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ABSTRACT

A new collocated finite volume-based solution procedure for predicting viscous
compressible and incompressible flows is presented. The technique is equally
applicable in the subsonic, transonic, and supersonic regimes. Pressure is selected as
a dependent variable in preference to density because changes in pressure are
significant at all speeds as opposed to variations in density which become very small at
low Mach numbers. The newly developed algorithm has two new features; (i) the use of
the Normalized Variable and Space Formulation methodology to bound the convective
fluxes; and (ii) the use of a high-resolution scheme in calculating interface density
values to enhance the shock capturing property of the algorithm. The virtues of the
newly developed method are demonstrated by solving a wide range of flows spanning
the subsonic, transonic, and supersonic spectrum. Results obtained indicate higher

accuracy when calculating interface density values using a High-Resolution scheme.



NOMENCLATURE

al,a?,. Coefficients in the discretized equation.

X)

Source term in the discretized equation for ¢.

Coefficient equals to 1/RT.

The D operator.

The vector form of the D operator.
Convective flux at cell face 'f'.
The H operator.

The vector form of the H operator.

Unit vector in the x-direction.

Unit vector in the y-direction.

Total scalar flux across cell face 'f' due to convection.
Total scalar flux across cell face 'f' due to diffusion.

Total scalar flux across cell face 'f".

Mach number

Pressure.
Source term for ¢.

Gas constant.

Surface vector.

Temperature.
Time.
Velocity components in the x- and y- directions.

Interface flux velocity (v,.S, ).

ui +vj.
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X,y Cartesian coordinates.

GREEK SYMBOLS

Al ¢]  The A operator.

) Dissipation term in energy equation.
r Diffusion coefficient for ¢.
Q Cell volume.

Thermal expansion coefficient.

ot Time step.

) Normalized scalar variable.
[0} Scalar variable.

u Viscosity.

p Density.

SUBSCRIPTS

e,w,. Refersto the east, west, ... face of a control volume.
E,W,.. Refers to the East, West, ... neighbors of the main grid point.
f Refers to control volume face f.

NB Refers to neighbours of the P grid point.

P Refers to the P grid point.

SUPERSCRIPTS

° Refers to values from the previous time step.

(n) Refers to value from the previous iteration.
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*

HR

Refers to intermediate values at the current iteration.
Refers to correction field.
Refers to convection contribution.

Refers to diffusion contribution.

Refers to values based on a HR scheme.
Refers to component in x-direction.
Refers to component in y-direction.

Refers to dependent variable.



INTRODUCTION

In Computational Fluid Dynamics (CFD) a great research effort has been devoted to the
development of accurate and efficient numerical algorithms suitable for solving flows in
the various Reynolds and Mach number regimes. The type of convection scheme to be
used in a given application depends on the value of Reynolds number. For low
Reynolds number flows, the central difference or hybrid scheme is adequate [1]. In
dealing with flows of high Reynolds number, numerous discretization schemes for the
convection term arising in the transport equations have been employed
[2,3,4,5,6,7,8,9,10,11]. On the other hand, the Mach number value dictates the type of
algorithm to be utilized in the solution procedure. These algorithms can be divided into
two groups: density-based methods and pressure-based methods, with the former used
for high Mach number flows, and the latter for low Mach number flows. In density-based
methods, continuity is employed as an equation for density and pressure is obtained
from an equation of state, while in pressure-based methods, continuity is utilized as a
constraint on velocity and is combined with momentum to form a Poisson like equation
for pressure. Each of these methods is appropriate for a specific range of Mach number
values.

The ultimate goal, however, is to develop a unified algorithm capable of solving flow
problems in the various Reynolds and Mach number regimes. To understand the
difficulty associated with the design of such an algorithm, it is important to understand
the role of pressure in a compressible fluid flow [12]. In the low Mach number limit
where density becomes constant, the role of pressure is to act on velocity through
continuity so that conservation of mass is satisfied. Obviously, for low speed flows, the

pressure gradient needed to drive the velocities through momentum conservation is of
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such magnitude that the density is not significantly affected and the flow can be
considered nearly incompressible. Hence, density and pressure are very weakly
related. As a result, the continuity equation is decoupled from the momentum equations
and can no longer be considered as the equation for density. Rather, it acts as a
constraint on the velocity field. Thus, for a sequential solution of the equations, it is
necessary to devise a mechanism to couple the continuity and momentum equations
through the pressure field. In the hypersonic limit where variations in velocity become
relatively small as compared to the velocity itself, the changes in pressure do
significantly affect density. In this limit, the pressure can be viewed to act on density
alone through the equation of state so that mass conservation is satisfied [12] and the
continuity equation can be viewed as the equation for density. This view of the two
limiting cases of compressible flow can be generalized in the following manner. In
compressible flow situations, the pressure takes on a dual role to act on both density
and velocity through the equation of state and momentum conservation, respectively,
so that mass conservation is satisfied. For a subsonic flow, mass conservation is more
readily satisfied by pressure influencing velocity than pressure influencing density. For a
supersonic flow, mass conservation is more readily satisfied by pressure influencing
density than pressure influencing velocity.

The above discussion reveals that for any numerical method to be capable of predicting
both incompressible and compressible fluid flow the pressure should always be allowed
to play its dual role and to act on both velocity and density to satisfy continuity.
Nevertheless, through the use of the so-called pseudo or artificial compressibility
technique [13,14], several density-based methods for fluid flow at all speeds have been
developed. These methods encountered difficulties in efficiently avoiding the stiff
solution matrices that greatly degraded their rate of convergence. To overcome this

problem and ensure convergence over all speed ranges, preconditioning of the
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resulting stiff matrices was introduced and several methods (e.g. Terkel [15], Choi and
Merkle [16],Turkel et.al. [17], Tweedt et.al.[18], Van Leer et.al. [19], Weiss and Smith
[20], Merkle et.al. [21], and Edwards and Liou [22] to site a few) using this promising
technique have appeared in the literature lately.

