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Abstract 

This work is concerned with the implementation and testing, within a structured collocated 

finite-volume framework, of seven segregated algorithms for the prediction of multi-phase flow 

at all speeds. These algorithms belong to the Geometric Conservation Based Algorithms 

(GCBA) group in which the pressure correction equation is derived from the constraint equation 

on volume fractions (i.e. sum of volume fractions equals 1). The pressure correction schemes in 

these algorithms are based on SIMPLE, SIMPLEC, SIMPLEX, SIMPLEM, SIMPLEST, PISO, 

and PRIME. The performance and accuracy of these algorithms are assessed by solving, using 

the single grid method (SG), the prolongation grid method (PG), and the full non-linear multi-

grid method (FMG), the following four two-dimensional two-phase flow problems: (i) turbulent 

upward bubbly flow in a pipe, (ii) turbulent air-particle flow in a pipe, (iii) compressible dusty 

flow over a flat plate, (iv) and transonic dusty flow in a converging-diverging nozzle. Results are 

displayed in the form of convergence history plots and tabulated CPU times. The main outcomes 

of this study are the clear demonstrations of: (i) the capability of all GCBA algorithms to deal 

with multi-fluid flow situations; (ii) the ability of the FMG method to tackle the added non-

linearity of multi-fluid flows; (iii) and the capacity of the GCBA algorithms to predict multi-

fluid flow at all speeds.  

1 Author to whom all correspondence should be addressed; email: memouk@aub.edu.lb; 2email: Darwish@aub.edu.lb 
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Nomenclature 

,..)(k
PA  coefficients in the discretized equation for φ (k ) . 

)(k
PB  source term in the discretized equation for φ (k ) . 

Cρ
(k )  coefficient equals to 1/ R(k )T (k ) . 

][ )()( kk
P φD  the Matrix D operator. 

][ )(k
PH φ  the H operator. 

][ )(k
P uH  the vector form of the H operator. 

)(kM&  mass source per unit volume. 

P pressure. 

r (k ) volume fraction of fluid/phase k. 

RESGP residuals of the volume fraction’s constraint equation. 

R(k )  gas constant for fluid/phase k. 
)(k

PR  coefficient equals  )(k
PA/1 .

fS  surface vector. 

t time. 

U f
(k )  interface flux velocity v f

(k ).S f( ) of fluid/phase k. 

u(k )  velocity vector of fluid/phase k. 

u(k),v(k),.. velocity components of fluid/phase k. 

Greek Symbols 

ρ(k )  density of fluid/phase k. 

φ (k )  general scalar quantity associated with fluid/phase k. 

[ ])(k
P φ∆  the ∆ operator . 

Ω cell volume. 

δt time step. 

[ ] ⎟
⎠

⎞
⎜
⎝

⎛
=∆ ∑
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kk
P

)()( φφ
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Subscripts 

nb refers to the east, west, … face of a control volume. 

NB refers to the East, West, … neighbors of the main grid point. 

 P refers to the P grid point. 

Superscripts 

C refers to convection contribution. 

D refers to diffusion contribution. 

(k) refers to fluid/phase k. 

 refers to updated value at the current iteration. *)(k

  (k ) o refers to values of fluid/phase k from the previous iteration. 

 refers to correction field of phase/fluid k. (k ′ ) 

Old refers to values from the previous time step. 

 



Introduction 

In a companion paper [1], the Mass Conservation Based Algorithms (MCBA) derived by 

Darwish et al. [2] were verified. These algorithms are extensions into multi-fluid flow at all 

speeds of the pressure-based SIMPLE family originally developed for incompressible single 

fluid flow [3]. In this paper, the multi-fluid pressure-based Geometric Conservation Based 

Algorithms (GCBA), also derived in [2] based on the SIMPLE family, are implemented and 

tested. Since a review of the chronological developments in the SIMPLE algorithm [4] was 

given in [1], it is deemed unnecessary to be repeated here. Rather attention is directed 

towards highlighting the differences between the MCBA and the GCBA families.  

As detailed in [1], the pressure correction equation in the MCBA family is derived from the 

overall mass conservation equation and the resulting pressure correction field is used to 

update the velocity, density, and pressure fields. No correction is applied to the volume 

fraction fields. However, the volume fraction constraint (i.e. the sum of volume fractions 

equals 1) is enforced at a later stage by either normalizing the volume fraction fields or 

calculating the last volume fraction field as ∑
≠

−=
nk

kn rr 1 .  

