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NEW FAMILY OF ADAPTIVE VERY HIGH
RESOLUTION SCHEMES

F. Moukalled and M. S. Darwish

Faculty of Engineering and Architecture, Mechanical Engineering Department,
American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon

The family of skew very high resolution (VHR) schemes is adaptively combined with the
Jamily of high-resolution (HR) schemes to yield a new family of adaptive very high
resolution (AVHR) schemes. A new simple adaptive switching criterion is devised. For
convection-diffusion type problems the adaptive schemes are accelerated by using in tandem
the normalized weighting factor method to implement the HR scheme and the deferred-
correction (DC) procedure to implement the skew scheme. For flow problems the DC
procedure is used to implement both types of schemes. Numerical results for the new family
aof AVHR schemes are compared in terms of accuracy and computation cost against those
generated using the VHR base family of schemes by solving four problems: (1) pure
convection of a step prafile in an oblique velocity field, (2) driven flow in a skew cavity, (3)
laminar sudden expansion of an obligue velocity field in a rectangular cavity, (4) and
turbulent sudden expansion of an oblique velocity field in a rectangular cavity. For the same
accuracy, the AVHR schemes are found to decrease the computation cost, on average, by
48.74% as compared to the VHR schemes.

INTRODUCTION

An extensive amount of research in computational fluid dynamics has been
directed toward the development of accurate and bounded convective schemes.
The outcome of the various studies has allowed a deep understanding and effective
remedies of the problems involved and has resulted in a large number of one-
dimensional high resolution (HR) [1-9] and multidimensional very high resolution
(VHR) [10, 11] schemes. Published work [11] has shown that HR schemes largely
decrease errors produced by streamwise numerical diffusion and, to a lesser extent,
errors arising from cross-stream numerical diffusion, whereas VHR schemes greatly
reduce both components of numerical diffusion. Moreover, enforcing a monotonic-
ity criterion has minimized errors arising from numerical dispersion. The total
variation diminishing (TVD) scheme is one framework for developing HR schemes
[4, 12]. Another more recent and elegant framework is the normalized variable
formulation (NVF) methodology of Leonard [8] and its extension, the normalized
variable and space formulation (NVSF) methodology of Darwish and Moukalled
[13].
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NOMENCLATURE
a coefficients of the discretized &n curvilinear coordinates
equation ) p density
B volume integral of the @ source term ¢ general dependent variable
C convective flux coefficient
O functional relationship Subscripts
gt e’ local contravariant unit vectors
G geometric factor C central grid point
GRAD  gradient across a control volume face D downstream grid point
GRAD  normalized gradient across a control dc deferred correction
volume face f refers to control volume face
J total scalar flux across cell face nb refers to neighbors
Q source term U upstream grid point
RE residual error
Ay surface area of the control volume - Superscripts
SLOPE parameter representing the skewness
of the flow with respect to the grid C convection contribution
14 volume of the control volume D diffusion contribution
v velocity vector ¢ refers to dependent variable
r diffusion coefficient ~ refers to normalized variable

The work of Moukalled and Darwish [10, 11] that has led to the development
of the family of VHR schemes can be viewed as an extension of the family of
ane-dimensional HR schemes developed in the context of the NVSF methodology
into multidimensional spaces. This family was shown [10, 11] to be by far more
accurate than the HR family in situations when the flow is oblique to the grid lines
along with important gradients in the flow. Moreover, the two families were.-found
to be of equal accuracy in situations when the flow is more or less aligned with the
grid network. The VHR multidimensional schemes are definitely more expensive to
compute than the one-dimensional HR schemes, since they require additional
interpolation steps to determine the upstream, central, and downstream values in
the flow direction and because of the expanded stencil of nodes used in the
interpolation. Since the accuracy of both schemes is the same in regions where the
flow is more or less aligned with the grid lines, it is not necessary to use them
there. Therefore the same overall accuracy could be achieved at a lower cost
through an adaptive strategy.