At the other frontier, several researchers [12,23,24,25,26,27,28,29,30,31,32,33,34,35,
36,37,38] have worked on extending the range of pressure-based methods, with
various degrees of success, to high Mach numbers following either a staggered grid
approach [12,23-25] or a collocated variable formulation [26-33]. The method of Shyy
and Chen [24], developed within a multigrid environment, uses a second-order upwind
scheme in discretizing the convective terms. Moreover, at high Mach number values, a
first order upwind scheme is employed for evaluating the density at the control volume
faces. Yang et al [26] used a general strong conservation formulation of the momentum
equations that allows several forms of the velocity components to be chosen as
dependent variables. In the method developed by Marchi and Maliska [27], values for
density, convection fluxes, and convection-like terms at the control volume faces are
calculated using the upwind scheme. Demirdzic et al [28], however, used a central
difference scheme blended with the upwind scheme to evaluate these quantities. Lien
and Leschziner [29,30] adopted the streamwise-directed density-retardation concept,
which is controlled by Mach-number-dependent monitor functions, to account for the
hyperbolic character of the conservation laws in the transonic and supersonic regimes.
Politos and Giannakoglou [31] developed a pressure-based algorithm for high-speed
turbomachinery flows following also the retarded density concept. In their method,
unlike the work of Lien and Leschziner [29,30], the retarded density operates only on
the velocity component correction during the pressure correction phase. Chen and
Pletcher [32] developed a coupled modified strongly implicit procedure that uses the

strong conservation forms of Navier-Stokes equations with primitive variables. Issa and
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Javareshkian [33] introduced a pressure-based compressible calculation method, using
TVD schemes, that has a resolution quality similar to that obtained when applied in
density-based methods. The methods of Karimian and Schneider [34-36] and Darbandi
and Schneider [37,38] are formulated within a control-volume-based finite element
framework. While Karimian and Schneider [34-36] used primitive variables in their
formulation, Darbandi and Schneider [37,38] employed the momentum components as
dependent variables.

From the aforementioned literature review, it is obvious that in most of the published
work the first order upwind scheme is used to interpolate for density when in the source
of the pressure correction equation, exception being in the work presented in [28-31]
where a central difference method is adopted. In the technique developed by Demirdzic
et al [28], the second order central difference scheme blended with the upwind scheme
is used. The bleeding relies on a factor varying between 0 and 1. In the work presented
in [29-31], the retarted density concept is utilized in calculating the density at the control
volume faces. This concept is based on factors that are problem dependent and
requires the addition of some artificial dissipation to stabilize the algorithm (second-
order terms were introduced), which complicate its use.

To this end, the objective of this paper is to present a newly developed pressure-based
solution procedure that is equally valid at all Reynolds and Mach number values. The
collocated variable algorithm is formulated on a non-orthogonal coordinate system
using Cartesian velocity components. The method is easy to implement, highly
accurate, and does not require any explicit addition of damping terms to stabilize it or to
properly resolve shock waves. Moreover, the algorithm has two new features. The first
one is the use of the Normalized Variable Formulation (NVF) [39] and/or the Normalized
Variable and Space Formulation (NVSF) [40] methodology in the discretization of the

convective terms. To the authors’ knowledge, the NVF/NVSF methodologies have
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never been used to bound the convective flux in compressible flows. Mainly low order
schemes or the TVD [33,41] formulation has usually been adopted. The second one is
the use of High-Resolution (HR) schemes in the interpolation of density appearing in
the mass fluxes in order to enhance the shock capturing capability of the method.

In what follows the governing equations for compressible flows are presented and their
discretization detailed so as to lay the ground for the derivation of the pressure-
correction equation. Then, the increase in accuracy with the use of HR schemes for
density is demonstrated. This is done by comparing predictions, for a number of
problems, obtained using the third-order SMART scheme [8] for all variables except
density (for which the Upwind [1] scheme is used) against another set of results

obtained using the SMART scheme for all variables including density.
GOVERNING EQUATIONS

The equations governing the flow of a two-dimensional compressible fluid are the
continuity equation, the momentum equations, and the energy equation. This set of
non-linear, coupled equations is solved for the unknowns p, v, T and P. In vector form,

these equations may be written as:

2—T+V'(pv)=0 (1)

%+V-(pw):—VP+V-(va)+%V(uV-v) (2)

MO0 5. 1) = {0 () gt L )29 )] 0+ )
C

p

@_u{zl[gj:[gﬂ{%g_g_gw} @



A High-resolution Algorithm for all speed flows 11

and B the thermal expansion coefficient which is equal to 1/T for an ideal gas. In
addition to the above differential equations, an auxiliary equation of state relating
density to pressure and temperature (p=f(P,T)) is needed. For an ideal gas, this
equation is given by:

p
—_—_=CUP 5
P=27=Co (9)

where R is the gas constant.
A review of the above differential equations reveals that they are similar in structure. If
a typical representative variable is denoted by ¢, the general differential equation may

be written as,

KD 1y (pvg) = V- (rv)+ ©)

where the expressions for I'* and Q? can be deduced from the parent equations. The
four terms in the above equation describe successively unsteadiness, convection (or
advection), diffusion, and generation/dissipation effects. In fact, all terms not explicitly

accounted for in the first three terms are included in the catchall source term Q.
FINITE VOLUME DISCRETIZATION

The general transport equation (Eq. (6)) is discretized using the control volume
methodology. For that purpose, equation (6) is integrated over the control volume
shown in Fig. 1(a) to yield, upon applying the divergence theorem, the following

discretized equation:

2 ool Jo+ allvo-rove)-s], ~ e )

In the above equation, the A operator is the discretized version of the surface integral

defined by:
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Aldl, = .+, +d, +, (8)

Hence equation (7) can be written as

o) o alll = S ool o+, +3, 43, 41,)-Q%0 ©

In eq. (9), J s represents the total flux of ¢ across face 'f and is given by
Ji =(pvp-r*vo), -5, (10)
where S, is the surface vector of cell face “f". The flux J; is a combination of the

convection flux J§ = (pvé).Srand diffusion flux JP = (-T*V).Sr.

