leads to instability at Mach 

numbers near or above 1 [12,25]. On the other hand the use of a first order upwind 

scheme leads to excess diffusion [25].  The obvious solution to the aforementioned 

*ρ

*ρ
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problems would be to interpolate for values of  at the control volume faces in the 

same way interpolation for other dependent variables is carried out: in other words, to 

employ the bounded HR family of schemes for which no problem-dependent factors are 

required. Adopting this strategy, the discretized form of the starred steady continuity 

equation becomes: 
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The same procedure is also adopted for calculating the density when computing the 

mass flow rate at a control volume face in the general conservation equation. 

When discretizing the pressure-correction equation (Eq. (26)), careful attention should 

be paid to the second term on the left hand side that is similar to a convection term and 

for which any convective scheme may be used. Since at the state of convergence the 

pressure-correction field is zero, the order of interpolation scheme is not important and 

the use of a first order scheme is sufficient. Adopting the UPWIND scheme [1] for the 

convection-like term, the pressure-correction equation is obtained as:  
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and is a coefficient arising from the discretization id the diffusion-like term P′Γ

( )[ ]P
* .P SD ′∇ρ∆ . 
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OVERALL SOLUTION PROCEDURE 

Knowing the solution at time t, the solution at time t+δt is obtained as follows: 

• Solve implicitly for u and v, using the available pressure and density fields. 

• Calculate the D field. 

• Solve the pressure correction equation. 

• Correct u, v, P and ρ. 

• Solve implicitly the energy equation and update the density field. 

• Return to the first step and iterate until convergence. 

BOUNDARY CONDITIONS 

The solutions to the above system of equations require the specification of boundary 

conditions of which several types are encountered in flow calculations, such as inflow, 

outflow, and no-flow (impermeable walls, and symmetry lines). Details regarding the 

various types and their implementation for both incompressible and compressible flow 

calculations are well documented in the literature and will not be repeated here. 

However, it should be stressed that the convergence of the computations greatly 

depends on the proper implementation of these conditions.   

RESULTS AND DISCUSSION 

The validity of the above described solution procedure is demonstrated in this section 

by presenting solutions to the following four inviscid test cases: (i) flow in a converging 

diverging nozzle; (ii) flow over a bump; (iii) supersonic flow over a step; and (iv) the 
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unsteady duct filling problem. For all problems, unless otherwise stated, computations 

were terminated when the maximum residual over the domain and for all dependent 

variables fell below 10-5. 

FLOW IN A CONVERGING-DIVERGING NOZZLE 

The first test selected is a standard one that has been used by several researchers for 

comparison purposes [28,29]. The problem is first solved using a pseudo-one-

dimensional variable area code. The cross-sectional area of the nozzle varies as 

 ( )
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⎛ −−+=  (30) 

where Si=2.035 and Sth=1 are the inlet and throat areas, respectively, and 0 ≤ x ≤ 10. 

Solutions are obtained over a wide range of inlet Mach numbers ranging from the 

incompressible limit (M=0.1) to supersonic (M=7), passing through transonic with strong 

normal shock waves and are presented in Figs. (2)-(4).  

Results displayed in Figs. 2(a), 2(b), and 2(c) are for inlet Mach numbers of 0.1, 0.3, 

and 7 respectively. In these plots, two sets of results generated over a uniform grid of 

size 79 control volumes are compared against the exact analytical solution. The first set 

is obtained using the third-order SMART scheme [2] for all variables except density (for 

which the UPWIND [21] scheme is used). In the second set however, the SMART 

scheme is used for all variables including density. Results shown in Fig. 2(a) (Min=0.1, 

subsonic throughout) indicate that the solution is nearly insensitive to using a HR 

scheme when interpolating for density. This is expected, since for this inlet Mach 

number value, variations in density are small and the flow can be considered to be 

nearly incompressible. For Min=0.3 (Fig. 2(b)), the backpressure is chosen such that a 

supersonic flow is obtained in the diverging section (i.e. Mth=1, transonic). The Mach 

number distributions after the throat are depicted in Fig. 2(b). As shown, the use of a 
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HR scheme for interpolating the values of density at the control volume faces improves 

predictions. In fact, displayed results reveal that the profile predicted with values of 

density at the control volume faces calculated using a HR scheme is nearly coincident 

with the exact solution. The Mach number distributions depicted in Fig. 2(c) are for a 

fully supersonic flow in the nozzle. The trend of results is similar to that of Fig. 2(b). 

