
Journal of Non-Newtonian Fluid Mechanics, 45 (1992) 311-337 
Elsevier Science Publishers B.V., Amsterdam 

311 

Numerical modelling of viscoelastic liquids 
using a finite-volume method 

M.S. Dar-wish and J.R. Whiteman 
BICOM, Institute of Computational Mathematics, Department of Mathematics and Statistics, 
Brunel University, Uxbridge UB8 3PH, UK 

M.J. Bevis 

Wolfson Centre for Composites, Department of Materials Technology, Brunei University, 
Uxbridge (UK) 

(Received July 23, 1990; in revised form March 27, 1992) 

Abstract 

A new staggered-grid, finite-volume method for the numerical simula- 
tion of isothermal viscoelastic liquids is presented. The main features of 
this method are the use of a primitive variable formulation, the location of 
the velocities, pressures and stresses on different staggered grids and the 
use of a third-order difference scheme for the discretization of the consti- 
tutive equations. The method is applied to a sudden-expansion, viscoelas- 
tic-flow problem for a range of Weissenberg numbers. For one case the 
mesh has been refined to demonstrate that the method is robust and 
viscoelastic effects are not filtered out as the mesh size decreases. All the 
computations have been performed on a PC equipped with a floating-point 
coprocessor. Although the method has been defined for, and applied to, 
two-dimensional problems, the technique is readily extendable to three 
dimensions without excessive cost. 
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1. Introduction 

This paper is concerned with the numerical modelling of the steady-state 
flow of viscoelastic liquids which exhibit flow phenomena that cannot be 
explained on the basis of linear or non-linear purely viscous behaviour [l]. 
This type of modelling requires a mathematical formulation of the problem 
which adequately represents the physical phenomena and then the dis- 
cretization of this formulation to produce a numerical algorithm. In a 
Navier-Stokes model of a purely viscous liquid, use is made of the simple 
relationship between stress and velocity gradients to write the governing 
equations in terms of the velocity and pressure. However, for viscoelastic 
(non-Newtonian) liquids with memory, the relationship between stress and 
material deformation rates is much more complicated, and the momentum 
equations contain additional stress terms. The mathematical model used 
here involves the conservation equations, the equations of continuity and of 
momentum, and the constitutive equations, which relate stresses to the 
liquid velocities. 

The momentum equations of viscous flow in the Navier-Stokes form 
contain both hyperbolic terms (the convection terms) and elliptic terms (the 
diffusion terms) and, depending on the nature of flow, either of these sets 
of terms can dominate. If the Reynolds number is large, the convection 
terms are dominant and the momentum equations behave in a hyperbolic 
manner. Conversely for small Reynolds numbers the diffusion terms are 
dominant. 

In models of viscoelastic liquid flow the situation is additionally compli- 
cated due to the above system being further coupled with the (hyperbolic) 
system of constitutive equations. In any numerical model of viscoelastic 
liquid flow the discretized forms of all these equations should reflect the 
features of the systems, otherwise non-physical results will be obtained, and 
the numerical algorithm will not converge. 

Early numerical simulation of viscoelastic liquids involved finite-element 
techniques based on the Galerkin models of primitive variable formula- 
tions, and finite-difference techniques based on stream function-vorticity 
formulations. The initial developments are reviewed in the book of Crochet 
et al. [2]. Since then the finite-element techniques have largely been based 
on mixed methods in terms of velocities, pressure and stress pioneered by 
Crochet [3,4], and which satisfy the Babuska-Brezzi condition [3], in 
conjunction with upwinding techniques (streamline upwinding, SU), see, 
e.g. Brooks and Hughes [5] and Hughes [6], or with less success the SUPG 
(Streamline Upwinding Petrov Galerkin), see, e.g. Brooks and Hughes [7]. 
Simultaneously finite-difference methods have evolved to take account of 
the hyperbolic/ elliptic-type changes using switching algorithms between 
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upwinding (UD) and central differencing (CD), see Song and Yoo [S]. Very 
recently Yoo and Na [9] have used primitive variables in the finite-dif- 
ference context with velocity-staggered grids and have been able to obtain 
results for a Weissenberg number (We) equal to 0.4375 and a Reynolds 
number (Re) equal to 0.1. 