To this end, a new family of adaptive schemes is developed in this work. The
adaptive method switches to the skew VHR scheme in. the presence of a high
change in the gradient of the dependent variable in combination with the flow
being oblique to the grid line and to the one-dimensional HR scheme elsewhere.
Thus the expensive VHR schemes are used only where needed, while the cheaper
HR schemes are used in the remaining computational regions. Few attempts based
on the TVD approach to develop composite adaptive schemes have been reported
[14]. Rhodes and Acharya [15] developed a solution-adaptive differencing scheme
within a multigrid-type calculation procedure. In their work the upwind scheme
was used over the outer grid and the third-order Quick scheme in the flagged
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regions. Some work has also been done in the context of the NVF methodology
[16]. However, to the authors’ knowledge, no work related to developing adaptive
one-dimensional /multidimensional schemes has been reported in the literature.
Moreover, a new criterion is devised for selecting the type of scheme to be used
along a control volume face. The adaptive strategy is applied to the following
schemes in their one-dimensional and multidimensional [11] forms: CLAM [1],
MUSCL [2], OSHER (3], MINMOD [4], SHARP [S], SMART (6], STOIC [7],
EXPONENTIAL [8], and SUPERC [9].

In what follows, the discretization procedure will first be presented along with
a brief description of the NVSF methodology. Then the construction of the HR
and VHR schemes is detailed, the adaptive strategy and criterion explained, and
the resultant adaptive very high resolution (AVHR) schemes tested and compared
in terms of speed and accuracy with their VHR counterparts by solving four
problems: (1) pure convection of a step profile in an oblique velocity field, (2)
driven flow in a skew cavity, (3) laminar sudden expansion of an oblique velocity
field in a rectangular cavity, and (4) turbulent sudden expansion of an oblique
velocity field in a rectangular cavity. In solving the convective problem, the AVHR
schemes are accelerated by using in tandem the recently developed normalized
weighting factor (NWF) technique [17] to implement the HR schemes and the
deferred-correction (DC) method [18] to implement the skew schemes. For flow
problems, however, the AVHR schemes are implemented using the DC methaod
only.

CONTROL VOLUME DISCRETIZATION OF THE
TRANSPORT EQUATIONS

The conservation equations governing two-dimensional incompressible steady
flow problems may be expressed in the following general form:

V-(pVp - T*Vp) = 0¢ (1)

where ¢ is any dependent variable, V is the velocity vector, p is density, and T'¢
and Q%, specific to a particular meaning of ¢, are the diffusivity and source term,
respectively. Since a control-volume-based numerical approach is used, the integral
form of Eq. (1) is sought. For this purpose, Eq. (1) is first integrated over the
control volume shown in Figure la, and then the divergence theorem is applied on
the resultant equation to yield

95( pVd — T'*Ve) dS = deV 2)
A Vv .

where S and V are the surface area and the volume of the control volume (Fig-
ure la). Replacing the surface integral over the control volume by a discrete
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(¢

Figure 1. (2) Typical grid point cluster, control volume,
and skew interpolation. (&) Interpolation points used in
calculating ¢;. (¢} Convective boundedness criterion
(CBCQ) on the normalized variable diagram.

summation of the flux terms over the sides of the control volume, Eq. (2) becomes
Jo-J,+J,-J =B 3)

where B is the volume integral of the source term Q% and J; represents the total
flux of ¢ across cell face “f” (f = e, w, n, or s) and is given by

Jp = (pVé — T*Vg),S, 4)
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Each of the surface fluxes J; contains a convective contribution J& and a diffusive
contribution JP; hence

L=JE+IP  JE=(pVe)S, P =(-T*Vp)S, (5)

The accuracy of the control volume solution depends on the proper estimation of
the face value of ¢ as a function of the neighboring ¢ node values. Through the
use of an interpolation profile, the approximation scheme produces an expression
for the face value that is dependent on the nodal ¢ values in the vicinity of the
face.