Again important improvements are obtained when using the SMART scheme for density 

interpolation.  

The accuracy of the new technique in predicting normal shock waves is revealed by the 

Mach number distributions displayed in Fig. 2(d). Two backpressure values that cause 

normal shock waves at x=7 and 9 are used. For each back pressure, three different 

solutions (one using the UPWIND scheme for all variables; the second one using the 

SMART scheme for all variables; the third one using the SMART scheme for all 

variables except density for which the UPWIND scheme is used) are obtained and 

compared against the exact solution. All solutions are obtained by subdividing the 

domain into 121 uniform control volumes. As shown, predictions obtained using the 

UPWIND scheme for all variables are very smooth but highly diffusive and cause a 

smearing in the shock wave. Results obtained using the SMART scheme for all 

variables except density are more accurate than those obtained with the UPWIND 

scheme and cause less smearing in the shock waves. The best results are, however, 

obtained when employing the SMART scheme for all variables including density. The 

plots also reveal that solutions obtained using the SMART scheme show some 

oscillations behind the shock. This is a feature of all HR schemes. The oscillations are 

usually centered on the accurate solution and are reduced with grid refinement in both 

wavelength and amplitude [28]. 

To highlight the performance characteristics of the new density treatment in the 

pressure-based method, a series of solutions for some of the above mentioned cases 
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were generated using different grid sizes and a summary of error norms versus the 

number of grid points used is presented in Fig.3. Figs. 3(a) and 3(b) are for inlet Mach 

numbers of 0.1 and 7, respectively. Fig. 3(c) however, is for an inlet Mach number of 

0.3 with a normal shock wave at X=7. The number of grid points was varied from 21 to 

2000. Since an exact analytical solution is available, the error was defined as: 
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The trend of results is similar to that discussed above with the % error generally 

decreasing with increasing the grid density. The virtues of using a HR scheme for 

computing interface density values are more pronounced at high Mach numbers (Figs. 

3(b) and 3(c)). In all cases, the worst solution is obtained when using the upwind 

scheme for all variables and the best one is attained when utilizing the HR SMART 

scheme for all variables. Noting the use of a Log scale for the % error in Fig. (3), the 

improvement when using a HR scheme for density decreases with increasing the 

number of grid points. This is expected since all approximations should converge to the 

exact solution as the grid size approaches infinity. Moreover, it may be of interest to 

mention that the optimum value of the under-relaxation factor increases with increasing 

both the grid density and the inlet Mach number. For the results presented in Fig. (3), 

the under-relaxation factor for the various variables varied from a minimum of 0.2 for 

the 21 grid size to 0.8 for the 2000 grid size. This increase is attributed to a better 

solution at the beginning of the iterative process, as a result of using a larger number of 

grid points. The 0.2 value could be increased during the iterative process after a 

relatively good solution has been established. The need for a small under-relaxation 

factor at low Mach numbers is attributed to the large pressure correction values that 

result at the beginning of the iterative process and which are used to correct the 

density. Since at low Mach number density variations are small, high under-relaxation is 
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needed. Definitely, the under-relaxation values may be increased after obtaining 

relatively good estimates. Moreover, the number of iterations needed to obtain a 

converged solution, increases with increasing the number of grid points and decreases 

with increasing Mach number for the reasons stated above. The number of iterations 

required to obtain a converged solution (residuals for this one-dimensional problem 

were driven to machine error) for the cases presented in Fig. 3, varied from 1000 (for 

the grid of size 21) to 20,000 iterations when using 2000 grid points. These values may 

not be the optimum ones due to the large number of parameters involved. For example, 

under-relaxing the interface φ values (including density) may accelerate the 

convergence rate. All results presented in this paper were obtained without adopting 

such a practice. Furthermore, when using a HR scheme for all variables including 

density, the number of iterations needed to achieve a certain level of accuracy is nearly 

the same as the one needed when using a HR scheme for all variables excluding 

density (for which the Upwind scheme is used).   