The method developed here involves the use of finite-volume techniques 
to obtain difference replacements on staggered grids to all the components 
of the governing equations written in terms of primitive variables. Further- 
more, a decoupled approach, whereby the different sets of equations are 
solved separately, is employed, and in all cases a third-order upwind 
interpolation profile is used. The primitive variables are the velocity 
components respectively in the x and y directions u = u[x, y], u = u[ x, y], 
the pressure P = P[x, y], together with stress tensors 7xx = T~~[x, y], 
7y)’ = ~~)‘[x, y] and 7Xy = 714’[x, y]. 

We first state the equations governing the viscoelastic flow, and then 
describe both the finite-volume discretization and the method of solution 
of the resulting non-linear equation system. In order to test the algorithm 
we give in Section 6 results for a problem involving expanding flow for 
various Weissenberg numbers. For one of the problems the mesh is refined 
successively to demonstrate that the viscoelastic effects are not filtered out. 
The results are discussed later in more detail. All the calculations were 
performed on a Mackintosh SE/30 personal computer. 

2. Governing equations 

In formulating the viscoelastic flow in terms of the conservation and 
constitutive equations, we let the liquid occupy the region LR c R*. The 
continuity, momentum and constitutive equations are then respectively: 
(a) Continuity equation (conservation of mass) in a 

(b) Momentum equations (conservation of momentum) in LR 

$(puu) + -&uu) = - E + fg + fg 

JfpLl) + $(& = _; + a7yy + a7xy 
ay ax 

(2) 

(3) 
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where p is the constant density. An alternative formulation for the momen- 
tum equations can be written as: 

where r represents only the elastic components of the extra-stress tensor, 
p is a v&cosity coefficient, and the bracketed terms are correspondingly the 
viscous terms of the stress tensor. Hence 

al4 
7 

xx - -+x-2p- 

ax 
&I 

$_YY = rYY - 2 
- 

?j 

au au 
f” = TXY - p ay + z ( 1 
This transformation of the stresses greatly increases the stability of the 
subsequent numerical calculations and was first introduced by Perera and 
Walters [lo]. The numerical algorithm will be based on eqns. (1) and 
(4X8). In order to be able to solve for u and v in eqns. (1) and (4)-(81, we 
need constitutive equations which relate stresses to velocity gradients for 
the viscoelastic liquid. 
(c) Constitutive equations in ti 

Two lines of thought can be pursued in the choice of the constitutive 
equations for the model. One approach is to select fairly simple constitu- 
tive equations which contain a minimum number of material parameters, 
such as the models of Maxwell and Oldroyd, and to concentrate on 
simulating the flow in this case for as high values of We as is feasible. 
Another approach is to select more complex constitutive equations which, 
of course, provide better approximations to the actual behaviour, but which 
lead to more complicated algorithms. In the present paper, we shall 
concentrate on the first approach and use the Upper-Convected Maxwell 
fluid model in which the constitutive equations, written in conservation 
form, are 

a(hdy 
f 

a( he) 

ax ay 
(9) 



M.S. Darn&h et al. /J. Non-Newtonian Fluid Mech. 45 (1992) 311-337 315 

a(h2dy a(hdy) 
=2p;- I-,,; 

i 1 

au 
+ 

ax ay 
rYY+2h-TXY 

ax (10) 

a(AUq 
+ 

a(Ady) au au 

ax ay =/"ax+- i i 

au au 

ay 
- rxy + A axrXx + A %ryy (11) 

where A is the relaxation time. 
It is worth noting that if transformations (6)~(8) are used, the momen- 

tum equations reduce to the Navier-Stokes form when A = 0, because the 
extra-stress tensors ?Xx, zyy and ~~~ are zero. 

