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Abstract

This work is concerned with the implementation and testing, within a structured collocated
finite-volume framework, of seven segregated algorithms for the prediction of multi-phase flow
at all speeds. These algorithms belong to the Geometric Conservation Based Algorithms
(GCBA) group in which the pressure correction equation is derived from the constraint equation
on volume fractions (i.e. sum of volume fractions equals 1). The pressure correction schemes in
these algorithms are based on SIMPLE, SIMPLEC, SIMPLEX, SIMPLEM, SIMPLEST, PISO,
and PRIME. The performance and accuracy of these algorithms are assessed by solving, using
the single grid method (SG), the prolongation grid method (PG), and the full non-linear multi-
grid method (FMG), the following four two-dimensional two-phase flow problems: (i) turbulent
upward bubbly flow in a pipe, (ii) turbulent air-particle flow in a pipe, (iii) compressible dusty
flow over a flat plate, (iv) and transonic dusty flow in a converging-diverging nozzle. Results are
displayed in the form of convergence history plots and tabulated CPU times. The main outcomes
of this study are the clear demonstrations of: (i) the capability of all GCBA algorithms to deal
with multi-fluid flow situations; (ii) the ability of the FMG method to tackle the added non-
linearity of multi-fluid flows; (iii) and the capacity of the GCBA algorithms to predict multi-

fluid flow at all speeds.

L Author to whom all correspondence should be addressed; email: memouk@aub.edu.lb; Zemail: Darwish@aub.edu.lb




The Geometric Conservation Based Algorithms for Multi-Fluid Flow at All Speeds

Nomenclature

A¥ ... coefficients in the discretized equation for ™.
B source term in the discretized equation for ¢ .
ct coefficient equals to 1/ R©OT®.

DX [¢"] the Matrix D operator.
Ho[¢"] the H operator.
H,[u®] the vector form of the H operator.

N mass source per unit volume.
P pressure.
volume fraction of fluid/phase k.

RESGp residuals of the volume fraction’s constraint equation.

RY gas constant for fluid/phase k.

R coefficient equals 1/ A

S, surface vector.

t time.

ul interface flux velocity (v{"S, ) of fluid/phase k.
u® velocity vector of fluid/phase k.

u®v®, - velocity components of fluid/phase k.
Greek Symbols
oM density of fluid/phase k.

g™ general scalar quantity associated with fluid/phase k.

An¢®] the A operator (AP [p®]= z(zﬁ‘k’J .

Q cell volume.

ot time step.
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Subscripts

nb refers to the east, west, ... face of a control volume.

NB refers to the East, West, ... neighbors of the main grid point.
P refers to the P grid point.

Superscripts

C refers to convection contribution.

D refers to diffusion contribution.

(k) refers to fluid/phase k.

(k) * refers to updated value at the current iteration.

(k) € refers to values of fluid/phase k from the previous iteration.
(k) refers to correction field of phase/fluid k.

Old refers to values from the previous time step.



Introduction

In a companion paper [1], the Mass Conservation Based Algorithms (MCBA) derived by
Darwish et al. [2] were verified. These algorithms are extensions into multi-fluid flow at all
speeds of the pressure-based SIMPLE family originally developed for incompressible single
fluid flow [3]. In this paper, the multi-fluid pressure-based Geometric Conservation Based
Algorithms (GCBA), also derived in [2] based on the SIMPLE family, are implemented and
tested. Since a review of the chronological developments in the SIMPLE algorithm [4] was
given in [1], it is deemed unnecessary to be repeated here. Rather attention is directed
towards highlighting the differences between the MCBA and the GCBA families.