As a further check on the applicability of the new technique in the subsonic, transonic, 

and supersonic regimes, results are generated for several inlet Mach number values 

0.1≤Min≤7 and displayed in Fig. 4(a). As shown, the Mach number distributions are in 

excellent agreement with the exact solution. Moreover, two-dimensional predictions for 

some of the above-presented cases were generated with 100x15 mesh covering one 

half of the nozzle. The resultant area-averaged variations of Mach number are depicted 

in Figs. 4(b) and 4(c). Results were obtained using the SMART scheme for all variables 

including density. As for the quasi-one-dimensional predictions, results are in excellent 

agreement with the exact solutions.  

FLOW OVER A CIRCULAR ARC BUMP 
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The physical situation consists of a channel of width equal to the length of the circular 

arc bump and of total length equal to three lengths of the bump. This problem has been 

used by many researchers [28,29,33,34] to test the accuracy and stability of numerical 

algorithms. Results are presented for three different types of flow (subsonic, transonic, 

and supersonic). For subsonic and transonic calculations, the thickness-to-chord ratio is 

10% and for supersonic flow calculations it is 4%. In all flow regimes, predictions 

obtained over a relatively coarse grid using the SMART scheme for all variables 

including density are compared against results obtained over the same grid using the 

SMART scheme for all variables except density, for which the UPWIND scheme is 

used. Due to the unavailability of an exact solution to the problem, a solution using a 

dense grid is generated and treated as the most accurate solution against which coarse 

grid results are compared.  

Subsonic flow over a circular arc bump 

With an inlet Mach number of 0.5, the inviscid flow in the channel is fully subsonic and 

symmetric across the middle of the bump. At the inlet, the flow is assumed to have 

uniform properties and all variables, except pressure, are specified. At the outlet 

section, the pressure is prescribed and all other variables are extrapolated from the 

interior of the domain. The flow tangency condition is applied at the walls. As shown in 

Fig. 5(a), the physical domain is non-uniformly decomposed into 63x16 control 

volumes. The dense grid solution is obtained over a mesh of size 252x54 control 

volumes. Isobars displayed in Fig. 5(b) reveal that the coarse grid solution obtained with 

the SMART scheme for all variables falls on top of the dense grid solution. The use of 

the upwind scheme for density however, lowers the overall solution accuracy. The 

same conclusion can be drawn when comparing the Mach number distribution along 

the lower and upper walls of the channel. As seen in Fig. 5(c), the coarse grid profile 

obtained using the SMART scheme for density is closer to the dense grid profile than 
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the one predicted employing the upwind scheme for density. The difference in results 

between the coarse grid solutions is not large for this test case. This is expected since 

the flow is subsonic and variations in density are relatively small. Larger differences are 

anticipated in the transonic and supersonic regimes. 

Transonic flow over a circular arc bump 

With the exception of the inlet Mach number being set to 0.675, the grid distribution and 

the implementation of boundary conditions are identical to those described for subsonic 

flow. Results are displayed in Fig. 6 in terms of isobars and Mach profiles along the 

walls. In Fig. 6(a) isobars generated using a dense grid and the SMART scheme for all 

variables are displayed. Fig. 6(b) presents a comparison between the coarse grid and 

dense grid results. As shown, the use of the HR SMART scheme for density greatly 

improves the predictions. Isobars generated over a coarse grid (63x16 c.v.) using the 

SMART scheme for all variables are very close to the ones obtained with a dense grid 

(252x54 c.v.). This is in difference with coarse grid results obtained using the upwind 

scheme for density and the SMART scheme for all other variables, which noticeably 

deviate from the dense grid solution. This is further apparent in Fig. 6(c) where Mach 

number profiles along the lower and upper walls are compared. As shown, the most 

accurate coarse grid results are those obtained with the SMART scheme for all 

variables and the worst ones are achieved with the upwind scheme for all variables. 

The maximum Mach number along the lower wall (≅1.41), predicted with a dense grid, 

is in excellent agreement with published values [28,29,33]. The use of a HR scheme for 

density greatly enhances the solution accuracy with coarse grid profiles generated 

using the SMART scheme for all variables being very close to the dense grid results. By 

comparing coarse grid profiles along the lower wall, the all-SMART solution is about 
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11% more accurate than the solution obtained using SMART for all variables and 

upwind for density and 21% more accurate than the highly diffusive all-upwind solution.  