3. Discretization 

3.1 The staggered grid 

In the finite-volume discretization, the finite-difference approximations 
to the continuity, momentum and constitutive equations will be set up here 
using control volumes, AV, (or finite volumes) surrounding each grid point. 
The differential equation is then integrated over the control volume of 
each variable and piecewise profiles expressing the variation of the variable 
are used in the integrals to replace boundary values by volume-centred 
values. In this formulation quantities such as mass and momentum are 
conserved over every control volume and hence over IR (see, e.g. Ref. 11). 

The above discretization approach leads to staggered grids, as the 
different dependent variable derivatives are approximated at different 
mesh points. For example, in our staggered grid, the velocity components 
are calculated for the points that lie on the faces of the pressure control 
volumes (see Fig. 1). Thus the u locations are staggered only in the 
x-direction, and the v locations only in the y-direction. Furthermore the 

Fig. 1. Control volumes and staggered grid with the dependent variables. 
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shear stress rXY locations are staggered as shown, while the pressure and 
the normal stresses are located on the main grid, which is the square grid 
surrounding each mesh point, 0, of Fig. 1. 

The reasons behind this arrangement for the stresses are as follows: 
(a) Since the constitutive equations are complicated and cannot be 

replaced by a simple function of velocity and viscosity, the stresses need to 
be included as unknowns together with the primary variables u, u and P; 
this is done at the main grid for rXX, rvY and at the offset grid for rXY. 

(b) As the use of the stress values is inescapable, they are treated in this 
way in order to avoid the use of interpolation in the momentum equations. 
In Fig. 1, AA’ is a segment of the boundary of fi on which the normal 
velocity is prescribed, whilst the stresses are derived analytically. 

3.2 The discretized equations 

All of the governing continuity, momentum and constitutive equations 
(changed into conservative form) can be written in the form of a general 
equation where the different symbols have different meanings in different 
contexts. This is 

with the appropriate terms put into S,. 
Equation (12) will be discretized using the control-volume methodology. 

The discretization takes place at two levels. In level I, the equations are 
integrated over the control volume so as to get a discretized description of 
the conservation laws. In level II an interpolation profile is used to relate 
the terms discretized in level I to the discrete nodes on the solution 
domain, We consider the X- and y-derivative terms in eqn. (12) separately. 
(a) Level I discretization 
Integrating eqn. (12) over a control volume yields: 

zz 

/ 
S, dV 

AV 
(13) 

Using the divergence theorem, we get for the individual terms of eqn. (13): 

I: 
dy (14) 
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Control 
Volume R 

Fig. 2. The discretization molecule with control volume for point P. 

III: 
/ S, dV 

AV 

(15) 

(16) 

where the subscripts 1, r, b and t indicate the left, right, bottom and top 
faces respectively, see Fig. 2. Term I represents the total flux of 4 leaving 
the control volume across the Y face, and entering the control volume 
across the 1 face. Similarly for term II in the y direction. Term III 
represents different phenomena depending on 4. 

Each of the integral terms on the left-hand side of eqn. (13) represents a 
transport by convection and diffusion through the relevant control-volume 
face. Thus if we denote this quantity for the r face as F,, then 

(17) 

Similar expressions can be applied to the other faces of the control volume. 
The integration indicated by eqn. (17) may be approximated by: 

) 
Ay 

r 
(18) 
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where the subscript Y is interpreted to signify best-estimate values repre- 
sentative of the right face of the control volume for P in Fig. 2. Expressions 
similar to eqn. (18) may be written for the other faces. Thus after some 
manipulation, eqn. (13) is approximated by: 

F,-F,+F,-F,=j” S, dV 
AV 

(19) 

(b) Level II discretization 
As can be seen from eqn. (19) the accuracy of the control-volume 

solution depends on the proper estimation of the face value of 4 as a 
function of the neighbouring $ node values. Through the use of a profile 
assumption or interpolation profile, which is an estimate of this variation of 
6 between the nodes, the approximation scheme produces an expression 
for the face value which is dependent on the nodal 4 values in the vicinity 
of the face. 