In the GCBA family the pressure correction equation is derived from the geometric constraint 

 and the volume fraction fields are obtained, as before, by solving the volume 

fraction equations. However, the volume fraction constraint is enforced through the use of the 

pressure correction equation by correcting the volume fraction fields in addition to the 

velocity, pressure, and density fields. 

⎟
⎠

⎞
⎜
⎝

⎛
=∑ 1

k

kr

From the above it is clear that the critical difference between the MCBA and GCBA families 

is in the derivation and role of the pressure correction equation. With this in mind, the 

objective of this paper is to implement and test seven multi-fluid algorithms from the GCBA 
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family with their pressure correction schemes based on SIMPLE[4,5], SIMPLEC[6], 

SIMPLEM[7], SIMPLEX[8], SIMPLEST[9], PISO[10], and PRIME[11].  

Since the governing equations and discretization procedure for multi-fluid flow were 

introduced in [1], they are not repeated here and only a brief description of the GCBA 

approach, the multigrid strategy, and the GCBA multi-fluid pressure correction equation is 

given. Then, the capability of the GCBA algorithms to predict multi-fluid flow phenomena at 

all speeds demonstrated, and their performance characteristics (in terms of convergence 

history and speed) assessed by solving four two-phase flow problems encompassing dilute 

and dense gas-solid and bubbly flows in the subsonic, transonic, and supersonic regimes. In 

addition, the performance of these algorithms is evaluated using (i) a Single Grid approach 

(SG), (ii) a Prolongation Grid approach (PG), (iii) and a Full Multi-Grid (FMG) approach 

with a V cycle. 

The Geometric Conservation Based Algorithms (GCBA) 

The numbers of equations describing an n-fluid flow situation are: n momentum equations, n 

volume fraction (or mass conservation) equations, a geometric conservation equation, and for 

the case of compressible flow additional n auxiliary pressure-density relations. Moreover, the 

variables involved are the n velocity vectors, the n volume fractions, the pressure field, and 

for a compressible flow an additional n unknown density fields.  The n-momentum equations 

are used to compute the n-velocity fields. The volume fractions are calculated from the 

volume fraction equations, which mean that the remaining equation i.e. the geometric 

conservation equation (the volume fractions sum to 1) has to be used in deriving the pressure 

correction equation.  This results in the Geometric Conservation Based Algorithms (GCBA). 

The sequence of events in the GCBA is as follows: 

• Solve the individual mass conservation equations for volume fractions. 

• Solve the momentum equations for velocities. 
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• Solve the pressure correction equation. 

• Correct velocity, volume fraction, density, and pressure fields. 

• Solve the individual energy equations. 

• Return to the first step and repeat until convergence. 

The GCBA uses the momentum equations for a first estimate of velocities. However, the 

volume fractions are calculated without enforcing the geometric conservation equation. 

Hence, the mass conservation equations of all fluids are used to calculate the volume 

fractions.  As such, the pressure correction equation should be based on the geometric 

conservation equation and used to restore the imbalance of volume fractions.  The errors in 

the calculated volume fractions are expressed in terms of pressure correction ′ P ( ), which is 

also used to adjust the velocity and density fields as described below.  

The Pressure Correction Equation 

After solving the continuity equations for the volume fraction fields and the momentum 

equations for the velocity fields, the next step is to correct the various fields such that the 

volume fraction fields satisfy the compatibility equation and the velocity and pressure fields 

satisfy the continuity equations. For that purpose, a guess-and-correct scheme is adopted. 

Correction is obtained by solving a pressure correction equation derived from the geometric 

conservation equation. To start the derivation, it is noticed that initially the volume fraction 

fields denoted by *)(kr , do not satisfy the compatibility equation and a discrepancy exists i.e. 