Supersonic flow over a circular arc bump 

Computations are presented for two inlet Mach number values of 1.4 and 1.65.  For 

these values of inlet Mach number and for the used geometry, the flow is also 

supersonic at the outlet. Thus, all variables at inlet are prescribed, and at outlet all 

variables are extrapolated. For Min=1.4, results are presented in Figs. 7 and 8. The 

coarse grid used is displayed in Fig. 7(a). Mach number contours are compared in Fig. 

7(b). As before, the coarse grid all-SMART results (58x18 c.v.), being closer to the 

dense grid results (158x78 c.v.), are more accurate than those obtained when using the 

upwind scheme for density. The fine grid Mach contours are displayed in Fig. 7(c). As 

depicted, the reflection and intersection of the shocks is very well resolved without 

undue oscillations.  The Mach profiles along the lower and upper walls, depicted in Fig. 

7(d), are in excellent agreement with published results [63] and reveal good 

enhancement in accuracy when using the SMART scheme for evaluating interface 

density values. The use of the upwind scheme to compute density deteriorates the 

solution accuracy even though a HR scheme is used for other variables. The all-upwind 

results are highly diffusive. Finally, results for this case were obtained over a grid of 

90x30 nodes, of which 80x30 were uniformly distributed in the region downstream of 

the bump’s leading corner. Resulting Mach contours are compared in Fig. 8 with four 

other solutions [29,64,65] using the same grid density. The comparison demonstrates 

the credibility and superiority of the current solution methodology. The wiggles and 

oscillations in some regions around the shock waves in the published solutions are not 

present in the newly predicted one. 

For Min=1.65, results are depicted in Fig. 9. The coarse grid used is shown in Fig. 9(a) 

and the Mach contours are compared in Fig. 9(b). The trend of results is consistent with 
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what was obtained earlier. Fine grid results displayed in Figs. 9(c) and 9(d) are in 

excellent agreement with published results [28,33]. The Mach contours in Fig. 9(c) are 

very smooth and do not show any sign of oscillations. The profiles along the lower and 

upper walls indicate once more that the use of a HR scheme for density increases the 

solution accuracy. Thus, for subsonic, transonic, and supersonic flows the use of a HR 

scheme for calculating interface density values increases the solution accuracy.  

Effect of grid size 

As for the previous problem, the performance characteristics of the newly suggested 

method is studied by obtaining a series of solutions, using different grid sizes, for the 

transonic (Min=0.675) and supersonic (Min=1.65) cases. The variation of error with the 

grid size along with the convergence history are depicted in Fig. 10.  The % error in the 

solution was calculated using Eq. (31) with φexact, due to the unavailability of an exact 

solution, being replaced by a solution obtained over a fine mesh of size 254x100 grid 

points. As can be seen, the error decreases with increasing the grid size. By comparing 

plots in Figs. 10(a) and 10(c), it is obvious that improvements in predictions are more 

pronounced for the supersonic case where changes in pressure have higher effects on 

density. In Figs. 10(b) and 10(d), the convergence history for the dense grid solutions 

(254x100 grid points) are displayed. The two plots indicate that it was possible to obtain 

converged solutions with the dense grid used. Moreover, the plots also reveal that a 

smaller number of iterations are needed to obtain a converged solution in the 

supersonic case for reasons explained earlier. It should be stressed that it is not the 

intention of this work to study the convergence characteristics of pressure-based 

methods. The algebraic equation solver used here is the line-by-line TDMA. The use of 

multigrid methods [46] or other solvers [44,45] would definitely accelerate the rate of 

convergence. This may equally be true with preconditioning methods [15-22]. 
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Nevertheless, the virtues of using a HR scheme for evaluating interface density values 

are undoubtedly clear. 

SUPERSONIC FLOW OVER A STEP 

The physical situation and boundary conditions for the problem are depicted in Fig. 