As detailed in [1], the pressure correction equation in the MCBA family is derived from the
overall mass conservation equation and the resulting pressure correction field is used to
update the velocity, density, and pressure fields. No correction is applied to the volume
fraction fields. However, the volume fraction constraint (i.e. the sum of volume fractions

equals 1) is enforced at a later stage by either normalizing the volume fraction fields or

calculating the last volume fraction field as r" :1—Zr" .

k=n

In the GCBA family the pressure correction equation is derived from the geometric constraint

[Z rk :1J and the volume fraction fields are obtained, as before, by solving the volume
k

fraction equations. However, the volume fraction constraint is enforced through the use of the
pressure correction equation by correcting the volume fraction fields in addition to the
velocity, pressure, and density fields.

From the above it is clear that the critical difference between the MCBA and GCBA families
is in the derivation and role of the pressure correction equation. With this in mind, the

objective of this paper is to implement and test seven multi-fluid algorithms from the GCBA
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family with their pressure correction schemes based on SIMPLE[4,5], SIMPLEC]6],
SIMPLEM[7], SIMPLEX[8], SIMPLEST[9], PISO[10], and PRIME[11].

Since the governing equations and discretization procedure for multi-fluid flow were
introduced in [1], they are not repeated here and only a brief description of the GCBA
approach, the multigrid strategy, and the GCBA multi-fluid pressure correction equation is
given. Then, the capability of the GCBA algorithms to predict multi-fluid flow phenomena at
all speeds demonstrated, and their performance characteristics (in terms of convergence
history and speed) assessed by solving four two-phase flow problems encompassing dilute
and dense gas-solid and bubbly flows in the subsonic, transonic, and supersonic regimes. In
addition, the performance of these algorithms is evaluated using (i) a Single Grid approach
(SG), (ii) a Prolongation Grid approach (PG), (iii) and a Full Multi-Grid (FMG) approach

with a V cycle.

The Geometric Conservation Based Algorithms (GCBA)

The numbers of equations describing an n-fluid flow situation are: n momentum equations, n
volume fraction (or mass conservation) equations, a geometric conservation equation, and for
the case of compressible flow additional n auxiliary pressure-density relations. Moreover, the
variables involved are the n velocity vectors, the n volume fractions, the pressure field, and
for a compressible flow an additional n unknown density fields. The n-momentum equations
are used to compute the n-velocity fields. The volume fractions are calculated from the
volume fraction equations, which mean that the remaining equation i.e. the geometric
conservation equation (the volume fractions sum to 1) has to be used in deriving the pressure
correction equation. This results in the Geometric Conservation Based Algorithms (GCBA).
The sequence of events in the GCBA is as follows:

e Solve the individual mass conservation equations for volume fractions.

e Solve the momentum equations for velocities.
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e Solve the pressure correction equation.

e Correct velocity, volume fraction, density, and pressure fields.

e Solve the individual energy equations.

e Return to the first step and repeat until convergence.

The GCBA uses the momentum equations for a first estimate of velocities. However, the
volume fractions are calculated without enforcing the geometric conservation equation.
Hence, the mass conservation equations of all fluids are used to calculate the volume
fractions. As such, the pressure correction equation should be based on the geometric
conservation equation and used to restore the imbalance of volume fractions. The errors in

the calculated volume fractions are expressed in terms of pressure correction (P’), which is

also used to adjust the velocity and density fields as described below.

The Pressure Correction Equation

After solving the continuity equations for the volume fraction fields and the momentum
equations for the velocity fields, the next step is to correct the various fields such that the
volume fraction fields satisfy the compatibility equation and the velocity and pressure fields
satisfy the continuity equations. For that purpose, a guess-and-correct scheme is adopted.
Correction is obtained by solving a pressure correction equation derived from the geometric

conservation equation. To start the derivation, it is noticed that initially the volume fraction

fields denoted by r™”, do not satisfy the compatibility equation and a discrepancy exists i.e.
RESG, =1-) " (1)

k
A change to r™” is sought that would restore the balance. The corrected r values denoted by

r (r(") = 4 r(k"), are such that

3 (r%)=1-3(r%")= RESG, )

k
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Corrections to the volume fraction, r®", will be associated with corrections to the velocity,
density, and pressure fields, u®™", p®", and P’, respectively. Thus, the corrected fields are

given as:

P00 = 007 4 p 0 p_po pr g0 = g7 g0 50— 500° | (K 3)

The discretized form of the corrected continuity equation of phase (k) can be written as

k* k)Y L K)° (ky (k) (k)P
(rP +1p XPP + Pp )_(rp Pp ) 0
& P 4)
+ AP((r(k)* + r(")')(pW + p‘k)'Xu(k)* + u(k)').s)= N&gk)(rék)* + rp(")')QP

Neglecting second and third order terms (i.e. r{p%", p'u™, ru™’ and r'pl'u™"), its

expanded form reduces to:

( K)* (k) (k) (k)°)
r + r * o ’ *, * ! 0, * ’
p_FP el 08 +AP[(r‘k) pFu® s 4 ry® pé,") + pty )]
b i
(5)

N T s

From [1], the discretization procedure for the momentum equation yields an algebraic

K) ()’ (rp(k)*
— MR = —

equation of the form:

ul) = Hp[u‘k’]— rpvv,(P) (6a)
where
> A + By
(k) | _ NB
H P [¢ ]_ Aék) (Gb)
and
Q
—% 0
DY) — A (6C)
Q
0 T
AP
Then, using (6a) the following equation for u$”", as a function of P’, is obtained
U = H,[u®]- rf"DWVP - 1 DEVP° - 1 DLV’ (7)

Substituting Eqg. (7) into Eq. (5), rearranging, and discretizing one gets
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-
o W7_ (0 Oy pr
RV Qp b o AU 1= DTVP

5 }.S +ruy (k)*p(k)'

(8)

_R®

TR g s o 0o wenra,

where RV =1/ AW,

Neglecting the correction to neighboring cells, equation (8) reduces to:

H[u®']- r®" plvp’

(k)
o Qp P 4 A | r7 e
P — 1Dy’

J.S VR
) _ _pK
" =-Rp

(9)

BTN o L e pouer e,

Substituting this equation into the geometric conservation equation and expressing density

correction in terms of pressure correction (i.e. p* = CIYP"), the pressure correction equation

is obtained as

(k) (k)
LN L +ALrUOCOP 4
P

> 1-RY¥ A[r® o (H[U® - r DOVP — 1 DOVP)s| || = RESG, (10)

k

N (rék)*pék)o)_;rék)pék))ow o +AP[(r(k)*,0(k)°U (k)*)]

If the H[u®'| term in the above equation is retained, there will result a pressure correction

equation relating the pressure correction value at a point to all values in the domain. To
facilitate implementation and reduce cost, simplifying assumptions related to this term have
been introduced. Depending on these assumptions, different algorithms are obtained. A
summary of the various GCBA algorithms (GCBA-SIMPLE, GCBA-SIMPLEC, GCBA-
PISQO,...) used in this work was accorded a full length paper to which interested reader is

referred [2]. Moreover, the discretization of the above equation yields

AcPi=> APl +Bp (11)
NB
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After calculating the pressure correction field, ul”,p% andr®" are obtained using the

following equations

ul ——rODWY, (P)

p® =c®p (12)

(k)
. nLQ , ) )
e :_Rék)( Pat NG +AP[(r‘k’p(k)u(k) ).S+r(")U (0 500 ]J

The Multi-Grid and Prolongation grid Strategies

The multi-grid algorithm [12,13] adopted in this work can be summarized as follows. Starting
with the fine mesh, the coarser grid cells are generated through agglomeration of four finer
grid cells, two in each direction. On the other hand, a finer grid is obtained by subdividing
the coarser grid control volume into four control volumes, again two in each direction. With
the FMG cycle, the algorithm starts at the coarsest level, where the solution is first computed;
this solution is interpolated onto the next finer mesh, where it is used as initial guess. This
stage is called the prolongation stage. Then iterations are performed on the fine mesh and the
solution is transferred back to the coarser mesh by applying a restriction operator. In order to
obtain the same approximation on each level, a forcing term is added to the discrete
conservation equations on the coarser grid. This term represents the truncation error on the
coarse grid with respect to the fine grid. After performing a number of iterations on the
coarse mesh, the solution is transferred back to the finer mesh in the form of a correction and
a number of iterations are performed on the finer grid to smooth the fields. This process is
continued until a converged solution on the fine mesh is obtained. Then the solution is
extrapolated to correct the finer mesh fields, followed by a number of smoother iterations on
the finer mesh and the process repeated until convergence is reached on the desired finest
mesh. This strategy has been applied to both incompressible and compressible supersonic