∑−=
k

*)k(
PP r1RESG  (1) 

A change to *)k(r  is sought that would restore the balance. The corrected r values denoted by 

)k(r  ( ))k(*)k()k( rrr ′+= , are such that 

( ) ( ) P
k

*)k(

k

)k( RESGr1r =−= ∑∑ ′  (2) 
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Corrections to the volume fraction, )k(r ′ , will be associated with corrections to the velocity, 

density, and pressure fields, , , and )k( ′u )k( ′ρ P′ , respectively. Thus, the corrected fields are 

given as: 

)k()k()k()k(*)k()k()k(*)k()k( ,,PPP,rrr ′′′ ρ+ρ=ρ+=′+=+=
οο uuu  (3) 

The discretized form of the corrected continuity equation of phase (k) can be written as 
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P
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kkkkkk
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 (4) 

Neglecting second and third order terms (i.e. its 

expanded form reduces to:  

)()()( uuu ′′′′′′′′′ ρρρ k)k(
P
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 (5) 

From [1], the discretization procedure for the momentum equation yields an algebraic 

equation of the form: 

[ ] ( )Pr P
k

P
k

P
k

P
k

P ∇−= )()()( DuHu )(  (6a) 

where 

[ ] )(

)()()(

)(
k

P

k
P

NB

k
NB

k
NB

k
P A

BA
H

+
=

∑ φ
φ   (6b) 

and 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢

⎣

⎡

Ω

Ω
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0

0

k

k

v
P

u
Pk

P

A

A)(D  (6c) 

Then, using (6a) the following equation for , as a function of )(u ′k
P P′ , is obtained 

PrPrPr k
P

k
P

k
P

k
P

k
P

k
P

kk
P ′∇−∇−′∇−= ′′′′ )()()(

P
)( DDDuHu )()(*)()( ][ ο  (7) 

Substituting Eq. (7) into Eq. (5), rearranging, and discretizing one gets 
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where . )()( /1 k
P

k
P AR =

Neglecting the correction to neighboring cells, equation (8) reduces to: 
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Substituting this equation into the geometric conservation equation and expressing density 

correction in terms of pressure correction (i.e. ), the pressure correction equation 

is obtained as 

PC )k()k( ′=ρ ρ
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If the [ ])(k ′uH  term in the above equation is retained, there will result a pressure correction 

equation relating the pressure correction value at a point to all values in the domain. To 

facilitate implementation and reduce cost, simplifying assumptions related to this term have 

been introduced. Depending on these assumptions, different algorithms are obtained. A 

summary of the various GCBA algorithms (GCBA-SIMPLE, GCBA-SIMPLEC, GCBA-

PISO,…) used in this work was accorded a full length paper to which interested reader is 

referred [2]. Moreover, the discretization of the above equation yields  

P
P

NB
NB

P
NBP

P
P BPAPA ′′′ +′=′ ∑  (11) 
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After calculating the pressure correction field,  are obtained using the 

following equations 
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The Multi-Grid and Prolongation grid Strategies 

The multi-grid algorithm [12,13] adopted in this work can be summarized as follows. Starting 

with the fine mesh, the coarser grid cells are generated through agglomeration of four finer 

grid cells, two in each direction.  On the other hand, a finer grid is obtained by subdividing 

the coarser grid control volume into four control volumes, again two in each direction. With 

the FMG cycle, the algorithm starts at the coarsest level, where the solution is first computed; 

this solution is interpolated onto the next finer mesh, where it is used as initial guess.  This 

stage is called the prolongation stage.  Then iterations are performed on the fine mesh and the 

solution is transferred back to the coarser mesh by applying a restriction operator. In order to 

obtain the same approximation on each level, a forcing term is added to the discrete 

conservation equations on the coarser grid. This term represents the truncation error on the 

coarse grid with respect to the fine grid. After performing a number of iterations on the 

coarse mesh, the solution is transferred back to the finer mesh in the form of a correction and 

a number of iterations are performed on the finer grid to smooth the fields. This process is 

continued until a converged solution on the fine mesh is obtained. Then the solution is 

extrapolated to correct the finer mesh fields, followed by a number of smoother iterations on 

the finer mesh and the process repeated until convergence is reached on the desired finest 

mesh. This strategy has been applied to both incompressible and compressible supersonic 

multi-fluid flows and good savings have been realized as will be shown in the results section. 
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In addition to the FMG strategy, the PG approach is also tested. This approach differs from 

the FMG method in that the solution moves in one direction from the coarse to the fine grid 

with the initial guess on level n+1 obtained by interpolation from the converged solution on 

level n. As such, the acceleration over the SG method obtained with this approach is an 

indication of the effect of initial guess on convergence.  