A similar application for an approximation scheme on the other faces of 
the control volume, and the substitution into eqn. (19) of the expressions 
obtained, results in an equation relating +r to its neighbouring nodal 
values, the control-volume equation of the control volume for P, which may 
be symbolically represented by: 

(20) 

For each differential equation, the totality of all equations such as (20) for 
every control volume in the solution domain constitutes the equation set to 
be solved for [&,I. In eqn. (20) the subscript nb refers to neighbours of P. 
The term B, is a source term associated with the control volume P which 
parallels the source term S, of eqn. (13). 

We now describe in detail the profile assumption adopted in this study. 

3.3 The interpolation profile 

A number of interpolation profiles have been proposed for the approxi- 
mation of expressions such as (181, see Ref. 12. While all the schemes use 
central differencing for the approximation of the diffusion term in (181, 
namely: 

(21) 

it is in the approximation of the convection term that the schemes differ. 
The simplicity of the convection term is highly deceptive and its approxima- 
tion remains one of the central issues of computational fluid dynamics [12]. 
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During the 1970s the most widely used scheme was the hybrid differencing 
scheme [13]. However, its lack of accuracy due to false diffusion [14] led to 
the development of new approximation schemes such as the skew upwind 
differencing scheme (SUDS) of Raithby [15] and the quadratic upstream 
interpolation for convective kinematics scheme (QUICK) of Leonard [16]. 

The scheme adopted in the present study is a modification of the 
QUICK scheme and was developed by Gaskell and Lau [17] under the 
acronym SMART (Sharp and Monotonic Algorithm for Realistic Trans- 
port). The QUICK scheme is first presented, then the SMART scheme is 
described. 

The method developed by Leonard is based upon interpolating the value 
of the dependent variable at each face of the control volume by using a 
second-degree (quadratic) polynomial biased toward the upstream direc- 
tion. The interpolated value is used to calculate the convective term in the 
governing equations for the dependent variable. The calculation of the 
values of the dependent variable at the right face of the control volume 
shown in Fig. 2 is given in detail. 

In its original form, the QUICK scheme required the use of a general 
second-degree polynomial for the calculation of the unknown 4, 

4(x, y) = c, + c,x + c,x* + c,y + c,y* + c,.v (22) 

However, it is generally unnecessary to consider interpolation in the 
transverse direction [18] so that for the calculation of the unknown 4 we 
have 

(23) 

Fig. 3. Interpolation points used in QUICK. 
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Equation (23) can be rewritten in a more convenient form for a point lying 
on the right face of control volume P as: 

4, = C” + C,(x, -4 + C*(x, -4(% -4 (24) 

Consider the situation for a positive axial velocity u (see Fig. 3) in which 
case the values of 4 at the nodes L, P and R are used to evaluate C,, C, 
and C, so that 

For the case where the axial velocity is negative, the coefficients C,, C, and 
C, are calculated using the values of $I at grid nodes P, R, RR so that 

+ 
(Xr-XP)(X,-xR) 

XRR-XR 
(26) 

For the case of a uniform grid, eqns. (2.5) and (26) take the following form: 

4: = &bR+$P)-$(4R-24P++L) (27) 

4, =~(~P+~R>-$(~RR-~~R+~P) (28) 

As the velocity u determines the interpolation points, we define a flow 
velocity direction switch: 

d;+ z 
l+ l~,I/U, 

2 
and d,“- = 1 - dr+ (29) 

so that the value of 4, at the control-volume face becomes 

4, = d:‘+&+ + d:‘-4, 

The value of 4 at other faces is calculated analogously. 

(30) 

Difficulties arise in using the QUICK scheme due to its unboundedness; 
that is there is a tendency for overshoot and undershoot values to be 
generated under large gradients. The modification introduced by Gaskell 
and Lau [17] for overcoming this unboundedness amounts to the addition 
of a variable parameter to the curvature term (e.g. the second term in the 
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right-hand side of eqns. (27) and (28)) of the QUICK scheme. Thus 
equations (27) and (28) become: 

4,’ = ;(+R + 4,) - ($ + %)(& - 2&J + 4,) (31) 

4, = %#%J + 4,) - (k + %)(&a - 2& + 6,) (32) 

where the CX, depend on the normalized values 4 of 4 1191 which are 
defined in the Appendix along with their relation to cx,. Similar parameters 
are used for other faces. 