multi-fluid flows and good savings have been realized as will be shown in the results section.
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In addition to the FMG strategy, the PG approach is also tested. This approach differs from
the FMG method in that the solution moves in one direction from the coarse to the fine grid
with the initial guess on level n+1 obtained by interpolation from the converged solution on
level n. As such, the acceleration over the SG method obtained with this approach is an

indication of the effect of initial guess on convergence.

Results and Discussion

To demonstrate the capability of the GCBA in predicting multiphase flow at all speeds and to
assess their relative performance, solutions to the following four two-dimensional two-phase
flow problems are presented: (i) turbulent upward bubbly flow in a pipe, (ii) turbulent air-
particle flow in a pipe, (iii) compressible dusty flow over a flat plate, (iv) and transonic dusty
flow in a converging-diverging nozzle. Results are presented in terms of CPU-time and
residual history plots for a number of grids using the single grid, the prolongation grid, and
the full non-linear multi-grid method. The residual of a variable ¢* at the end of an outer

iteration is defined as:

RESY) =" [A ) - " Al - BY (13)
c.v NB

For global mass conservation, the imbalance in mass is defined as:

(k) (k) (k) (k)
RES, ZZ| O o) &P AT Q= A, [r® p®u) ] g (14)

All residuals are normalized by their respective inlet fluxes. Computations are terminated
when the maximum normalized residuals of all variables drop below a very small number &s.
Unless otherwise stated, the HR SMART scheme is used in all computations reported in this
study. For a given problem, all results are generated starting from the same initial guess.
Since a detailed comparison between current numerical results and available

experimental/theoretical data was performed in [1], it is not repeated here.
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Problem 1: Turbulent upward bubbly flow in a pipe

This problem is concerned with the prediction of radial phase distribution in turbulent upward
air-water flow in a pipe [1,14-22] . The case considered reproduces numerically the
experimental data reported by Seriwaza et al [14] for which the Reynolds number based on
superficial liquid velocity and pipe diameter is 8x10% the inlet superficial gas and liquid
velocities are 0.077 and 1.36 m/s, respectively, and the inlet void fraction is 5.36x10 with
no slip between the incoming phases. Moreover, the bubble diameter is taken as 3 mm [22],
while the fluid properties are assigned the values p©=1000 Kg/m®, p@=1.23 Kg/m®, and
V9= 10° m?s.

Calculations are performed using the SG, PG, and FMG strategies for all algorithms. Results
are displayed in the form of (i) total mass residuals summed over both phases as a function of
outer iterations (Fig. (1)), and (ii) normalized CPU times (Table 1) needed for the maximum
normalized residuals of all variables and for all phases to drop below £s=10®,

As can be seen from Fig. 1, it is possible to obtain converged solutions to the desired level
with all algorithms. With the exception of PISO (Fig. 1(a)), the convergence characteristics
of all algorithms (Figs. 1(b)-(g)) are very similar. The PG method reduces, on average, the
number of iterations in comparison with the SG method by about 20%. On the other hand, the
FMG method results in a 50% reduction in the number of outer iterations. The use of 3 and 4
levels for both the PG and FMG methods does not seem to have any effect on convergence
acceleration for all algorithms except PISO, for which the use of 4 levels with the FMG
method increases the number of outer iterations considerably and results in a kind of
oscillations (Fig. 1(a)). The convergence histories of all algorithms with the FMG method on
3 levels presented in Fig. 1(h) confirm once more the aforementioned observations.