Results and Discussion 

To demonstrate the capability of the GCBA in predicting multiphase flow at all speeds and to 

assess their relative performance, solutions to the following four two-dimensional two-phase 

flow problems are presented: (i) turbulent upward bubbly flow in a pipe, (ii) turbulent air-

particle flow in a pipe, (iii) compressible dusty flow over a flat plate, (iv) and transonic dusty 

flow in a converging-diverging nozzle. Results are presented in terms of CPU-time and 

residual history plots for a number of grids using the single grid, the prolongation grid, and 

the full non-linear multi-grid method. The residual of a variable φ(k) at the end of an outer 

iteration is defined as: 

( ) ( ) ( ) ( )∑ ∑ −−=
vc NB

k
p

k
NBNB

k
PP

k BAARES
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φφφ  (13) 

For global mass conservation, the imbalance in mass is defined as:  
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All residuals are normalized by their respective inlet fluxes. Computations are terminated 

when the maximum normalized residuals of all variables drop below a very small number εs. 

Unless otherwise stated, the HR SMART scheme is used in all computations reported in this 

study. For a given problem, all results are generated starting from the same initial guess. 

Since a detailed comparison between current numerical results and available 

experimental/theoretical data was performed in [1], it is not repeated here. 
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Problem 1: Turbulent upward bubbly flow in a pipe 
This problem is concerned with the prediction of radial phase distribution in turbulent upward 

air-water flow in a pipe [1,14-22] . The case considered reproduces numerically the 

experimental data reported by Seriwaza et al [14] for which the Reynolds number based on 

superficial liquid velocity and pipe diameter is 8x104, the inlet superficial gas and liquid 

velocities are 0.077 and 1.36 m/s, respectively, and the inlet void fraction is 5.36x10-2 with 

no slip between the incoming phases. Moreover, the bubble diameter is taken as 3 mm [22], 

while the fluid properties are assigned the values ρ(c)=1000 Kg/m3, ρ(d)=1.23 Kg/m3, and 

= 10νl
(c ) -6 m2/s. 

Calculations are performed using the SG, PG, and FMG strategies for all algorithms. Results 

are displayed in the form of (i) total mass residuals summed over both phases as a function of 

outer iterations (Fig. (1)), and (ii) normalized CPU times (Table 1) needed for the maximum 

normalized residuals of all variables and for all phases to drop below εs=10-6.  

As can be seen from Fig. 1, it is possible to obtain converged solutions to the desired level 

with all algorithms. With the exception of PISO (Fig. 1(a)), the convergence characteristics 

of all algorithms (Figs. 1(b)-(g)) are very similar. The PG method reduces, on average, the 

number of iterations in comparison with the SG method by about 20%. On the other hand, the 

FMG method results in a 50% reduction in the number of outer iterations. The use of 3 and 4 

levels for both the PG and FMG methods does not seem to have any effect on convergence 

acceleration for all algorithms except PISO, for which the use of 4 levels with the FMG 

method increases the number of outer iterations considerably and results in a kind of 

oscillations (Fig. 1(a)). The convergence histories of all algorithms with the FMG method on 

3 levels presented in Fig. 1(h) confirm once more the aforementioned observations. 

Table 1 reports on the normalized CPU-times (i.e. CPU-time divided by the time needed by 

SIMPLE on the coarsest grid) required by the different algorithms using the various 
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methodologies to decrease the solution residuals to the desired level. For the SG method, the 

CPU-times on two different grids of sizes 48x16 and 96x32 C.V. are presented. The PG and 

FMG solutions are for a grid of 96x32 C.V. using 3 (96x32, 48x16, and 24x8 C.V.) and 4 

(96x32, 48x16, 24x8, and 12x4 C.V.) grid levels.  