The diffusion flux J° is discretized along each surface of the control volume.
The procedure is explained here by discretizing the gradient V¢ along the east face
(face e) of the control volume shown in Figure la. For a Cartesian coordinate
system the gradient V¢ for the east control volume face is given by

AN k) |
(Vo). = (E)el‘i' (J_y e] (6)

Since the new AVHR schemes are also tested in nonconventional geometry, a
general curvilinear boundary-fitted coordinate system is used. In such a coordinate
system, the control volumes are arbitrary in shape, and the gradient needs to be
determined along local curvilinear coordinates. Using the curvilinear coordinates
(&, m) and the local contravariant unit vectors (g%,g") (normal to the coordinate
surfaces), (V¢), is transformed to

AP o
— — e —
(Vo). ( PY: cge + ( O.’T’Jeg’g @)

Without loss of generality, the increments in (£, ) space may arbitrarily be chosen
as 1. Thus the discretized expressions for the normal and cross derivatives are

¢ ¢pp — ¢ o
—M=¢DD—¢D e

o _(¢n_¢’s)e_
c?rfc— 1 an 1

1 ‘;bne - & ®

€

respectively. Combining Eqgs. (7) and (8), the equation for (V¢), becomes
(V). = (¢pp — dplgé + (¢, — )l )
Using Eq. (9), the discretized form of the diffusion flux is found to be
7 = ~L[GIP(dop = dp)e + G (e — d4.))] (10)

where GNP and GSP are the geometric factors for normal and cross diffusion,
respectively.
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The convective flux across face f can be written as
J& = (oV)S; = Ci ¢y (1D

where C; is the convective flux coefficient. As can be seen from Eq. (11}, the
accuracy of the control volume solution for the convective scalar flux depends on
the proper estimation of the face value ¢; as a function of the neighboring ¢
nodes values.- The estimation of ¢, is the main concern of this work. Using some
assumed interpolation profile, ¢; can be explicitly formulated in terms of the nodal
values by a functional relationship of the form

& = f($up) (12)

where ¢, denotes the ¢ values at the neighboring nodes. The interpolation
.profile may be one-dimensional or multidimensional of low or high order of
accuracy. The higher the order of the profile, the lower the numerical diffusion will
be. However, the order of the profile and its dimensionality do not eliminate
numerical dispersion, -

After substituting Eq. (12) into Eq. (11) for each cell face and using the
resulting equation along with Eq. (10), Eq. (3) is transformed after some algebraic
manipulations into the following discretized equation:

apdp = 2 (a,,¢,) + by (13)
nb

where the coefficients a, and a,, depend on the selected scheme and by, is the
source term of the discretized equation. An equation similar to Eq. (13) is obtained
at each grid point in the domain, and the collection of all these equations forms a
system of algebraic equations that is solved here iteratively to obtain the ¢ field.
So far, the velocity field has been assumed to be known, and the methodology
to solve for a scalar variable has been presented. For some of the problems
considered here, the flow field is unknown. Therefore, to obtain the solution, the
continuity and momentum equations should be solved simultaneously. These
equations are sclved in this work on a nonstaggered grid, and unrealistic checker-
board pressure and velocity fields are avoided through the use of the pressure-
weighted interpolation method of Peric [19]. Moreover, since the pressure is
implicitly specified by the continuity constraint, a pressure-correction equation is
derived by combining the momentum and continuity equations as in the SIMPLEC
algorithm [20], which is a variation of the SIMPLE algorithm of Patankar [21}.