Table 1 reports on the normalized CPU-times (i.e. CPU-time divided by the time needed by

SIMPLE on the coarsest grid) required by the different algorithms using the various
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methodologies to decrease the solution residuals to the desired level. For the SG method, the
CPU-times on two different grids of sizes 48x16 and 96x32 C.V. are presented. The PG and
FMG solutions are for a grid of 96x32 C.V. using 3 (96x32, 48x16, and 24x8 C.V.) and 4
(96x32, 48x16, 24x8, and 12x4 C.V.) grid levels.

As expected, the CPU effort increases for all algorithms and methodologies with increasing
the grid size. With the SG method, the variations in the normalized CPU times among
algorithms decrease from a maximum of 19 % to 6.7% with increasing the grid density. In
both cases however, SIMPLE is the cheapest while PRIME followed by SIMPLEM are the
most expensive. On the dense grid, the use of the PG method with 3 grid levels reduces, on
average, the computational effort by about 14.62% as compared to the SG method. The effect
of employing four grid levels is seen to be marginal. In both cases the CPU times of the
various algorithms is within 7.5% from each others. The average decrease in computational
time with the FMG method using three grid levels is 40.89% and 27.95% as compared to the
SG and PG method, respectively. The performance of PISO on the 4 levels FMG method is
highly unexpected necessitating higher computational effort than the SG method and may be
caused by the additional explicitness introduced by the PRIME step. Moreover, with the
FMG method, the least computational effort is obtained with SIMPLEC, which is slightly
less expensive than SIMPLE. Excluding PISO, the most expensive algorithm with the FMG
is PRIME, which requires about 27% more time than SIMPLE.

Problem 2: Turbulent air-particle flow in a vertical pipe

Here, the upward flow of a dilute gas-solid mixture in a vertical pipe is simulated [23-25].The
experimental results of Tsuji et al [23] are replicated for the case of an air Reynolds number,
based on the pipe diameter (of value 30.5 mm), of 3.3x10* and a mean air inlet velocity of
15.6 m/s using particles of diameter 200 um and density 1020 Kg/m®. In the computations,

the mass-loading ratio at inlet is considered to be 1 with no slip between the fluids [1].
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The problem is solved using the SIMPLE, SIMPLEC, SIMPLEX, and SIMPLEST multi-
fluid algorithms and the SG, PG, and FMG solution methods. As in the previous problem,
results are displayed in the form of (i) total mass residuals summed over both phases as a
function of outer iterations (Fig. (2)), and (ii) normalized CPU times (Table 2) needed for the
maximum normalized residuals of all variables and for all phases to drop below £=10°. For
the SG method, the CPU-times on two different grids of sizes 48x20 and 96x40 C.V. are
presented. The PG and FMG solutions are for a grid of size 96x40 C.V. using 3 (96x40,
48x20, and 24x10 C.V.) and 4 (96x40, 48x20, and 24x10, and 12x5 C.V.) grid levels.

Mass residual plots presented in Fig. 2 indicate a similar convergence behavior for all four
algorithms with very close number of outer iterations to achieve the desired level of
convergence (i.e. within 50 outer iterations). It is hard to see any noticeable difference
between the 3 and 4 levels with both the PG and FMG methods. The decrease in the number
of iterations with the PG method over the SG method is smaller than the decrease obtained
with bubbly flows. This lower effectiveness of the PG method is due to the following reason.
In solving the problem, it is noticed that the initial guess greatly affects the convergence
history and time required to reduce residuals to the desired level. Except when solving on the
finest mesh with the SG method, the initial guess used for the velocity field is u©=u®=1 m/s.
The use of this initial value with the SG method on the finest mesh greatly increased the CPU
effort needed over the one needed when starting with an initial field of u®=u®=15.6 m/s. To
reduce cost, the latter initial guess is used. For this reason the mass residuals start from
somehow a lower value than expected and the PG method appears to be less effective. The
FMG method reduces the number of outer iterations by about 53% over the SG method,
which indicates a good capability to deal with the added non-linearity of multiphase flows.
On the coarsest grid, the time required by the various algorithms using the SG method varies