From equation (9), it is obvious that the total fluxes are needed at the control volume
faces where the values of the dependent variables are not available and should be
obtained by interpolation. Therefore, the accuracy of the solution depends on the proper

estimation of these values as a function of the neighboring ¢ node values.

The discretization of the diffusion flux J{ does not require any special consideration

and the method adopted here is described in Zwart et al. [42].

The discretization of the convection flux is, however, problematic and requires special
attention. The convection flux of ¢ through the control volume face “f" may be written as:
1€ =(pvd), - S, = F,0, (11)
where ¢; stands for the mean value of ¢ along cell face “f”, and F= (pv.S); is the mass
flow rate across face f. Using some assumed interpolation profile, ¢ can be explicitly
formulated by a functional relationship of the form:

o = 1(¢,) (12)
where ¢,, denotes the ¢ values at the neighboring nodes. The interpolation profile

should be bounded in order not to give rise to the well-known dispersion error problem

[2]. In this work, HR schemes formulated in the context of the NVSF methodology,
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which is explained in the next section, are used. For the representation of the unsteady
term, the grid-point value of ¢ is assumed to prevail throughout the control volume and
the time derivative is approximated using a Euler-implicit formulation.

The discretized equation, Eq. (9), is transformed into an algebraic equation at the main
grid point P by substituting the fluxes at all faces of the control volume by their
equivalent expressions. Then, performing some algebraic manipulations on the
resultant equation, the following algebraic relation, linking the value of the dependent

variable at the control volume center to the neighboring values, is obtained:

aﬁ(l)P = Zadliqu)NB +b$ (13)

NB(P)

In the above equation, a?, are the coefficients multiplying the value of ¢ at the

neighboring nodes NB=(E, W, N, and S) surrounding the central node P, a! is the
coefficient of ¢p, and b? contains all terms that are not expressed through the nodal

values of the dependent variable (e.g. the source term Q°, the pressure gradients in the
momentum equations, terms involving known values of ¢ etc. ...).

For the solution domain as a whole there results a system of N equations in N
unknowns, where N is the number of control volumes. Many techniques exist for
solving large systems of linear equations that may be classified as direct or iterative
methods. The use of direct methods is not appropriate in the present context because
they require much more storage than iterative methods and are usually more expensive
computationally. Owing to the non-linear nature of the set of equations, the discretized
equations are solved by the use of iterative methods. Current iterative methods differ
with respect to storage requirement and degree of implicitness, such as the point-by-
point successive over-relaxation method [43], the strongly implicit procedure of Stone
[44] and its variations, the Incomplete Cholesky Conjugent Gradient (ICCG) [45], or the

Multigrid Method of Brandt [46] to site a few. Although these methods have their own
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desirable attributes, the degree of simplicity of their implementation in a computer code
is approximately inversely proportional to their rate of convergence. The algorithm used

in this work is the TDMA [47].

THE NVSF METHODOLOGY FOR CONSTRUCTING HR SCHEMES

As mentioned earlier, the discretization of the convection flux is not straightforward and
requires additional attention. Since the intention is to develop a high-resolution
algorithm, the highly diffusive first order UPWIND scheme [1] is excluded. As such, a
high order interpolation profile is sought. The difficulties associated with the use of such
profiles stem from the conflicting requirements of accuracy, stability, and boundedness.
Solutions predicted with high order profiles tend to provoke oscillations in the solution
when the local Peclet number is high in combination with steep gradients of the flow
properties. To suppress these oscillations, many techniques have been advertised and
may be broadly classified into two groups: the flux blending method [48,49,50,51] and
the composite flux limiter method [8,39-41,52], the latter being the one adopted here. In
this technique, the numerical flux at the interface of the computational cell is modified
by employing a flux limiter that enforces boundedness. The formulation of high-
resolution flux limiter schemes on uniform grid has recently been generalized by
Leonard [39,52] through the Normalized Variable Formulation (NVF) methodology and
on non-uniform grid by Darwish and Moukalled [40] through the Normalized Variable
and Space Formulation (NVSF) methodology. The NVF and NVSF methodologies have
provided a good framework for the development of HR schemes that combine simplicity
of implementation with high accuracy and boundedness. Moreover, to the authors’
knowledge, the NVSF formulation has never been used to bound the convection flux in

compressible flows. It is an objective of this work to extend the applicability of this
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technique to compressible flows. Therefore, before introducing the high-resolution
algorithm, a brief review of the NVSF methodology is in order.

Fig. 1(b) shows the local behavior of the convected variable near a control-volume face.
The node labeling refers to the upstream, central, and downstream grid points
designated by U, C, and D, located at distances &y, &c and &p from the origin,
respectively. The values of ¢ at these nodes are designated by ¢y, ¢c and dp
respectively. Moreover, the value of the dependent variable at the control volume face
located at a distance & from the origin is expressed by ¢r. With this notation, the

normalized variables are defined as follows:

_9-¢y i £-Cy
op —du &p —&u

<!

(14)

The use of the above-normalized parameters simplifies the functional representation of
interpolation schemes (Fig. 1(c)) and helps defining the stability and boundedness
conditions that they should satisfy.

Based on the normalized variable analysis, Gaskell and Lau [8] formulated a convection
boundedness criterion (CBC) for implicit steady flow calculation. This CBC states that

for a scheme to have the boundedness property its functional relationship should be

continuous, should be bounded from below by §, = ¢, from above by unity, and
should pass through the points (0,0) and (1,1), in the monotonic range (0< ¢ . <1), and

for 1<§. or <0, the functional relationship f($.) should equal ¢, . These

conditions are shown graphically in Fig. 1(d).

Knowing the required conditions for boundedness, the shortcomings of High Order (HO)
schemes were eliminated through the development of HR schemes satisfying all above
requirements. Without going into details, a number of HR schemes were formulated

using the NVF/NVSF methodologies and the functional relationship for the SMART
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scheme [8] extensively used in this work is given below. For more details the reader is

referred to Darwish and Moukalled [40].