NORMALIZED VARIABLES AND CONVECTION
BOUNDEDNESS CRITERION

'As mentioned above, increasing the order and/or dimensionality of the
interpolation profile does not eliminate errors caused by numerical dispersion. To
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minimize this error, limiters on the convective flux should be imposed. The flux
limiter denoted by the convective boundedness criterion (CBC) [6] is adopted here
and explained next in terms of the normalized variables approach. Figure 15 shows
the local behavior of the convected variable near a control volume face. If the
value of the dependent variable at the control volume face located at a distance &
from the origin is expressed by ¢;, then the normalized variables will be defined
as [13]

b=dy o £t

_— 14
¢‘D_¢U ‘ED_gU ( )

¢ =

where the subscripts U and D, which depend on the flow direction, refer to
upstream and downstream nodal locations, respectively. Using the normalized
variables, the convection boundedness criterion for implicit steady state flow
calculation [6] states that for a scheme to have the boundedness property its
functional relationship should be continuous and bounded from below by ¢; = ¢
and from above by unity, should pass through the point (0,0} and (1,1) in the
monotonic range 0 < ¢ < 1, and for ¢ < 0 or ¢ > 1 the functional relation-
ship f(¢¢) should equal ¢.. The above conditions may also be described geometri-
cally on a normalized variable diagram (NVD) as shown in Figure lc. Since the
intention of the present work is to develop adaptive schemes based on one-dimen-
sional HR and multidimensional VHR schemes, these are reviewed next.

HIGH-RESOLUTION SCHEMES

Knowing the required conditions for boundedness, the shortcomings of the
unbounded high-order schemes were eliminated through the d:velopment of HR
schemes satisfying all the above requirements. Without going into details, a
number of HR schemes were formulated using the NVSF methodology, and the
functional relationships for those used in this work are given below. For more
details, the reader is referred to Darwish and Moukalled [13].

MINMOD
. & . ..
$=—dc 0< e <&
éc
-_1‘§~f- gf_éc z - (15)
¢r—1_£c¢c+1_§~c fc < dc <1

& = ¢ elsewhere
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OSHER
. & £
= —= 0 < < —=
e éc b b &
i} E. (16)
¢f = 1 £_—C < ¢C < 1
&
¢; = dc elsewhere
EXPONENTIAL
¢ = 1.125(1 — e~ 212%¢) 0 < G < 1
- - 17)
¢ = d¢ elsewhere
MUSCL
- 2§~r - f-c - ~ gc
¢ = Z dc 0<¢c < 5
¢f_¢C+{§~f—§~C] 7C<(£C<l+£c—£f (18)
¢ = l+éc—é<dc<1
JH = &c elsewhere
CLAM
7 (-é—f-f z (f"f_gc) - -
b= == 3 = I 0<¢o<1
' 'fc(fc - 1) c §c(§c - 1) © ¢ (19)
d-5f = d;c elsewhere
SMART
- ‘fr(l - 3fc + Zéf] - = éc
& = > = 0< ¢e<—
f fc(l _ gc) C dc
- & -§) . éf(éf - éc] e & z
¢ = = = = — < < —11+ -
' fc(l - fc) © 1 - & 3 ¥ ff( b §c) (20)
d;f=1 %(1"'5[_&:)44—%(1
T

¢ = ¢¢ elsewhere
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SHARP
7 gf(gf - ":Ec) 'f-f( e — 1) = -
= + =05
WETITER TEE-)e %
'—‘/$C(1_¢C)—$é 0<de<l e#05 e
f— 1 — 2‘.5(: = ¢C d’C .
(ﬁf = ff;c elsewhere
STOIC
L &1 - 38.+2&) . . c (£, — £
& = f(d c r) . 0 < e < — ‘f-c(fc~§r)--
§C(1 B §C) Ec + & + 267 — 4& ¢
. 1§ E—§ £l éc — & .
¢f= ~f¢c f ~C - -C(C- f]-_ €,¢C<§C
=& = 1-4 Ec o+ &+ 28 - 4 &
F(1— & £ _ g : 22)
7 fr(l - ff) n fr(gf - §C) z n € - -
= r———— + = g < = 1 + -
Tyt T Eesdec vk
: éc c sy L -
¢ =1 M +E&-&)<dc<1
f
J’f = J’c elsewhere
SUPERC
o El1-38+2E) . _2.
= 2N _ 0< o< —
g fc(l - fc] c b sfc
- 1-& . E-§ 2. ..
¢f:1—.§ic 1f_§~§ Séc<dc <&
- gf(l - ‘f—f) ~ gf(éf - gc] = - Ec ~ = (23)
=z = + ~ = < — l + -
rg gc - - -
b =1 1+ &-&)<de <1

f

elsewhere
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SKEW VERY HIGH RESOLUTION SCHEMES