As expected, the CPU effort increases for all algorithms and methodologies with increasing 

the grid size. With the SG method, the variations in the normalized CPU times among 

algorithms decrease from a maximum of 19 % to 6.7% with increasing the grid density. In 

both cases however, SIMPLE is the cheapest while PRIME followed by SIMPLEM are the 

most expensive.  On the dense grid, the use of the PG method with 3 grid levels reduces, on 

average, the computational effort by about 14.62% as compared to the SG method. The effect 

of employing four grid levels is seen to be marginal. In both cases the CPU times of the 

various algorithms is within 7.5% from each others. The average decrease in computational 

time with the FMG method using three grid levels is 40.89% and 27.95% as compared to the 

SG and PG method, respectively. The performance of PISO on the 4 levels FMG method is 

highly unexpected necessitating higher computational effort than the SG method and may be 

caused by the additional explicitness introduced by the PRIME step. Moreover, with the 

FMG method, the least computational effort is obtained with SIMPLEC, which is slightly 

less expensive than SIMPLE. Excluding PISO, the most expensive algorithm with the FMG 

is PRIME, which requires about 27% more time than SIMPLE. 

Problem 2: Turbulent air-particle flow in a vertical pipe 
Here, the upward flow of a dilute gas-solid mixture in a vertical pipe is simulated [23-25].The 

experimental results of Tsuji et al [23] are replicated for the case of an air Reynolds number, 

based on the pipe diameter (of value 30.5 mm), of 3.3x104 and a mean air inlet velocity of 

15.6 m/s using particles of diameter 200 µm and density 1020 Kg/m3. In the computations, 

the mass-loading ratio at inlet is considered to be 1 with no slip between the fluids [1].   
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The problem is solved using the SIMPLE, SIMPLEC, SIMPLEX, and SIMPLEST multi-

fluid algorithms and the SG, PG, and FMG solution methods. As in the previous problem, 

results are displayed in the form of (i) total mass residuals summed over both phases as a 

function of outer iterations (Fig. (2)), and (ii) normalized CPU times (Table 2) needed for the 

maximum normalized residuals of all variables and for all phases to drop below εs=10-6. For 

the SG method, the CPU-times on two different grids of sizes 48x20 and 96x40 C.V. are 

presented. The PG and FMG solutions are for a grid of size 96x40 C.V. using 3 (96x40, 

48x20, and 24x10 C.V.) and 4 (96x40, 48x20, and 24x10, and 12x5 C.V.) grid levels. 

Mass residual plots presented in Fig. 2 indicate a similar convergence behavior for all four 

algorithms with very close number of outer iterations to achieve the desired level of 

convergence (i.e. within 50 outer iterations). It is hard to see any noticeable difference 

between the 3 and 4 levels with both the PG and FMG methods. The decrease in the number 

of iterations with the PG method over the SG method is smaller than the decrease obtained 

with bubbly flows. This lower effectiveness of the PG method is due to the following reason. 

In solving the problem, it is noticed that the initial guess greatly affects the convergence 

history and time required to reduce residuals to the desired level. Except when solving on the 

finest mesh with the SG method, the initial guess used for the velocity field is u(c)=u(d)=1 m/s. 

The use of this initial value with the SG method on the finest mesh greatly increased the CPU 

effort needed over the one needed when starting with an initial field of u(c)=u(d)=15.6 m/s. To 

reduce cost, the latter initial guess is used. For this reason the mass residuals start from 

somehow a lower value than expected and the PG method appears to be less effective. The 

FMG method reduces the number of outer iterations by about 53% over the SG method, 

which indicates a good capability to deal with the added non-linearity of multiphase flows. 

On the coarsest grid, the time required by the various algorithms using the SG method varies 

widely (Table 2). As compared to SIMPLE, the SIMPLEC, SIMPLEX, and SIMPLEM 
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algorithms require 26%, 28%, and 45% additional computational effort, respectively. As the 

grid size is increased to 96x40 C.V., the normalized CPU times required by the various 

algorithms increase, however the differences in CPU times among them decrease to a 

maximum of 11.9% with SIMPLEM. For the reasons stated above, the PG method on both 3 

and 4 grid levels does not have any effects on the convergence rate. In fact for some of the 

algorithms it slightly increases the computational time. However, it brings the computational 

effort of the algorithms closer to each others with a spread of maximum 6.7%, again 

associated with SIMPLEM. On the other hand, the FMG method does reduce the 

computational cost. The average reduction over the SG method is 36.2% and 33.2% using 3 

and 4 grid levels, respectively. The use of 4 grid levels increases the CPU time of all 

algorithms except SIMPLEM. However it reduces the variation in the CPU times among 

algorithms from 23.49% to 12.17%. The least computational effort is accomplished with 

SIMPLE while SIMPLEM is the most expensive with all methods (23.49% more expensive 

than SIMPLE with the FMG on 3 levels). 