SMART
Ef(1—3gc +2Ef)~ ~ &g
- ~ bc 0<oc <=~
E,.c(l—ic) ’
Ee(1-8) . &l -%c) E. - E., - -
- zzglzi))d’“ f(fzcc) ERU At "
. %—C(1+Ef—gc)ﬁ$c<l
$C elgewhere

HIGH RESOLUTION ALGORITHM

The need for a solution algorithm arises in the simulation of flow problems because a
scalar equation does not exist for pressure. Rather, the pressure field acts indirectly on
the velocity field to constrain it to satisfy the continuity equation. Hence, if a segregated
approach is to be adopted, coupling between the u, v, p, and P primitive variables in the
continuity and momentum equations will be required. Evidently, the whole set of
equations could be solved directly (after linearization) since the number of equations
equals the number of unknowns. However, the computational effort and storage
requirements needed by such an approach are often prohibitive. This has forced
researchers to seek less expensive methods and resulted in the development of several
segregated solution algorithms [1,53,54,55,56,57,58,59]. Recently, Moukalled and
Darwish presented a unified formulation of these algorithms [60].

The segregated algorithm adopted in this work is the SIMPLE algorithm [1,53] which
involves a predictor and a corrector step. In the predictor step, the velocity field is

calculated based on a guessed or estimated pressure field. In the corrector step, a
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pressure (or a pressure-correction) equation is derived and solved. Then, the variation
in the pressure field is accounted for within the momentum equations by corrections to
the velocity and density fields. Thus, the velocity, density, and pressure fields are
driven, iteratively, to better satisfying the momentum and continuity equations
simultaneously and convergence is achieved by repeatedly applying the above-
described procedure.

Before presenting the pressure correction equation, the discretized momentum

equations are first written in the following notationally more suitable form:

apu, = Za%BuNB +bt —Q(VP),.i
NB(P) (16)
apVvy = zavNBVNB +b, _Q(VP)P J

NB(P)

This form can be simplified to

{: }_{Eﬁ } =_{D[§]P D&HEEQ JI} (17)

where

] ZaniIB(bNB + bﬁ
_ 1 _ NB(P) _
(VP)y =5 [ vPae Hlo) : Di4],

P

(18)

2|0

In the above equations, Q is the volume of cell P, and the subscripts e, w, n, and s refer
to values at the east, west, north, and south faces of the control volume (Fig. 1(a)).

Defining the vector forms of the above operators as,

H[V]p :{H[U]P} D, = {D[H]P 0 } (VP)P :[(VP)P.q _ (VP)P (19)
H[v], 0 D[v], (VP),i] |(vP)

the momentum equations in vector form become

v, —H[V], = -D,(VP), (20)

For the calculation of the mass fluxes across the control volume faces (U, =v,.S,) and

for checking mass conservation, the values of the velocity components are needed



A High-resolution Algorithm for all speed flows 18

there. In order to avoid oscillations which may result if a simple linear interpolation
method is used, a special interpolation practice is employed as suggested by Rhie [61],

Peric [50], and Majumdar [62].

THE PRESSURE CORRECTION EQUATION

As mentioned earlier, the convergence in the segregated approach is driven by the
corrector stage where a pressure (or a pressure-correction) equation is solved.
Therefore, the first phase in developing a segregated solution algorithm is to derive
such an equation. The key step in the derivation is to note that in the predictor stage a
guessed or estimated pressure field from the previous iteration, denoted by P™, is
substituted into the momentum equations. The resulting velocity field, denoted by v,
which now satisfies the momentum equations, will not in general satisfy the continuity
equation. Thus, a correction is needed in order to obtain velocity and pressure fields
that satisfy both equations. Denoting the pressure, velocity, and density corrections by

P, v'(u', v'), and p', respectively, the corrected fields are obtained from:

P=P" +P’
v=Vv +V' (uzu*+u’,V=V*+V') (21)
p=p™ +p’
Before the pressure field is known, the velocities obtained from the solution of the
momentum equations are actually u” and v" rather than u and v. Hence the equations
solved in the predictor stage are:
v, —H[v'], =-D,(VP™), (22)
while the final solution satisfies
Vv, —H[v], =-D,(VP), (23)
Subtracting the two sets of equation (23) and (22) from each other yields the following

equation involving the correction terms:
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vy —H[VT, =-D, (VP), (24)
Combining Eq. (24) with the discretized form of the continuity equation and substituting

density correction by pressure correction, as obtained from the equation of state, the

pressure-correction equation is obtained and is given by:

Q;p P, +AlC,UP] - Alp'D(VP)sS], = —(p%tp;)Q—A[p*U*]P — Alp"Hv]S],

- Al(p'v')s]y

(25)

The usual practice is to neglect the second order correction term p'v’. This does not

affect neither the convergence rate (i.e. it is considerably smaller than other terms) nor
the final solution, since at the state of convergence the correction fields vanish.
Furthermore, if the H[v'] term in the above equation is retained, there will result a
pressure correction equation relating the pressure correction value at a point to all
values in the domain. To facilitate implementation and reduce cost, this term is

neglected in SIMPLE. Therefore, the final form of the pressure-correction equation is:

Q;" P +AlC,UP] - Alp'D(VP)s), = —(p*%tp;)Q—A[p*U*]P (26)

From the above equation, it is clear that the starred continuity equation appears as a
source term in the pressure correction equation. Moreover, in a pressure-based
algorithm, the pressure-correction equation is the most important equation that gives
the pressure, upon which all other variables are dependent. Therefore, the accuracy of
the predictions depends on the proper estimation of pressure from this equation.
Definitely, the more accurate the interpolated starred density (p”) values at the control
volume faces are, the more accurate the predicted pressure values will be. The use of a
central difference scheme for the interpolation of p° leads to instability at Mach
numbers near or above 1 [12,25]. On the other hand the use of a first order upwind

scheme leads to excess diffusion [25]. The obvious solution to the aforementioned
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problems would be to interpolate for values of p~ at the control volume faces in the

same way interpolation for other dependent variables is carried out: in other words, to
employ the bounded HR family of schemes for which no problem-dependent factors are
required. Adopting this strategy, the discretized form of the starred steady continuity

equation becomes:

*

Al ur]y = (o)™ U+ (oL ) U+ o) UL+ (01" U (27)
The same procedure is also adopted for calculating the density when computing the
mass flow rate at a control volume face in the general conservation equation.