Details regarding the family of skew VHR schemes can be found in Ref. [11].
A brief description of the construction of these schemes is given next.

Streamline-Based Interpolation

As mentioned above, the VHR family of schemes is an extension of the
one-dimensional HR family into multidimensional spaces. Therefore, in order to
be able to apply the various HR schemes in streamline-based coordinates, ¢
estimates at three locations (two upstream and one downstream) in the direction of
the local velocity vector are needed. For that purpose, the direction of the velocity
vector at the cell face is considered to determine the streamline direction, and
interpolation is carried among the appropriate nodes surrounding the cell face to
obtain the upstream (¢;), central (qbc) and downstream ( ¢D) nodal values in the
skew direction (Figure 1a).

Using these interpolated estimates, the value at the control volume face is
calculated employing expressions similar to those of the HR schemes. However,
the local coordinate system used is no longer the mesh coordinate system but
rather the streamline coordinate system. For more details, the reader is referred to
Ref. [11].

Having obtained the necessary values in the streamline direction, the follow-
ing normalized variables [11] are used in place of those defined in Eq. (10), in order
to apply the functional relationships of HR schemes along that direction in a
bounded manner:

¢ — ¢y ;. &8y
——_ = =" 24
" 9 - du £ £ — £u @)

|‘9-|

Bounding Strategy

When calculating ¢; using the original HR schemes, the upstream, central,
and downstream nodal values are available and need not be interpolated. In
streamline-based coordinates, however, estimates at these locations, as mentioned
earlier, are not available and should be obtained by interpolation. Since a linear
interpolation profile is used, the resulting control volume face value may not
always be bounded in the physical sense (i.e., even though the CBC is enforced
along the streamline direction, the calculated face value can still be outside the
range set by the two points neighboring the face). In order to eliminate any
unphysical results, after the calculation of ¢; using any of the above schemes, the
face value is denormalized to yield ¢;, and then the CBC is enforced using the
appropriate nodal values (¢, ¢, and ¢y (Figure 1a)) in the event it lS not
satisfied.
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NORMALIZED ADAPTIVE CRITERION

An important ingredient of any adaptive technique is the switching criterion.
As mentioned earlier, skew schemes greatly improve predictions in regions where
the flow is skew with respect to the grid lines. Therefore the skewness of the flow
with respect to the grid should be reflected in the switching criterion. Moreover,
the skewness alone is not a sufficient parameter for adaptation because skew flow
regions of slow changes in the gradient values are well predicted even with
first-order schemes. Consequently, spatial variations in the dependent variable
should also be accounted for if the switching criterion is to be an effective one.

The skewness of the grid with respect to the flow direction is accounted for in
the switching criterion through a parameter denoted by SLOPE. This represents
the angle between the velocity vector and the line segment joining the central and
downstream grid points surrounding the control volume face. Moreover, regions in
the flow field characterized by higher changes in the gradient values as compared
to other regions, could be captured via the following parameter that measures the
absolute value of the gradient across the cell face of the finite volume:

¢’D_¢c

GRAD; =|———
f fD_‘fc

(25)

The problems with using GRAD were thoroughly investigated by Darwish and
Moukalled [22] and are briefly reviewed here. First, for similar profiles with
different maximum values, different values of GRAD (that are directly propor-
tional to the levels of the profiles) are obtained. Therefore the GRAD parameter
cannot be used in an absolute manner to decide on where to adapt. Thus, to obtain
the same GRAD values for two similar profiles, the ¢ field should be scaled or
normalized. Another difficulty arises when calculating the GRAD parameter for
the same profile using different grid networks. In this case, the difference in the
grid spacing affects the value of GRAD, with the coarser grid showing lower
GRAD levels and thus not making use of the more accurate scheme as much as
the denser grid, which is contrary to the actual requirements. Hence the local
coordinate should be normalized as well.