widely (Table 2). As compared to SIMPLE, the SIMPLEC, SIMPLEX, and SIMPLEM
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algorithms require 26%, 28%, and 45% additional computational effort, respectively. As the
grid size is increased to 96x40 C.V., the normalized CPU times required by the various
algorithms increase, however the differences in CPU times among them decrease to a
maximum of 11.9% with SIMPLEM. For the reasons stated above, the PG method on both 3
and 4 grid levels does not have any effects on the convergence rate. In fact for some of the
algorithms it slightly increases the computational time. However, it brings the computational
effort of the algorithms closer to each others with a spread of maximum 6.7%, again
associated with SIMPLEM. On the other hand, the FMG method does reduce the
computational cost. The average reduction over the SG method is 36.2% and 33.2% using 3
and 4 grid levels, respectively. The use of 4 grid levels increases the CPU time of all
algorithms except SIMPLEM. However it reduces the variation in the CPU times among
algorithms from 23.49% to 12.17%. The least computational effort is accomplished with
SIMPLE while SIMPLEM is the most expensive with all methods (23.49% more expensive
than SIMPLE with the FMG on 3 levels).

Problem 3: Compressible dilute air-particle flow over a flat plate

The problem deals with predicting the features of a two-fluid boundary layer [26-28]. In the
simulation, the particle diameter, particle Reynolds number, material density, Prandtl
number, and mass load ratio are set to: 10 um, 10, 1766 kg/m®, 0.75, and 1 respectively. The
wall boundary is treated as a no-slip boundary for the gas phase (i.e. both components of the
gas velocity are set to zero), and as a slip boundary condition for the particles phase (i.e. the
normal fluxes are set to zero). Results obtained [1] are in excellent agreement with numerical
solutions reported by Thevand et al. [28].

As in test 1, the problem is solved using all multi-fluid algorithms and the SG, PG, and FMG
solution methods. Results are displayed in the form of total mass residuals (Fig. 3) and

normalized CPU time (Table 3) with £,=10°. For the SG method, the CPU-times on two
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different grids of sizes 52x24 and 104x48 C.V. are presented. The PG and FMG solutions are
for a grid of size 104x48 C.V. using 3 (104x48, 52x24, and 26x12 C.V.) and 4 (104x48,
52x24, and 26x12, and 13x6 C.V.) grid levels.

Plots presented in Fig. 3 indicate that it is possible to get a converged solution to the desired
level with all algorithms. As depicted in figure 3(a), PISO requires the least number of outer
iterations. This, however, is not associated with the lowest computational effort due to the
higher cost per iteration in comparison with other algorithms. The convergence
characteristics of SIMPLE (Fig. 3(b)), SIMPLEC (Fig. 3(c)), SIMPLEM (Fig. 3(d)), and
SIMPLEX (Fig. 3(g)) are very similar, requiring nearly the same number of outer iterations
with the SG, PG, and FMG methods. The number of iterations required by PRIME (Fig. 3(f))
with the SG method is higher than SIMPLEST (Fig. 3(e)). With the FMG method however,
the performance of the two algorithms is very close with that of PRIME being slightly better.
In general, the use of the PG method reduces the number of outer iterations, as compared to
the SG method, by over 40% with all algorithms whereas the use of the FMG method reduces
it by over 64%. Fig. 3(h) indicates that when using the FMG method on 3 levels, PISO
requires the lowest number of iterations followed by SIMPLEM, SIMPLEC, SIMPLEX,
SIMPLE, PRIME, and SIMPLEST. Moreover, the number of iterations needed by
SIMPLEST and PRIME is very close and it is nearly double that needed by SIMPLE. It
should be clarified that the displayed numbers of iterations represent those needed for the
mass residuals to be reduced to the desired level. The CPU-times however represent the
computational effort needed to reduce the maximum residuals to the desired level. In some
cases, even though the mass residuals may become below the desired value, other residuals
could still be above that value. This is why, for example, the CPU time needed by SIMPLE is
lower than that needed by SIMPLEC (Table 3) even though Fig. 3(h) indicates that the