When discretizing the pressure-correction equation (Eq. (26)), careful attention should
be paid to the second term on the left hand side that is similar to a convection term and
for which any convective scheme may be used. Since at the state of convergence the
pressure-correction field is zero, the order of interpolation scheme is not important and
the use of a first order scheme is sufficient. Adopting the UPWIND scheme [1] for the

convection-like term, the pressure-correction equation is obtained as:

alP, =ay P, +ay Py, +alP, +al P, +b} (28)

where

al =17 +(C,) [-U..0

a%, =T} +(C,) |- Us.0

al =r7 +(C,) [-U..0

al =17 +(C,) - U0 (29)
alc,)

) = 26

all:’ =ag +af,\', +a§ +aSP’ +(all:,)o +[(C ) U +(C ) U +(Cp)nU; +(CP)SU:]

o = Pe =080 o ) o )

and T"is a coefficient arising from the discretization id the diffusion-like term

Alp'D(VP)S],.
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OVERALL SOLUTION PROCEDURE

Knowing the solution at time t, the solution at time t+5t is obtained as follows:
+ Solve implicitly for u and v, using the available pressure and density fields.
* Calculate the D field.

 Solve the pressure correction equation.

* Correctu, v, P and p.

» Solve implicitly the energy equation and update the density field.

* Return to the first step and iterate until convergence.

BOUNDARY CONDITIONS

The solutions to the above system of equations require the specification of boundary
conditions of which several types are encountered in flow calculations, such as inflow,
outflow, and no-flow (impermeable walls, and symmetry lines). Details regarding the
various types and their implementation for both incompressible and compressible flow
calculations are well documented in the literature and will not be repeated here.
However, it should be stressed that the convergence of the computations greatly

depends on the proper implementation of these conditions.

RESULTS AND DISCUSSION

The validity of the above described solution procedure is demonstrated in this section
by presenting solutions to the following four inviscid test cases: (i) flow in a converging

diverging nozzle; (ii) flow over a bump; (iii) supersonic flow over a step; and (iv) the
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unsteady duct filling problem. For all problems, unless otherwise stated, computations
were terminated when the maximum residual over the domain and for all dependent

variables fell below 10°7°.
FLOW IN A CONVERGING-DIVERGING NOZZLE

The first test selected is a standard one that has been used by several researchers for
comparison purposes [28,29]. The problem is first solved using a pseudo-one-

dimensional variable area code. The cross-sectional area of the nozzle varies as

2
S(x) = Sth + (Si - Sth )(1 _gj (30)

where S;=2.035 and Sy=1 are the inlet and throat areas, respectively, and 0 < x < 10.
Solutions are obtained over a wide range of inlet Mach numbers ranging from the
incompressible limit (M=0.1) to supersonic (M=7), passing through transonic with strong
normal shock waves and are presented in Figs. (2)-(4).

Results displayed in Figs. 2(a), 2(b), and 2(c) are for inlet Mach numbers of 0.1, 0.3,
and 7 respectively. In these plots, two sets of results generated over a uniform grid of
size 79 control volumes are compared against the exact analytical solution. The first set
is obtained using the third-order SMART scheme [2] for all variables except density (for
which the UPWIND [21] scheme is used). In the second set however, the SMART
scheme is used for all variables including density. Results shown in Fig. 2(a) (M;i,=0.1,
subsonic throughout) indicate that the solution is nearly insensitive to using a HR
scheme when interpolating for density. This is expected, since for this inlet Mach
number value, variations in density are small and the flow can be considered to be
nearly incompressible. For Min=0.3 (Fig. 2(b)), the backpressure is chosen such that a
supersonic flow is obtained in the diverging section (i.e. My,=1, transonic). The Mach

number distributions after the throat are depicted in Fig. 2(b). As shown, the use of a
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HR scheme for interpolating the values of density at the control volume faces improves
predictions. In fact, displayed results reveal that the profile predicted with values of
density at the control volume faces calculated using a HR scheme is nearly coincident
with the exact solution. The Mach number distributions depicted in Fig. 2(c) are for a
fully supersonic flow in the nozzle. The trend of results is similar to that of Fig. 2(b).
Again important improvements are obtained when using the SMART scheme for density
interpolation.

The accuracy of the new technique in predicting normal shock waves is revealed by the
Mach number distributions displayed in Fig. 2(d). Two backpressure values that cause
normal shock waves at x=7 and 9 are used. For each back pressure, three different
solutions (one using the UPWIND scheme for all variables; the second one using the
SMART scheme for all variables; the third one using the SMART scheme for all
variables except density for which the UPWIND scheme is used) are obtained and
compared against the exact solution. All solutions are obtained by subdividing the
domain into 121 uniform control volumes. As shown, predictions obtained using the
UPWIND scheme for all variables are very smooth but highly diffusive and cause a
smearing in the shock wave. Results obtained using the SMART scheme for all
variables except density are more accurate than those obtained with the UPWIND
scheme and cause less smearing in the shock waves. The best results are, however,
obtained when employing the SMART scheme for all variables including density. The
plots also reveal that solutions obtained using the SMART scheme show some
oscillations behind the shock. This is a feature of all HR schemes. The oscillations are
usually centered on the accurate solution and are reduced with grid refinement in both
wavelength and amplitude [28].