3.4 The coefficients of the general control-volume equation 

If we are to calculate F, - F, in eqn. (19), we have by definition 

Ay 
I 

(33) 

Defining 

Cr=pu, AY C,=PU, AY 

eqn. (33) becomes, after replacing the diffusion term using eqn. (211, 

F, - F, = C,4, - C,& + (Dr + DJ& - Drk - D&L (35) 

where 

C,& - C,& = C,(d;++: + d,“-4,) - C,(d,“+f#$ + dF-4;) (36) 

4R+4P 
+ 

2 ($ 
f - 

‘y,)(2& +R 
- 

4,) 1 

+L++P 
+ + - - 

2 ($ 424, 4P b_IJ I 

+ ($ + ‘y$24’~ - +L - 6,) 

Ii 
(37) 

Rearranging this equation and doing the same for the other terms of eqn. 
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(19), we obtain for the finite-volume equation at P, as in eqn. (201, the 
coefficients: 

A.=C,d,“+(-~+cy,)+c~d,“-(-~-2a,)+C~dr-(-~-~I)+D, 

A,=C,dr+(~+2al)+Cld;^-(~-ryl)+C,d,U+(~+a,)+DI 

A = c,d;-(+ + a,) 

A:,R=C,d;“(-t-a,) 

A,=C,df+(-++q)+C,d;‘-(-;-2a,)+C,d;-(-+-cx,)+D, (38) 

A, = C,d;j+(+ + 2ab) + C&f;-(+ -LYE) + C,d:‘+(i +a,) +D, 

A, = C,d:‘_($ + (YJ 

A BB =c,d;;+(-+-CqJ 

4 = C4lb 
nb 

where nb represents (R, L, RR, LL, T, B, TT, BB). 

4. Boundary conditions 

In order to apply the control-volume method to viscoelastic flow prob- 
lems based on the above formulation, we need to specify the boundary 
conditions. 

4.1 Velocity 

4.1.1 Velocity normal to the boundary 
The velocity should be set at its value and no special procedure is 

needed, except for the outflow condition where the flow is assumed to be 
fully developed, hence au/&z = 0, where IZ is the outward normal direction. 

4. I.2 Velocity tangential to the boundary (no slip condition) 
The tangential velocity along any solid boundary is prescribed to be 

equal to zero, that is a non-slip boundary condition is assumed. 

4.2 Stresses 

The assumption underlying the analytical derivation of boundary values 
for the stresses is that the constitutive equations hold at the boundary. We 
shall consider three boundary conditions encountered in this work. 
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4.2.1 Boundary parallel to the x-axis 
In such situations the flow obeys the conditions u = u = 0; au/&x = 

au/&x = 0; and from the continuity equation au/ay = 0. Incorporating 
these conditions in the constitutive equations yields a set of three equations 
with three unknowns which upon resolution give on the boundary: 

4.2.2 Boundary parallel to the y-axis 
In a similar way to the above we find that on this boundary: 

4.2.3 Re-entrant corners 
In this case the velocity derivatives are undefined at the corner. How- 

ever, a commonly used condition is to set u = u = 0 and solve the resultant 
set of equations. It is to be noted that due to the staggered-grid configura- 
tion only the equation for 7xy uses this boundary condition. The value for 
+y is produced analytically as: 

(ava#aua4 (auaY)(auaY) 

7xy_ ‘(5+gjt2”[ 1-2h(au/ay) + 1-2A(au/ax) j 
- 

1 (41) 

1 - 2AcawaY )(aua4 I + 1 _ 2A;au,ay) 1 - 2A(au/ax) I 

4.2.4 En trance conditions 
At the entrance the flow is assumed to be fully developed. This assump- 

tion yields a simplified set of equations for the stresses, which can be 
solved analytically with the appropriate values of velocity and velocity 
gradient at the entrance boundary. 