number of iterations needed by SIMPLEC to reduce the mass residuals to below & is lower.
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As depicted in Table 3, The SIMPLE algorithm is the cheapest to use with all methods and
over all grids. Moreover, the CPU times consumed by the various algorithms using the SG
method on the coarsest grid vary widely. Following SIMPLE, the SIMPLEC algorithm is the
cheapest to use (requiring only 4% more CPU time than SIMPLE) and PRIME the most
expensive, requiring 113% more CPU time than SIMPLE. On the 104X48 grid system, the
relative performance of the algorithms remains unchanged however their performance
relative to SIMPLE further deteriorates. In this case, SIMPLEC and PRIME require 6.91%
and 171.1% more time than SIMPLE. The PG method reduces, on average, the CPU-time by
27.23% and 27.27% with 3 and 4 grid levels, respectively. Moreover, the additional CPU
times required by the various algorithms over SIMPLE vary from 4.84% to 71.79% for the 3
grid levels and from 3.71% to 71.41% for the 4 grid levels with PRIME being consistently
the most expensive followed by SIMPLEST. The FMG method reduces, on average, the CPU
time as compared to the SG method by 65.87% and 65.45% over the 3 and 4 grid levels,
respectively. This is equivalent to saying that the FMG method is about 3.5 times faster than
the SG method. With the PG method, the use of 3 or 4 grid levels has marginal effect on
solution acceleration for all algorithms. However, this is not the case with the FMG method
where the use of 4 grid levels noticeably increases the computational cost of all algorithms
except PRIME.

Problem 4: Inviscid transonic dusty flow in a converging-diverging nozzle

The last test considered deals with the prediction of supersonic dilute air-particle flow in an
axi-symmetric converging-diverging rocket nozzle [29-34]. The physical quantities employed
are similar to those used in [32]. The gas stagnation temperature and pressure at inlet to the
nozzle are 555 °K and 10.34x10° N/m?, respectively. The specific heat for the gas and
particles are 1.07x10% J/Kg°K and 1.38x10° J/Kg°K, respectively, and the particle density is

4004.62 kg/m®. With a zero inflow velocity angle, the fluid is accelerated from subsonic to
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supersonic speed in the nozzle. The inlet velocity and temperature of the particles are
presumed to be the same as those of the gas phase. Results generated [1] are in excellent
agreement with published results reported in [32] and others using different methodologies.

To compare the relative performance of the multi-fluid algorithms, the problem is solved via
the PG method using the SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX algorithms over
three different grids of sizes 47x20, 94x40, and 188x80 C.V. for a particle radius of size 1
um. As before, results are displayed in the form of total mass residuals (Fig. 4) and
normalized CPU times (Table 4) with &sset to 10°. As shown in Fig. 4, all algorithms require
almost the same number of iterations with the exception of SIMPLE on the 94x40 grid,
which requires a larger number of iterations than on the finest mesh. Excluding that case, the
convergence histories of all algorithms are nearly identical. In terms of computational effort,
the normalized CPU-times presented in Table 4 indicate that on the coarsest and finest
meshes, SIMPLE is the most efficient algorithm (7% less expensive than SIMPLEC on the
dense grid) and SIMPLEM the most expensive (43% more expensive than SIMPLE on the
dense grid). On the other hand, SIMPLEX is 11% more expensive than SIMPLE on the fine
mesh. On the 94x40 grid, SIMPLE is the most expensive (13.07 % more expensive than

SIMPLEC) with the remaining algorithms retaining their relative performance.