To overcome the above mentioned shortcomings, the normalization proce-
dure developed by Darwish and Moukalled [22] is adopted in this work, whereby
the gradient over the interface is compared to the gradient obtained from the two
next points as if the gradient of the interface was calculated using a coarser grid. In
this case the normalized gradient parameter becomes

¢‘D - ¢'c

i ED - EC
GRAD; = —-—%D e (26)

épp — §U

Results generated using the normalized gradient parameter [22] revealed that
estimates of GRAD are the same in all cases, indicating the possibility of setting a
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universal value for GRAD beyond which adaptation can be performed. The only
difficulty that arises is when the maximum value of the profile is very small, in
which case adaptation will be unnecessarily required. To overcome this problem,
the GRAD value is used as a filtering parameter, i.e., if the numerator is less than
a threshold value, the normalized gradient (GRAD) is set to zero, thus avoiding
any artificially high value.

STRATEGY FOR ADAPTIVE SCHEMES

The adaptive strategy developed in this work consists of using the HR scheme
in solving the equations until the residual error drops to a set level; then the
solution field is employed to calculate the SLOPE and GRAD switching parame-
ters for one time and to delimit control volume faces where the VHR scheme
should be applied. For the computations presented in this article, control volume
faces are flagged if the SLOPE is between 30° and 60° and the GRAD is greater
than 0.7. Moreover, the GRAD is calculated for every dependent variable in the
problem. Therefore different variables have different flagged areas.

The use of the SLOPE alone is not a sufficient indicator for adaptation, since
regions where the flow may be skewed to the grid lines and the gradient of the
dependent variable are not important do not represent critical regions of the flow
field. The pure convection of a step profile in an oblique flow field problem is an
excellent example of such a case in which the important region of the flow field is
along the step. As shown below, the current switching criterion accurately predicts
this region. Using the slope alone would have resulted in flagging the whole
domain.

As mentioned above, the criterion is applied once to delimit regions where
the VHR scheme should be employed. The reason behind this strategy is to avoid
convergence problems that arise from oscillation between the HR and the VHR
scheme. The other reason is that using the criterion before the residual of the field
has been lowered enough is not useful, since it would be based on values that are
far from the converged solution field. Moreover, experimentation showed that
applying the adaptive criterion more frequently unnecessarily increases the compu-
tation cost without improving the accuracy.

It should be clarified here that all adaptive schemes tested in this article are
composed of the same scheme applied in its one-dimensional and multidimensional
forms. However, the methodology is not limited to that, and actually, any HR
scheme can be used with any VHR scheme adaptively.

IMPLEMENTATION OF THE ADAPTIVE SCHEMES

When constructing cost-effective highly accurate adaptive schemes, it is
important to pay attention to their implementation so as to make sure they can be
easily coded in current programs and that the solution of the discretized equations
can be readily accomplished with a high rate of convergence.

In this work, for convection-diffusion type problems, two techniques are used
in tandem to implement the AVHR schemes. These methods are the deferred-



NEW FAMILY OF ADAPTIVE SCHEMES 227

correction (DC) procedure of Rubin and Khosla (18] and the normalized weighting
factor (NWF) technique developed by the authors [17]. The NWF is an acceleration
technique that was shown [17] to speed up the convergence rate by a factor of 4.
This method, however, still needs some work to be extended to flow problems and
is currently under consideration by the authors. Consequently, when solving flow
problems, the DC method is used alone to implement the AVHR schemes. Both
implementation techniques were described in previous articles [17, 22] and will not
be repeated here.