Problem 3: Compressible dilute air-particle flow over a flat plate 
The problem deals with predicting the features of a two-fluid boundary layer [26-28]. In the 

simulation, the particle diameter, particle Reynolds number, material density, Prandtl 

number, and mass load ratio are set to: 10 µm, 10, 1766 kg/m3, 0.75, and 1 respectively. The 

wall boundary is treated as a no-slip boundary for the gas phase (i.e. both components of the 

gas velocity are set to zero), and as a slip boundary condition for the particles phase (i.e. the 

normal fluxes are set to zero). Results obtained [1] are in excellent agreement with numerical 

solutions reported by Thevand et al. [28].  

As in test 1, the problem is solved using all multi-fluid algorithms and the SG, PG, and FMG 

solution methods. Results are displayed in the form of total mass residuals (Fig. 3) and 

normalized CPU time (Table 3) with εs=10-6.  For the SG method, the CPU-times on two 
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different grids of sizes 52x24 and 104x48 C.V. are presented. The PG and FMG solutions are 

for a grid of size 104x48 C.V. using 3 (104x48, 52x24, and 26x12 C.V.) and 4 (104x48, 

52x24, and 26x12, and 13x6 C.V.) grid levels. 

Plots presented in Fig. 3 indicate that it is possible to get a converged solution to the desired 

level with all algorithms. As depicted in figure 3(a), PISO requires the least number of outer 

iterations. This, however, is not associated with the lowest computational effort due to the 

higher cost per iteration in comparison with other algorithms. The convergence 

characteristics of SIMPLE (Fig. 3(b)), SIMPLEC (Fig. 3(c)), SIMPLEM (Fig. 3(d)), and 

SIMPLEX (Fig. 3(g)) are very similar, requiring nearly the same number of outer iterations 

with the SG, PG, and FMG methods. The number of iterations required by PRIME (Fig. 3(f)) 

with the SG method is higher than SIMPLEST (Fig. 3(e)). With the FMG method however, 

the performance of the two algorithms is very close with that of PRIME being slightly better. 

In general, the use of the PG method reduces the number of outer iterations, as compared to 

the SG method, by over 40% with all algorithms whereas the use of the FMG method reduces 

it by over 64%. Fig. 3(h) indicates that when using the FMG method on 3 levels, PISO 

requires the lowest number of iterations followed by SIMPLEM, SIMPLEC, SIMPLEX, 

SIMPLE, PRIME, and SIMPLEST. Moreover, the number of iterations needed by 

SIMPLEST and PRIME is very close and it is nearly double that needed by SIMPLE. It 

should be clarified that the displayed numbers of iterations represent those needed for the 

mass residuals to be reduced to the desired level. The CPU-times however represent the 

computational effort needed to reduce the maximum residuals to the desired level. In some 

cases, even though the mass residuals may become below the desired value, other residuals 

could still be above that value. This is why, for example, the CPU time needed by SIMPLE is 

lower than that needed by SIMPLEC (Table 3) even though Fig. 3(h) indicates that the 

number of iterations needed by SIMPLEC to reduce the mass residuals to below εs is lower. 
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As depicted in Table 3, The SIMPLE algorithm is the cheapest to use with all methods and 

over all grids. Moreover, the CPU times consumed by the various algorithms using the SG 

method on the coarsest grid vary widely. Following SIMPLE, the SIMPLEC algorithm is the 

cheapest to use (requiring only 4% more CPU time than SIMPLE) and PRIME the most 

expensive, requiring 113% more CPU time than SIMPLE. On the 104X48 grid system, the 

relative performance of the algorithms remains unchanged however their performance 

relative to SIMPLE further deteriorates. In this case, SIMPLEC and PRIME require 6.91% 

and 171.1% more time than SIMPLE. The PG method reduces, on average, the CPU-time by 

27.23% and 27.27% with 3 and 4 grid levels, respectively. Moreover, the additional CPU 

times required by the various algorithms over SIMPLE vary from 4.84% to 71.79% for the 3 

grid levels and from 3.71% to 71.41% for the 4 grid levels with PRIME being consistently 

the most expensive followed by SIMPLEST. The FMG method reduces, on average, the CPU 

time as compared to the SG method by 65.87% and 65.45% over the 3 and 4 grid levels, 

respectively. This is equivalent to saying that the FMG method is about 3.5 times faster than 

the SG method. With the PG method, the use of 3 or 4 grid levels has marginal effect on 

solution acceleration for all algorithms. However, this is not the case with the FMG method 

where the use of 4 grid levels noticeably increases the computational cost of all algorithms 

except PRIME.  