Closing Remarks

Seven multiphase flow algorithms belonging to the pressure-based GCBA family were
implemented and tested using a single grid, a prolongation grid, and a full non-linear multi-
grid method. Solving a variety of two-dimensional two-phase flow problems assessed the
performance and accuracy of these algorithms. Results obtained demonstrated the capability
of all algorithms to deal with multi-fluid flow situations and to predict multi-fluid flow at all

speeds. The PG and FMG methods accelerated the convergence rate for all algorithms. The
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FMG method, however, was found to be more efficient and capable of tackling the added

non-linearity of laminar and turbulent multi-fluid flows.
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Figure Captions

Fig. 1 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid,
and (h) convergence histories of the various algorithms on the finest mesh using the
FMG method for turbulent upward bubbly flow in a pipe.

Fig. 2 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEST, and (d)
SIMPLEX algorithms using the SG, PG, and FMG methods on the finest mesh for
turbulent air-particle flow in a pipe.

Fig. 3 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid,
and (h) convergence histories of the various algorithms on the finest mesh using the
FMG method for dusty gas flow over a flat plate.

Fig. 4 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and (d)
SIMPLEX algorithms using the SG method for dusty gas flow in a converging-

diverging nozzle.
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finest mesh using the FMG method for turbulent upward bubbly flow in a pipe.
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Fig. 4 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and

(d) SIMPLEX algorithms using the PG method for dusty gas flow in a converging-

diverging nozzle.



Table 1 Normalized CPU-times for turbulent bubbly flow in a pipe.

ALGORITHMS

GRID METHOD | SIMPLE |SIMPLEC |SIMPLEX| SIMPLEST |SIMPLEM| PISO | PRIME
48x16 C.V. SG 1.00 1.00 1.02 1.04 1.09 1.08 1.19
SG 40.09 40.42 40.98 40.66 43.07 41.82 43.59
PG (3 levels) 34.24 34.41 35.02 36.82 37.12 34.48 36.05
96x32 C.V. | PG (4 levels) 34.34 34.25 34.67 36.88 36.93 34.50 36.07
FMG (3 levels)| 22.32 22.17 22.40 25.55 23.67 27.31 28.38
FMG (4 levels)| 22.53 2251 22.78 23.81 25.55 55.68 27.89




Table 2 Normalized CPU-times for turbulent air-particle flow in a pipe.

ALGORITHMS

GRID METHOD SIMPLE | SIMPLEC | SIMPLEX | SIMPLEM
48x20 C.V. SG 1.00 1.26 1.28 1.45
SG 18.81 18.85 19.07 21.05
PG (3 levels) 18.94 19.37 19.37 20.22
96x40 C.V. | PG (4 levels) 19.03 19.46 19.44 20.30
FMG (3 levels)| 11.11 12.34 12.44 13.72
FMG (4 levels)| 12.07 13.10 13.25 13.54




Table 3 Normalized CPU-times for Dusty flow over a flat plate.

ALGORITHMS

GRID METHOD | SIMPLE |SIMPLEC |SIMPLEX| SIMPLEST |SIMPLEM| PISO | PRIME
52x24 C.V. SG 1.00 1.04 1.11 1.52 131 1.12 2.13
SG 16.92 18.09 18.94 26.00 21.48 19.46 45.87
PG (3 levels) 14.25 14.94 15.51 18.85 17.48 15.84 24.48
104x48 C.V.| PG (4 levels) 14.27 14.80 15.50 18.90 17.56 15.79 24.46
FMG (3 levels)l  5.35 5.44 5.88 11.87 7.84 8.34 12.19
FMG (4 levels), 6.12 6.14 6.66 12.98 6.66 9.08 9.98




Table 4 Normalized CPU-times for Dusty flow in a converging-diverging nozzle.

ALGORITHMS
GRID METHOD SIMPLE |SIMPLEC|SIMPLEX|SIMPLEM
47x20 C.V. SG 1.00 1.02 1.06 1.13
94x40 C.V. | PG (2 levels) 13.08 9.24 9.47 11.37
188x80 C.V.| PG (3 levels) 82.43 88.49 91.35 117.83