5. The solution algorithm 

5.1 The pressure equation 

The derivation of a pressure equation to calculate the pressure field is 
obviously needed. Many algorithms have been developed over the years. 
The first method for doing this, which was economical in computer time, 
was proposed by Patankar and Spalding [20] under the acronym SIMPLE 
(Semi-Implicit Method for the Pressure Linked Equation). Over the years, 
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a number of modifications to the SIMPLE algorithm have been proposed 
[11,21,22]. The SIMPLER (SIMPLE Revised) algorithm of Patankar ill] 
and SIMPLEC (SIMPLE Consistent) algorithm of Van Doormaal and 
Raithby [22] are examples of such modifications and exhibit better be- 
haviour than SIMPLE and its other variants. However, the approximations 
needed in the implementation of any of these algorithms are not suited to 
handling the viscoelastic stress components. Thus an alternative method, 
which avoids some of the pitfalls encountered in the above methods, the 
PRIME (PRessure Implicit Momentum Explicit) algorithm [231, is used. 
Furthermore some modifications were introduced to enhance its efficiency 
in the calculation of viscoelastic fluids. The reader is referred to Ref. 24 for 
more details. The PRIME (Modified) algorithm has the following steps: 
1. Compute the stresses. 
2. Compute the velocities. 
3. Compute the pressure and correct the velocities. 
4. Compute the stresses using the new velocities. 
5. Compute the pressure and again correct the velocities. 
6. Return to step 1 until convergence. 

5.2 Solution of the discretized equations 

The use of direct methods for solving the set of equations described 
above is not appropriate in the present context because they require too 
much storage and are usually more time consuming, in particular for the 
non-linear problems encountered in fluid-flow calculations. Current itera- 
tive methods differ with respect to storage requirement and degree of 
implicitness, such as the point-by-point successive overrelaxation method, 
the strongly implicit procedure of Stone and its variations, the Incomplete 
Cholesky Congruent Gradient (ICCG), or the Multigrid Method of Brandt 
[25]. Although these methods have their own desirable attributes, the 
degree of simplicity of their implementation in a computer code is approxi- 
mately inversely proportional to their rate of convergence. 

The method adopted in this work is a generalization of the TDMA 
algorithm for two dimensions, which is easy to program, in combination 
with an additive-corrective multigrid method [26]. This combination is 
found to provide the simplicity and low storage needs of the basic TDMA 
algorithm while preserving the high convergence rate of multigrid methods. 

6. Viscoelastic fluid simulation 

6.1 The sudden expansion problem 

This concerns the flow of an upper-convected Maxwell fluid through a 
“planar 4 : 1 sudden expansion” with mean inlet velocity U associated with 
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A 

L 
-L b 

91 L/4 of 7 ----- line symmetry _ 
4 3.5L b 

Fig. 4. Geometry of problem 1. 

TABLE 1 

Conditions for the different cases 

Case U(mean) p 

1 0.01 100 
2 0.01 100 
3 0.01 100 

II A Re We Iterations 

0.125 0 0.1 0 16 
0.125 1.0 0.1 0.8 +25 
0.125 3 0.1 2.4 +95 

a parabolic inlet velocity profile. The geometry for this problem is shown in 
Fig. 4. The Reynolds number and Weissenberg number are given by: 

PUL 4hU 
Re = ~ 

4P 
We = - 

L (42) 

where the A and Al. values are given in Table 1. 
Table 1 shows the different conditions for which solutions were sought. 

The last column gives the number of iterations required for convergence 
and increases with the value of We. With L = 0.05, a 21 X 8 mesh with 
Ax = 0.00833 and A y = 0.00625 is superposed over the rectangle encom- 
passing the domain of the problem. This will be referred to as Mesh 1. 

It is worth noting that the initial guesses used for the pressure, velocity 
and stress field were, each time, the converged solutions obtained for the 
previous We. Hence the + sign before the iteration values in Table 1 
indicates the extra iterations required for convergence. 