To highlight the performance characteristics of the new density treatment in the

pressure-based method, a series of solutions for some of the above mentioned cases
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were generated using different grid sizes and a summary of error norms versus the
number of grid points used is presented in Fig.3. Figs. 3(a) and 3(b) are for inlet Mach
numbers of 0.1 and 7, respectively. Fig. 3(c) however, is for an inlet Mach number of
0.3 with a normal shock wave at X=7. The number of grid points was varied from 21 to

2000. Since an exact analytical solution is available, the error was defined as:

¢ exact d)computed

N
%Error = MAIX {100 } (31)
- exact

The trend of results is similar to that discussed above with the % error generally
decreasing with increasing the grid density. The virtues of using a HR scheme for
computing interface density values are more pronounced at high Mach numbers (Figs.
3(b) and 3(c)). In all cases, the worst solution is obtained when using the upwind
scheme for all variables and the best one is attained when utilizing the HR SMART
scheme for all variables. Noting the use of a Log scale for the % error in Fig. (3), the
improvement when using a HR scheme for density decreases with increasing the
number of grid points. This is expected since all approximations should converge to the
exact solution as the grid size approaches infinity. Moreover, it may be of interest to
mention that the optimum value of the under-relaxation factor increases with increasing
both the grid density and the inlet Mach number. For the results presented in Fig. (3),
the under-relaxation factor for the various variables varied from a minimum of 0.2 for
the 21 grid size to 0.8 for the 2000 grid size. This increase is attributed to a better
solution at the beginning of the iterative process, as a result of using a larger number of
grid points. The 0.2 value could be increased during the iterative process after a
relatively good solution has been established. The need for a small under-relaxation
factor at low Mach numbers is attributed to the large pressure correction values that
result at the beginning of the iterative process and which are used to correct the

density. Since at low Mach number density variations are small, high under-relaxation is
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needed. Definitely, the under-relaxation values may be increased after obtaining
relatively good estimates. Moreover, the number of iterations needed to obtain a
converged solution, increases with increasing the number of grid points and decreases
with increasing Mach number for the reasons stated above. The number of iterations
required to obtain a converged solution (residuals for this one-dimensional problem
were driven to machine error) for the cases presented in Fig. 3, varied from 1000 (for
the grid of size 21) to 20,000 iterations when using 2000 grid points. These values may
not be the optimum ones due to the large number of parameters involved. For example,
under-relaxing the interface ¢ values (including density) may accelerate the
convergence rate. All results presented in this paper were obtained without adopting
such a practice. Furthermore, when using a HR scheme for all variables including
density, the number of iterations needed to achieve a certain level of accuracy is nearly
the same as the one needed when using a HR scheme for all variables excluding
density (for which the Upwind scheme is used).

As a further check on the applicability of the new technique in the subsonic, transonic,
and supersonic regimes, results are generated for several inlet Mach number values
0.1<M;,<7 and displayed in Fig. 4(a). As shown, the Mach number distributions are in
excellent agreement with the exact solution. Moreover, two-dimensional predictions for
some of the above-presented cases were generated with 100x15 mesh covering one
half of the nozzle. The resultant area-averaged variations of Mach number are depicted
in Figs. 4(b) and 4(c). Results were obtained using the SMART scheme for all variables
including density. As for the quasi-one-dimensional predictions, results are in excellent

agreement with the exact solutions.

FLOW OVER A CIRCULAR ARC BUMP
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The physical situation consists of a channel of width equal to the length of the circular
arc bump and of total length equal to three lengths of the bump. This problem has been
used by many researchers [28,29,33,34] to test the accuracy and stability of numerical
algorithms. Results are presented for three different types of flow (subsonic, transonic,
and supersonic). For subsonic and transonic calculations, the thickness-to-chord ratio is
10% and for supersonic flow calculations it is 4%. In all flow regimes, predictions
obtained over a relatively coarse grid using the SMART scheme for all variables
including density are compared against results obtained over the same grid using the
SMART scheme for all variables except density, for which the UPWIND scheme is
used. Due to the unavailability of an exact solution to the problem, a solution using a
dense grid is generated and treated as the most accurate solution against which coarse

grid results are compared.
Subsonic flow over a circular arc bump

With an inlet Mach number of 0.5, the inviscid flow in the channel is fully subsonic and
symmetric across the middle of the bump. At the inlet, the flow is assumed to have
uniform properties and all variables, except pressure, are specified. At the outlet
section, the pressure is prescribed and all other variables are extrapolated from the
interior of the domain. The flow tangency condition is applied at the walls. As shown in
Fig. 5(a), the physical domain is non-uniformly decomposed into 63x16 control
volumes. The dense grid solution is obtained over a mesh of size 252x54 control
volumes. Isobars displayed in Fig. 5(b) reveal that the coarse grid solution obtained with
the SMART scheme for all variables falls on top of the dense grid solution. The use of
the upwind scheme for density however, lowers the overall solution accuracy. The
same conclusion can be drawn when comparing the Mach number distribution along
the lower and upper walls of the channel. As seen in Fig. 5(c), the coarse grid profile

obtained using the SMART scheme for density is closer to the dense grid profile than
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the one predicted employing the upwind scheme for density. The difference in results
between the coarse grid solutions is not large for this test case. This is expected since
the flow is subsonic and variations in density are relatively small. Larger differences are

anticipated in the transonic and supersonic regimes.
Transonic flow over a circular arc bump

With the exception of the inlet Mach number being set to 0.675, the grid distribution and
the implementation of boundary conditions are identical to those described for subsonic
flow. Results are displayed in Fig. 6 in terms of isobars and Mach profiles along the
walls. In Fig. 6(a) isobars generated using a dense grid and the SMART scheme for all
variables are displayed. Fig. 6(b) presents a comparison between the coarse grid and
dense grid results. As shown, the use of the HR SMART scheme for density greatly
improves the predictions. Isobars generated over a coarse grid (63x16 c.v.) using the
SMART scheme for all variables are very close to the ones obtained with a dense grid
(252x54 c.v.). This is in difference with coarse grid results obtained using the upwind
scheme for density and the SMART scheme for all other variables, which noticeably
deviate from the dense grid solution. This is further apparent in Fig. 6(c) where Mach
number profiles along the lower and upper walls are compared. As shown, the most
accurate coarse grid results are those obtained with the SMART scheme for all
variables and the worst ones are achieved with the upwind scheme for all variables.
The maximum Mach number along the lower wall (z1.41), predicted with a dense grid,
is in excellent agreement with published values [28,29,33]. The use of a HR scheme for
density greatly enhances the solution accuracy with coarse grid profiles generated
using the SMART scheme for all variables being very close to the dense grid results. By

comparing coarse grid profiles along the lower wall, the all-SMART solution is about
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11% more accurate than the solution obtained using SMART for all variables and

upwind for density and 21% more accurate than the highly diffusive all-upwind solution.
Supersonic flow over a circular arc bump