11(a). The problem was first solved using the upwind scheme and the predicted isobars 

are depicted in Fig. 11(b). In Fig. 11(c), the isobars reported in [27] are presented. As 

shown, the current predictions fall on top of the ones reported by Marchi and Maliska 

[27] eliminating any doubts about the correctness of the implementation of the solution 

algorithm and boundary conditions. The isobars resulting from a dense grid solution 

(23x108 c.v.) using the upwind scheme for all variables are presented in Fig. 12(a). The 

effectiveness of using a HR scheme for density is demonstrated through the 

comparison depicted in Fig. 12(b). Two different isobars representing pressure ratios of 

values 0.9 and 2.5 are considered. Solutions obtained over a course grid (38x36 c.v.) 

using: (i) the SMART schemes for all variables, (ii) the SMART scheme for all variables 

except density and the upwind scheme for density, and (iii) the upwind scheme for all 

variables, are compared against a dense grid solution (238x108 c.v.) generated using 

the upwind scheme for all variables. Once more the virtues of using a HR scheme for 

density is obvious. The coarse grid isobars obtained using the SMART scheme for all 

variables, being nearly coincident with dense grid isobars, are remarkably more 

accurate than coarse grid results obtained using the SMART scheme for all variables 

except density and the upwind scheme for density.   

IDEAL UNSTEADY DUCT FILLING  

Having established the credibility of the solution method, an unsteady process of duct 

filling is considered. This problem resembles the well known shock tube problem that 
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was lately used by Karimian and Schneider [66] and Darbandi and Schneider [67] in 

testing their pressure-based methods. The physical situation for the problem consists of 

a duct containing a gas (γ=1.4) that is isentropically expanded from atmospheric 

pressure. The duct is considered to be frictionless, adiabatic, and of constant cross-

section. Moreover, it is assumed that the duct is opened instantaneously to the 

surrounding atmosphere, inflow is isentropic, and in the fully open state the effective 

flow area at the duct end is equal to the duct cross-sectional area. The unsteady one-

dimensional duct filling process is solved using a two-dimensional code over a uniform 

grid of density 299x3 control volumes, a time step of value 10-4, and the SMART 

scheme for all variables.  

The problem is solved for a surrounding to duct pressure ratio of 2.45 and generated 

results are displayed in Fig. 13. Due to the lower pressure of the gas contained in the 

duct, when the duct end is suddenly opened, a compression wave is established 

instantly as a shock wave. The wave diagram for the process is shown in Fig. 13(a). 

The shock wave moves in the duct until the closed end is reached. On reaching the 

closed end, the compression wave is reflected and the duct filling process continues 

until the reflected shock wave is at the open end. Beyond that, duct emtying starts and  

computations were stopped at that moment in time. In addition, the path of the first 

particle to enter the duct is shown in the figure. This was computed by storing the duct 

velocities at all time steps and then integrating in time to locate the position of the 

particle. Results depicted in Fig. 13(a) were compared against similar ones  reported by 

Azoury [68] using a graphical method. The two sets of results were found to be in 

excellent agreement with the ones computed here falling right on top of those reported.  

The variation of Mach number with time at the open end of the duct is diplayed in Fig. 

13(b). With the exception of the slight overshoot at the beginning of the computations, 

the Mach number remains constant throughout the filling process and it instantaneously 
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decreases to zero at the time when the reflected shock wave reaches the open end of 

the duct. When using the same reference quantities, the analytical solution to the 

problem reported in [68] predicts a constant Mach number of value 0.4391 which is 

0.21% different than the one obtained here. Moreover, the instantaneous decrease of 

Mach number to zero is well predicted by the method. Finally, the increase in mass 

within the duct is presented in Fig. 13(c). As expected, due to the constant value of the 

inlet Mach number the mass increases linearly with time.  

CONCLUDING REMARKS  

A new collocated high-resolution pressure-based algorithm for the solution of fluid flow 

at all speeds was formulated. The new features in the algorithm are the use of a HR 

scheme in calculating the density values at the control volume faces and the use of the 

NVSF methodology for bounding the convection fluxes. The method was tested by 

solving four problems representing flow in a converging-diverging nozzle, flow over a 

bump, flow over an obstacle, and unsteady duct filling. Mach number values spanning 

the entire subsonic to supersonic spectrum, including transonic flows with strong normal 

shock waves, were considered. In all cases, results obtained were very promising and 

revealed good enhancement in accuracy at high Mach number values when calculating 

interface density values using a High-Resolution scheme.    
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FIGURE CAPTIONS 

Fig.1        (a)  Control volume; (b) Control volume nodes; (c) Normalization; (d) CBC.