Results are shown, in Figs. 5-7, for Re = 0.1 with We = 0, 0.8 and 2.4. In 
Fig. 6 the velocity-vector field is plotted whilst in Fig. 7 the streamlines are 
shown for We = 0, 0.8 and 2.4. The effect of the increase in We, which is to 
suppress the recirculation zone in the upper corner, can be seen in Figs. 6 
and 7 for the velocity-vector plots and the velocity streamlines. The 
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lb 
.8 

We=O.8 

We=2.4 

Fig. 5. Pressure contours for Re = 0.1, We = 0, 0.8 and 2.4. 

recirculation zone that exists in the Newtonian case for Re = 0.1, disap- 
pears for We = 2.4, and the negative pressure region at the expansion zone 
also disappears. Furthermore the pressure drop across the expansion 
increases with the We value. Similar effects have been experimentally 
confirmed recently [27]. 

The solution of the problem for higher Weissenberg numbers, e.g. 
We = 3.6, was found to be too time consuming computationally for the PC 
and was not pursued. 
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we=0 

WsO.8 

Ws2.4 

Fig. 6. Velocity-vector plots for Re = 0.1, We = 0, 0.8 and 2.4. 

4.2 Mesh refinement 

The problem was also solved for a different mesh size based on a 28 X 12 
mesh superposed over the rectangle encompassing the problem domain, 
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We=0 

We=O.8 

We=2.4 

Fig. 7. Streamlines for Re = 0.1, We = 0, 0.8, 2.4. 

giving Ax = 0.00625 and Ay = 0.00417; this is Mesh 2. The solution for 
Re = 0.1 and We = 1.2 is shown in Figs. 8-13, for Mesh 1 and Mesh 2. 

The values of the parameters used are shown in Table 2. 
Figures 8 and 9 show the pressure contours and the velocity-vector plots, 

respectively, for Mesh 1 and the refined mesh Mesh 2. The suppression of 
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we=1.2 

(Mesh2) 

Fig. 8. Pressure contours at Re = 0.1, We = 1.2, for Mesh 1 and Mesh 2. 

we=1.2 

WG1.2 

(Mesh2) 

Fig. 9. Velocity-vector plots at Re = 0.1, We = 1.2, for Mesh 1 and Mesh 2. 
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we=1.2 

(Mesh2) 1.14e-2 

Fig. 10. Streamline contours at Re = 0.1 and We = 1.2, for Mesh 1 and Mesh 2. 

wtS1.2 

we=1.2 

(Mesh2) 

Fig. 11. 7Xx contours at Re = 0.1 and We = 1.2, for Mesh 1 and Mesh 2. 
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we=1.2 

- 

- 

we=1.2 
(Mesh2) 

Fig. 12. 7yy contours at Re = 0.1 and We = 1.2, for Mesh 1 and Mesh 2. 

We=].2 

WG1.2 
(Mesh2) 

Fig. 13. 7xy contours at Re = 0.1 and We = 1.2, for Mesh 1 and Mesh 2. 
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TABLE 2 

Parameter values for mesh refinement 

U (mean) P IL A Re We Iterations 

0.01 100 0.125 1.5 0.1 1.2 +55 

the recirculation zone is noticed on both meshes, while Fig. 10 shows the 
streamline contours, also for both meshes. We can see that refinement of 
the mesh does not filter out the viscoelastic effects obtained on the coarser 
mesh. 

Figures 11, 12 and 13 show the contour plots for the viscoelastic 
extra-stresses, ?, 7yy and Q-~~. 

7. Conclusion 

A decoupled, finite-volume algorithm for solving viscoelastic flows has 
been described and implemented for two-dimensional problems. This algo- 
rithm can immediately be extended to the three-dimensional case. The 
main features of this algorithm are the use of primitive variables along with 
a set of specially positioned stress variables, and the use of a third-order 
upwind scheme for the discretization of the constitutive equations. The 
advantages are: 
(a) the use of primitive variables will enable the move to three-dimensional 
models to be performed in a straightforward manner; 
(b) the wealth of experience which evolved in Newtonian computational 
fluid mechanics can be used in improving the solution procedure in the 
(still new) computational viscoelastic fluid-dynamics field; 
Cc) the implementation of the viscoelastic algorithm in the context of 
existing codes for simulating the flow of Newtonian fluids should not 
present major difficulties; 
(d) the Perera and Walters transformation of stresses greatly enhances the 
stability of the method; 
(e) computer cost is minimal when compared with sub-domain finite-ele- 
ment methods. 