Computations are presented for two inlet Mach number values of 1.4 and 1.65. For
these values of inlet Mach number and for the used geometry, the flow is also
supersonic at the outlet. Thus, all variables at inlet are prescribed, and at outlet all
variables are extrapolated. For Mj;=1.4, results are presented in Figs. 7 and 8. The
coarse grid used is displayed in Fig. 7(a). Mach number contours are compared in Fig.
7(b). As before, the coarse grid all-SMART results (58x18 c.v.), being closer to the
dense grid results (158x78 c.v.), are more accurate than those obtained when using the
upwind scheme for density. The fine grid Mach contours are displayed in Fig. 7(c). As
depicted, the reflection and intersection of the shocks is very well resolved without
undue oscillations. The Mach profiles along the lower and upper walls, depicted in Fig.
7(d), are in excellent agreement with published results [63] and reveal good
enhancement in accuracy when using the SMART scheme for evaluating interface
density values. The use of the upwind scheme to compute density deteriorates the
solution accuracy even though a HR scheme is used for other variables. The all-upwind
results are highly diffusive. Finally, results for this case were obtained over a grid of
90x30 nodes, of which 80x30 were uniformly distributed in the region downstream of
the bump’s leading corner. Resulting Mach contours are compared in Fig. 8 with four
other solutions [29,64,65] using the same grid density. The comparison demonstrates
the credibility and superiority of the current solution methodology. The wiggles and
oscillations in some regions around the shock waves in the published solutions are not
present in the newly predicted one.

For Mi,=1.65, results are depicted in Fig. 9. The coarse grid used is shown in Fig. 9(a)

and the Mach contours are compared in Fig. 9(b). The trend of results is consistent with
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what was obtained earlier. Fine grid results displayed in Figs. 9(c) and 9(d) are in
excellent agreement with published results [28,33]. The Mach contours in Fig. 9(c) are
very smooth and do not show any sign of oscillations. The profiles along the lower and
upper walls indicate once more that the use of a HR scheme for density increases the
solution accuracy. Thus, for subsonic, transonic, and supersonic flows the use of a HR

scheme for calculating interface density values increases the solution accuracy.
Effect of grid size

As for the previous problem, the performance characteristics of the newly suggested
method is studied by obtaining a series of solutions, using different grid sizes, for the
transonic (Mir=0.675) and supersonic (Mi=1.65) cases. The variation of error with the
grid size along with the convergence history are depicted in Fig. 10. The % error in the
solution was calculated using Eq. (31) with ¢exact, due to the unavailability of an exact
solution, being replaced by a solution obtained over a fine mesh of size 254x100 grid
points. As can be seen, the error decreases with increasing the grid size. By comparing
plots in Figs. 10(a) and 10(c), it is obvious that improvements in predictions are more
pronounced for the supersonic case where changes in pressure have higher effects on
density. In Figs. 10(b) and 10(d), the convergence history for the dense grid solutions
(254x100 grid points) are displayed. The two plots indicate that it was possible to obtain
converged solutions with the dense grid used. Moreover, the plots also reveal that a
smaller number of iterations are needed to obtain a converged solution in the
supersonic case for reasons explained earlier. It should be stressed that it is not the
intention of this work to study the convergence characteristics of pressure-based
methods. The algebraic equation solver used here is the line-by-line TDMA. The use of
multigrid methods [46] or other solvers [44,45] would definitely accelerate the rate of

convergence. This may equally be true with preconditioning methods [15-22].
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Nevertheless, the virtues of using a HR scheme for evaluating interface density values

are undoubtedly clear.

SUPERSONIC FLOW OVER A STEP

The physical situation and boundary conditions for the problem are depicted in Fig.
11(a). The problem was first solved using the upwind scheme and the predicted isobars
are depicted in Fig. 11(b). In Fig. 11(c), the isobars reported in [27] are presented. As
shown, the current predictions fall on top of the ones reported by Marchi and Maliska
[27] eliminating any doubts about the correctness of the implementation of the solution
algorithm and boundary conditions. The isobars resulting from a dense grid solution
(23x108 c.v.) using the upwind scheme for all variables are presented in Fig. 12(a). The
effectiveness of using a HR scheme for density is demonstrated through the
comparison depicted in Fig. 12(b). Two different isobars representing pressure ratios of
values 0.9 and 2.5 are considered. Solutions obtained over a course grid (38x36 c.v.)
using: (i) the SMART schemes for all variables, (ii) the SMART scheme for all variables
except density and the upwind scheme for density, and (iii) the upwind scheme for all
variables, are compared against a dense grid solution (238x108 c.v.) generated using
the upwind scheme for all variables. Once more the virtues of using a HR scheme for
density is obvious. The coarse grid isobars obtained using the SMART scheme for all
variables, being nearly coincident with dense grid isobars, are remarkably more
accurate than coarse grid results obtained using the SMART scheme for all variables

except density and the upwind scheme for density.

IDEAL UNSTEADY DUCT FILLING

Having established the credibility of the solution method, an unsteady process of duct

filling is considered. This problem resembles the well known shock tube problem that
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was lately used by Karimian and Schneider [66] and Darbandi and Schneider [67] in
testing their pressure-based methods. The physical situation for the problem consists of
a duct containing a gas (y=1.4) that is isentropically expanded from atmospheric
pressure. The duct is considered to be frictionless, adiabatic, and of constant cross-
section. Moreover, it is assumed that the duct is opened instantaneously to the
surrounding atmosphere, inflow is isentropic, and in the fully open state the effective
flow area at the duct end is equal to the duct cross-sectional area. The unsteady one-
dimensional duct filling process is solved using a two-dimensional code over a uniform
grid of density 299x3 control volumes, a time step of value 10, and the SMART
scheme for all variables.