Problem 4: Inviscid transonic dusty flow in a converging-diverging nozzle 
The last test considered deals with the prediction of supersonic dilute air-particle flow in an 

axi-symmetric converging-diverging rocket nozzle [29-34]. The physical quantities employed 

are similar to those used in [32]. The gas stagnation temperature and pressure at inlet to the 

nozzle are 555 ºK and 10.34x105 N/m2, respectively. The specific heat for the gas and 

particles are 1.07x103 J/KgºK and 1.38x103 J/KgºK, respectively, and the particle density is 

4004.62 kg/m3. With a zero inflow velocity angle, the fluid is accelerated from subsonic to 
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supersonic speed in the nozzle. The inlet velocity and temperature of the particles are 

presumed to be the same as those of the gas phase. Results generated [1] are in excellent 

agreement with published results reported in [32] and others using different methodologies.  

To compare the relative performance of the multi-fluid algorithms, the problem is solved via 

the PG method using the SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX algorithms over 

three different grids of sizes 47x20, 94x40, and 188x80 C.V. for a particle radius of size 1 

µm. As before, results are displayed in the form of total mass residuals (Fig. 4) and 

normalized CPU times (Table 4) with εs set to 10-5.  As shown in Fig. 4, all algorithms require 

almost the same number of iterations with the exception of SIMPLE on the 94x40 grid, 

which requires a larger number of iterations than on the finest mesh. Excluding that case, the 

convergence histories of all algorithms are nearly identical. In terms of computational effort, 

the normalized CPU-times presented in Table 4 indicate that on the coarsest and finest 

meshes, SIMPLE is the most efficient algorithm (7% less expensive than SIMPLEC on the 

dense grid) and SIMPLEM the most expensive (43% more expensive than SIMPLE on the 

dense grid). On the other hand, SIMPLEX is 11% more expensive than SIMPLE on the fine 

mesh. On the 94x40 grid, SIMPLE is the most expensive (13.07 % more expensive than 

SIMPLEC) with the remaining algorithms retaining their relative performance. 

Closing Remarks 

Seven multiphase flow algorithms belonging to the pressure-based GCBA family were 

implemented and tested using a single grid, a prolongation grid, and a full non-linear multi-

grid method. Solving a variety of two-dimensional two-phase flow problems assessed the 

performance and accuracy of these algorithms. Results obtained demonstrated the capability 

of all algorithms to deal with multi-fluid flow situations and to predict multi-fluid flow at all 

speeds. The PG and FMG methods accelerated the convergence rate for all algorithms. The 
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FMG method, however, was found to be more efficient and capable of tackling the added 

non-linearity of laminar and turbulent multi-fluid flows. 
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Figure Captions 

Fig. 1 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid,  

and (h) convergence histories of the various algorithms on the finest mesh using the  

FMG method for turbulent upward bubbly flow in a pipe. 

Fig. 2 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEST, and (d)  

SIMPLEX algorithms using the SG, PG, and FMG methods on the finest mesh for  

turbulent air-particle flow in a pipe. 

Fig. 3 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid,  

and (h) convergence histories of the various algorithms on the finest mesh using the  

FMG method for dusty gas flow over a flat plate. 

Fig. 4 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and (d)  

SIMPLEX algorithms using the SG method for dusty gas flow in a converging- 

diverging nozzle. 
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Fig. 1 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid, and (h) convergence histories of the various algorithms on the  

finest mesh using the FMG method for turbulent upward bubbly flow in a pipe. 
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Fig. 2 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and  

(d) SIMPLEX algorithms using the SG, PG, and FMG methods on the finest mesh for  

turbulent air-particle flow in a pipe. 