Fig. 2    Comparison of Mach number variation for an inlet Mach number of value (a)   

                0.1 (subsonic), (b) 0.3 (transonic), (c) 7 (supersonic), and (d) 0.3 (transonic  

                with  normal shock waves at X=7 or X=9). 

Fig. 3 Comparison of % error in the solution of one-dimensional (a) subsonic 

(Min=0.1), (b) supersonic (Min=7), and (c) transonic (Min=0.3 with a normal 

shock wave at X=7) nozzle flow.  

Fig. 4 (a) Comparison of Mach number distributions for one-dimensional inviscid 

nozzle flow; (b) Comparison of area-averaged Mach number distributions for 

inviscid nozzle flow from two-dimensional solutions; (c) Comparison of area-

averaged Mach number distributions for inviscid nozzle flow with normal 

shock waves from two-dimensional solutions. 

Fig. 5   Subsonic flow over a 10% circular bump; (a) coarse grid used, (b) isobars, 

and (c) profiles along the walls. 

Fig. 6   Transonic flow over a 10% circular bump; (a) Isobars using a dense grid, (b) 

isobars using various schemes, and (c) profiles along the walls.  

Fig. 7   Supersonic flow over a 4% circular bump (Min=1.4); (a) coarse grid used, (b) 

Mach number contours using various schemes, (c) Mach number contours 

using a dense grid, and (d) profiles along the walls. 

Fig. 8  Supersonic inviscid flow over 4% bump (Min=1.4): Mach-number contours. 

Fig. 9   Supersonic flow over a 4% circular bump (Min=1.65); (a) coarse grid used, (b) 
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Mach number contours using various schemes, (c) Mach number contours 

using a dense grid, and (d) profiles along the walls. 

Fig. 10  (a) Comparison of % error and (b) convergence history for the transonic flow 

(Min=0.675) over a 10% circular bump; (c) Comparison of % error and (d) 

convergence history for the supersonic flow (Min=1.65) over a 4% circular 

bump. 

Fig. 11   Supersonic flow over an obstacle: (a) Physical situation, (b) Isobars using the 

upwind scheme (40X38 grid points), and (c) results obtained by Marchi and 

Maliska using the upwind scheme (44x36 grid points). 

Fig. 12  Supersonic flow over an obstacle: (a) Isobars generated using a dense grid; 

(b) Isobars generated using different schemes. 

Fig. 13  (a) Wave diagram for optimum duct-filling process; (b) Mach number 

distribution at inflow; (c) Variation of mass with time. 
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Table 1(a)  Under-relaxation factors and number of iterations needed for the subsonic  

       flow in a converging diverging nozzle (Min=0.1).  

 

 All Upwind All SMART Upwind for ρ, SMART 

for u and T 

Grid Under-

relaxation 

Number 

of 

Iterations 

Under-

relaxation 

Number 

of 

Iterations 

Under-

relaxation 

Number 

of 

Iterations 

21 0.25 2513 0.25 2887 0.25 2883 

51 0.4 3242 0.4 4045 0.4 4021 

101 0.55 4052 0.55 4446 0.55 4432 

21 0.25-0.95 643 0.25-0.95 703 0.25-0.95 694 

51 0.4-0.95 636 0.4-0.95 755 0.4-0.95 747 

101 0.55-0.95 624 0.55-0.95 714 0.55-0.95 703 

251 0.95 851 0.95 894 0.95 873 

501 0.95 1562 0.95 1583 0.95 1581 

2000 0.95 5703 0.95 5705 0.95 5705 
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Table 1(b)  Under-relaxation factors and number of iterations needed for the supersonic  

       flow in a converging diverging nozzle (Min=7).  

 

 

 All Upwind All SMART Upwind for ρ, SMART 

for u and T 

Grid Under-

relaxation 

Number 

of 

Iterations 

Under-

relaxation 

Number 

of 

Iterations 

Under-

relaxation 

Number 

of 

Iterations 

21 0.95 34 0.6 130 0.6 110 

51 0.95 42 0.6 140 0.6 140 

101 0.95 51 0.6 202 0.6 206 

251 0.95 73 0.6 383 0.6 390 

501 0.95 103 0.6 672 0.6 678 

2000 0.95 253 0.6 2269 0.6 2275 
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Fig. 1  (a)  Control volume; (b) Control volume nodes; (c) Normalization; (d) CBC. 
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   (a)                                           

  (b) 

 

 

Fig. 2   Comparison of Mach number variation for an inlet Mach number value of  

   (a) 0.1 (subsonic), 

    (b) 0.3 (transonic),  
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                     (c)                                   

             (d) 

 

Fig. 2   Comparison of Mach number variation for an inlet Mach number value of  

                                      (c) 7 (supersonic), and  

                                      (d) 0.3 (transonic with normal shock waves at X=7 or X=9). 