It should be remarked that work is also proceeding to apply this 
control-volume method to problems of sudden contraction, with both 
planar and axisymmetric geometry to achieve numerical results that agree 
with experiment; see Darwish et al. [28] for preliminary details. 
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Appendix: The normalized variable diagram 

The QUICK interpolation profile at some control-volume face involves 
the two adjacent node values (400wnStTeam) and (~Midd,e) together with that 
at the next upstream mode (4Upstream) as seen in Fig. Al. Note that the 
labelling of the nodes as Downstream, Upstream and Middle depends on 
the velocity direction, as was described in Section 3. Leonard [19] defined a 
normalized variable through which the information provided by the three 
nodes can be related to one parameter; the form of this normalized 
variable is 

JE4 W~W$eam 
(Al) 

Downstream Upstream 

Note that using normalized variables we have $Downstream = 1 and $Upstream 
= 0 (see Fig. Al). 
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Fig. Al. Normalized variables (right). 

The QUICK scheme with the normalized variables is thus written at 
some control volume face, f, as 

6f = i + ~~Middle (AZ) 

Other schemes can be written in a normalized form. For the upwind 
scheme we have: 

whilst the central difference scheme can be written as: 

and the second-order upwind scheme: 

Plots of these relations for &f against $Midd,e are given in Fig. A2. 
Leonard has shown [19] that unphysical behaviour is related to schemes 

that pass through the second quadrant of the normalized variable diagram, 
or pass above point P in the first quadrant, while schemes that pass in the 
fourth quadrant are artificially diffusive. On the other hand, for a scheme 
to have a second-order accuracy it is sufficient that is passes through the 
point Q, and that passing through Q with a slope of 3/4 is necessary and 
sufficient for third-order accuracy. 

With this in mind, it is easy to see how the QUICK scheme can be 
modified to eliminate some of its unwanted behaviour. Figure A3 shows 
the SMART scheme of Gaskel and Lau which involves modifying the 
QUICK scheme in two places in the first quadrant so as to make it pass 
through points 0 and P. The changes beyond point P and in the third 
quadrant were incorporated from the SHARP scheme of Leonard [291. The 
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Fig. A2. The normalized variable diagram for different interpolation schemes. 

effects of the above-mentioned modifications are carried through the cx 
parameter into the SMART scheme which can be written as a function of 
the normalized variable as 

% 
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W) 

Fig. A3. The normalized variable diagram for the SMART scheme. 
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The actual relation between df and ~Middle for the SMART scheme is 
defined as follows: 

if - 1 < JMlddle I 0 

= 34Middle if 0 < &Middle I jj 

4f=f(&Middle)’ = ’ if 2 < +Middre I 1 

= JMiddle if 1 < &Middle I 5 

Middle + ‘) for all other cases 

(AT 

The values of (Y needed to satisfy the above relation can now be obtained. 
After manipulation of eqn. (A6) we get: 

( 
_ - 

“f=!? +f, 6Middle = ) i 
$f- i(26Middk + ‘) 

26 -1 Mlddle 

and using the relations of eqn. (A7) we get the following relation: 

(A8) 

I (0.375 + 0.375~Middle) = 
(1 - 2&Middle) 

if -l<Jf<O 

3 (3&Middle - 0e5) _ 
=- if 4 (26Middle - ‘) O<$Middre<+ 

af = g’ (- 4Middle 
1 5 

- 64MiddIe w-9 

=- if < < 1 ’ ‘6h4iddk - ’ 2 4Middre 

I 1 2&l,ddk - 3 
=- 

’ ‘6Middle - ’ 

= 0 

if 1 < 4Middre 5 ; 

for all other cases 

During each iteration or time step the coefficients of the control volume 
equations are calculated using the QUICK scheme and then the normal- 
ized variable for each face is calculated, using eqn. (Al). The value of o at 
this face is obtained and the coefficient of the control volume equations 
corrected. By changing the relation of eqn. (A9) many different schemes 
can be produced by changing only one subroutine in the whole program; 
hence another advantage of this technique. 