  

Iteration

M
as

s
R

es
id

ua
ls

100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

PISO

Iteration

M
as

s
R

es
id

ua
ls

500 1000
10-6

10-5

10-4

10-3

10-2

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

SIMPLE

Iteration

M
as

s
R

es
id

ua
ls

500 1000
10-6

10-5

10-4

10-3

10-2

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

SIMPLEC

Iteration

M
as

s
R

es
id

ua
ls

500 1000
10-6

10-5

10-4

10-3

10-2

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

SIMPLEM

 

                             (a)                                                           (b)                                                           (c)                                                          (d) 

Iteration

M
as

s
R

es
id

ua
ls

500 1000 1500 2000
10-6

10-5

10-4

10-3

10-2

10-1

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

SIMPLEST

Iteration

M
as

s
R

es
id

ua
ls

1000 2000 3000
10-6

10-5

10-4

10-3

10-2

10-1

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

PRIME

Iteration

M
as

s
R

es
id

ua
ls

500 1000
10-6

10-5

10-4

10-3

10-2

Full Multi-Grid (3 levels)

Full Multi-Grid (4 levels)

Prolongated Grid (3 levels)

Prolongated Grid (4 levels)

Single Grid (104x48 C.V.)

SIMPLEX

ITERATION

M
A

S
S

R
E

S
ID

U
A

LS

100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

Full Multi-Grid (3 levels)

SIMPLEX

SIMPLEST

SIMPLEM

SIMPLEC

SIMPLE

PRIME

PISO

 
                             (e)                                                           (f)                                                           (g)                                                          (h) 

Fig. 3 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid, and (h) convergence histories of the various algorithms on the 

 finest mesh using the FMG method for dusty gas flow over a flat plate. 
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Fig. 4 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and  

(d) SIMPLEX algorithms using the PG method for dusty gas flow in a converging- 

diverging nozzle. 



 

 

 

Table 1 Normalized CPU-times for turbulent bubbly flow in a pipe. 
 

   ALGORITHMS

GRID    METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEST SIMPLEM PISO PRIME

48x16 C.V.         SG 1.00 1.00 1.02 1.04 1.09 1.08 1.19

SG        40.09 40.42 40.98 40.66 43.07 41.82 43.59

PG (3 levels) 34.24 34.41 35.02 36.82 37.12 34.48 36.05 

PG (4 levels) 34.34 34.25 34.67 36.88 36.93 34.50 36.07 

FMG (3 levels) 22.32 22.17 22.40 25.55 23.67 27.31 28.38 

96x32 C.V. 

FMG (4 levels) 22.53 22.51 22.78 23.81 25.55 55.68 27.89 

 

 



  

 

 

 

Table 2 Normalized CPU-times for turbulent air-particle flow in a pipe. 
 

   ALGORITHMS

GRID   METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEM

48x20 C.V. SG 1.00 1.26 1.28 1.45 

SG     18.81 18.85 19.07 21.05

PG (3 levels) 18.94 19.37 19.37 20.22 

PG (4 levels) 19.03 19.46 19.44 20.30 

FMG (3 levels) 11.11 12.34 12.44 13.72 

96x40 C.V.

FMG (4 levels) 12.07 13.10 13.25 13.54 

 



  

 

 

Table 3 Normalized CPU-times for Dusty flow over a flat plate. 
 

 

   ALGORITHMS

GRID    METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEST SIMPLEM PISO PRIME

52x24 C.V.         SG 1.00 1.04 1.11 1.52 1.31 1.12 2.13

SG        16.92 18.09 18.94 26.00 21.48 19.46 45.87

PG (3 levels) 14.25 14.94 15.51 18.85 17.48 15.84 24.48 

PG (4 levels) 14.27 14.80 15.50 18.90 17.56 15.79 24.46 

FMG (3 levels) 5.35 5.44 5.88 11.87 7.84 8.34 12.19 

104x48 C.V. 

FMG (4 levels) 6.12 6.14 6.66 12.98 6.66 9.08 9.98 



  

 
 
 
 

Table 4 Normalized CPU-times for Dusty flow in a converging-diverging nozzle. 
 

   ALGORITHMS

GRID  METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEM

47x20 C.V. SG 1.00 1.02 1.06 1.13 

94x40 C.V. PG (2 levels) 13.08 9.24 9.47 11.37 

188x80 C.V. PG (3 levels) 82.43 88.49 91.35 117.83 

 

 

 
 

 