The problem is solved for a surrounding to duct pressure ratio of 2.45 and generated
results are displayed in Fig. 13. Due to the lower pressure of the gas contained in the
duct, when the duct end is suddenly opened, a compression wave is established
instantly as a shock wave. The wave diagram for the process is shown in Fig. 13(a).
The shock wave moves in the duct until the closed end is reached. On reaching the
closed end, the compression wave is reflected and the duct filling process continues
until the reflected shock wave is at the open end. Beyond that, duct emtying starts and
computations were stopped at that moment in time. In addition, the path of the first
particle to enter the duct is shown in the figure. This was computed by storing the duct
velocities at all time steps and then integrating in time to locate the position of the
particle. Results depicted in Fig. 13(a) were compared against similar ones reported by
Azoury [68] using a graphical method. The two sets of results were found to be in
excellent agreement with the ones computed here falling right on top of those reported.
The variation of Mach number with time at the open end of the duct is diplayed in Fig.
13(b). With the exception of the slight overshoot at the beginning of the computations,

the Mach number remains constant throughout the filling process and it instantaneously
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decreases to zero at the time when the reflected shock wave reaches the open end of
the duct. When using the same reference quantities, the analytical solution to the
problem reported in [68] predicts a constant Mach number of value 0.4391 which is
0.21% different than the one obtained here. Moreover, the instantaneous decrease of
Mach number to zero is well predicted by the method. Finally, the increase in mass
within the duct is presented in Fig. 13(c). As expected, due to the constant value of the

inlet Mach number the mass increases linearly with time.

CONCLUDING REMARKS

A new collocated high-resolution pressure-based algorithm for the solution of fluid flow
at all speeds was formulated. The new features in the algorithm are the use of a HR
scheme in calculating the density values at the control volume faces and the use of the
NVSF methodology for bounding the convection fluxes. The method was tested by
solving four problems representing flow in a converging-diverging nozzle, flow over a
bump, flow over an obstacle, and unsteady duct filling. Mach number values spanning
the entire subsonic to supersonic spectrum, including transonic flows with strong normal
shock waves, were considered. In all cases, results obtained were very promising and
revealed good enhancement in accuracy at high Mach number values when calculating

interface density values using a High-Resolution scheme.
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FIGURE CAPTIONS

Fig.1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

(a) Control volume; (b) Control volume nodes; (c) Normalization; (d) CBC.

Comparison of Mach number variation for an inlet Mach number of value (a)
0.1 (subsonic), (b) 0.3 (transonic), (c) 7 (supersonic), and (d) 0.3 (transonic
with normal shock waves at X=7 or X=9).

Comparison of % error in the solution of one-dimensional (a) subsonic
(Min=0.1), (b) supersonic (Mjy=7), and (c) transonic (M;=0.3 with a normal

shock wave at X=7) nozzle flow.

(a) Comparison of Mach number distributions for one-dimensional inviscid
nozzle flow; (b) Comparison of area-averaged Mach number distributions for
inviscid nozzle flow from two-dimensional solutions; (c) Comparison of area-
averaged Mach number distributions for inviscid nozzle flow with normal

shock waves from two-dimensional solutions.

Subsonic flow over a 10% circular bump; (a) coarse grid used, (b) isobars,

and (c) profiles along the walls.

Transonic flow over a 10% circular bump; (a) Isobars using a dense grid, (b)

isobars using various schemes, and (c) profiles along the walls.

Supersonic flow over a 4% circular bump (Mi,=1.4); (a) coarse grid used, (b)
Mach number contours using various schemes, (c) Mach number contours

using a dense grid, and (d) profiles along the walls.

Supersonic inviscid flow over 4% bump (Mi,=1.4): Mach-number contours.

Supersonic flow over a 4% circular bump (Min=1.65); (a) coarse grid used, (b)
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Fig. 10

Fig. 11

Fig. 12

Fig. 13

Mach number contours using various schemes, (c) Mach number contours

using a dense grid, and (d) profiles along the walls.

(a) Comparison of % error and (b) convergence history for the transonic flow
(Min=0.675) over a 10% circular bump; (c) Comparison of % error and (d)
convergence history for the supersonic flow (Min=1.65) over a 4% circular

bump.

Supersonic flow over an obstacle: (a) Physical situation, (b) Isobars using the
upwind scheme (40X38 grid points), and (c) results obtained by Marchi and

Maliska using the upwind scheme (44x36 grid points).

Supersonic flow over an obstacle: (a) Isobars generated using a dense grid;

(b) Isobars generated using different schemes.

(a) Wave diagram for optimum duct-filling process; (b) Mach number

distribution at inflow; (c) Variation of mass with time.
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Table 1(a) Under-relaxation factors and number of iterations needed for the subsonic

flow in a converging diverging nozzle (M;,=0.1).

All Upwind All SMART Upwind for p, SMART
foruand T
Grid Under- Number Under- Number Under- Number
relaxation | of relaxation | of relaxation | of
Iterations Iterations Iterations
21 0.25 2513 0.25 2887 0.25 2883
51 0.4 3242 0.4 4045 0.4 4021
101 0.55 4052 0.55 4446 0.55 4432
21 0.25-0.95 643 0.25-0.95 703 0.25-0.95 694
51 0.4-0.95 636 0.4-0.95 755 0.4-0.95 747
101 0.55-0.95 624 0.55-0.95 714 0.55-0.95 703
251 0.95 851 0.95 894 0.95 873
501 0.95 1562 0.95 1583 0.95 1581
2000 0.95 5703 0.95 5705 0.95 5705
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Table 1(b) Under-relaxation factors and number of iterations needed for the supersonic

flow in a converging diverging nozzle (Mi,=7).

All Upwind All SMART Upwind for p, SMART
foruand T
Grid Under- Number Under- Number Under- Number
relaxation | of relaxation | of relaxation | of
Iterations Iterations Iterations
21 0.95 34 0.6 130 0.6 110
51 0.95 42 0.6 140 0.6 140
101 0.95 51 0.6 202 0.6 206
251 0.95 73 0.6 383 0.6 390
501 0.95 103 0.6 672 0.6 678
2000 0.95 253 0.6 2269 0.6 2275
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