 

 

 

 



A High-resolution Algorithm for all speed flows  47 

 

Grid Size

%
E

rr
or

0 500 1000 1500 2000
0

2

4

6

8

Upwind for u, T, and

SMART for u and T, Upwind for

SMART for u, T, and ρ

ρ

ρ

Grid Size

%
E

rr
or

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

Upwind for u, T, and

SMART for u and T, Upwind for

SMART for u, T, and ρ

ρ

ρ

 

                                   (a)                                                                (b)                              

Grid Size

%
E

rr
or

0 500 1000 1500 2000
0

5

10

15

20

25

30

SMART for u, T, and

SMART for u and T, upwind for

Upwind for u, T, and

ρ

ρ

ρ

 

         (c) 

                                                                              

Fig. 3 Comparison of % error in the solution of one-dimensional  

  (a) subsonic (Min=0.1),  

  (b) supersonic (Min=7), and  

  (c) transonic (Min=0.3 with a normal shock wave at X=7) nozzle flow. 
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(a) (b) 

 

 

Fig. 4  (a) Comparison of Mach number distributions for one-dimensional inviscid nozzle 

flow; (b) Comparison of area-averaged Mach number distributions for inviscid nozzle 

flow from two-dimensional solutions; 
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                                 (c)                                                                      

 

 

Fig. 4  (c) Comparison of area-averaged Mach number distributions for inviscid nozzle 

flow with normal shock waves from two-dimensional solutions. 
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  (c) 

 
Fig. 5  Subsonic flow over a 10% circular bump; (a) coarse grid used, (b) isobars,  

     and (c) profiles along the walls.  
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(a) 

 

(b) 

 

 

Fig. 6  Transonic flow over a 10% circular bump;  

  (a) Isobars using a dense grid,  

  (b) isobars using various schemes 
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(c) 

 

Fig. 6  Transonic flow over a 10% circular bump; (c) profiles along the walls. 
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  (d) 

Fig. 7   Supersonic flow over a 4% circular bump (Min=1.4); (a) coarse grid used,   
(b) Mach number contours using various schemes, (c) Mach number contours    
using a dense grid, and (d) profiles along the walls. 
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Fig. 8  Supersonic inviscid flow over 4% bump (Min=1.4): Mach-number contours. 
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Fig. 9      Supersonic flow over a 4% circular bump (Min=1.65);  

 (a) coarse grid used,  

 (b) Mach number contours using various schemes,  

 (c) Mach number contours  using a dense grid, 



A High-resolution Algorithm for all speed flows  56 

 

               

(d) 

 

 

Fig. 9      Supersonic flow over a 4% circular bump (Min=1.65);  

  (d) profiles along the walls. 
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(a)                                                                   (b) 

 

Fig. 10 (a) Comparison of % error and  

            (b) convergence history for the transonic flow (Min=0.675) over a 10% circular   

bump; 
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(c) (d) 
 

 

Fig. 10 (c) Comparison of % error and  

            (d) convergence history for the supersonic flow (Min=1.65) over a 4% 

circular bump. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 11  Supersonic flow over an obstacle: (a) Physical situation, (b) Isobars using the 
     upwind scheme (40X38 grid points), and (c) results obtained by Marchi and  
     Maliska using the upwind scheme (44x36 grid points). 
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(a) 

 (b) 

 

Fig. 12  Supersonic flow over  an obstacle: (a) Isobars generated using a dense grid; 

(b) Isobars generated using different schemes. 
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(a)                                                                    (b)       

 

Fig. 13         (a) Wave diagram for optimum duct-filling process,  

(b) Mach number distribution at inflow;                                                        
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      (c)        

 

 

 Fig. 13   (c) Variation of mass with time. 
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