RESULTS AND DISCUSSION

To check the performance of the new AVHR schemes against their VHR
counterparts, one purely convective problem and three flow problems are solved.
Results are obtained by covering the physical domains with uniform grids. Grid
networks are generated using the transfinite interpolation technique [25]). In all
tests, computational results are considered converged when the residual error
(RE), defined as

n
RE = max
i=1

ap$p — [ZGNB‘ﬁNB +bp + qbdc) ] 27
NB

where g = 1 for the DC approach and g = 0 for the NWF method, became
smaller than a vanishing quantity (107°).

Before presenting and discussing results, it should be made clear that the
objective of the article is to develop and test a new family of AVHR schemes. Since
the new family is streamline based, it is natural to cheose the flow in some of the
test problems to be skewed to the grid lines. Furthermore, the skew VHR schemes
were shown in Ref. [11] to be more accurate than the one-dimensicnal HR
schemes. Therefore, in order not to overload plots, comparison will be limited here
to resuits generated by the VHR and AVHR schemes.

Test 1: Pure Convection of a Step Profile in an Oblique Velocity Field

Figure 2a shows the well-known benchmark test problem consisting of pure
convection of a transverse step profile for a scalar quantity ¢ imposed at the inflow
boundary of a square computational domain. A 21 X 21 mesh system is used, the
angle # is chosen to be 45° and [V| = 1. The problem is solved using the following
four schemes: MINMOD, CLAM, SMART, and SHARP. Comparisons of the
computation time obtained for the VHR and AVHR solutions of the problem
using these schemes are displayed graphically in Figure 2b. As shown, important
economies are achieved with the adaptive schemes as compared to the skew
schemes. The reduction in cost varies from 33.7% for the SMART scheme to
55.46% for the CLAM scheme, with an average savings of 48.17%. The validity of
the adopted switching criterion is clearly demonstrated by the flagged areas
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{a)

Time (seconds)

&

Figure 2. (¢) Physical domain for pure convection of a
sealar discontinuity. (&) Time comparison for pure convec-
tion of a scalar discontinuity.

displayed in Figure 3. As shown, only regions across the step are flagged, with the
largest flagged area being associated with the most diffusive scheme (ie., the
MINMOD scheme). Finally, the computed values of ¢ using the VHR schemes,
the AVHR schemes, and the exact solution to the problem are shown, along the
vertical centerline of the domain, in Figure 4. Results displayed in the figure show
that estimates generated by the AVHR schemes fall right on top of those
generated by the more expensive VHR schemes. Therefore the savings in computa-
tion cost with the AVHR schemes are achieved without deteriorating the solution
accuracy.
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Flagged Area Flagged
1927% B ,m;i” ‘
{a) &)
Flagged Arsa Flagged Area
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Test 2: Laminar Driven Flow in a Skew Cavity

A schematic of the physical situation and streamlines are depicted in Figure
Sa. Results are presented for a value of Reynolds number (Re = pUL /u, L being
the cavity height or width and U the velocity of the top horizontal wall) of 500. The
side walls are skewed at an angle of 50° with respect to the horizontal. The problem
is solved using the SUPERC, STOIC, OSHER, and SMART schemes and two grid
networks of sizes 22 % 22 and 42 X 42, Comparisons of the computation time
obtained for the VHR and AVHR solutions of the problem using these schemes
are displayed graphically in Figure 5b. For the 22 X 22 grid the reduction in cost
with the AVHR schemes as compared to the VHR schemes varies from 50.31% for
the SUPERC scheme to 62.11% for the OSHER scheme, with an average savings
of 57.13%. For the 42 X 42 grid, the minimum and maximum reduction in cost are
50.78% (SMART) and 60.92% (SUPERC), respectively, with the average being
57.94%. Therefore important savings in the computation time needed to solve this
flow problem are achieved with the adaptive schemes. To check whether these
savings affect the solution accuracy, the U velocity profiles along the vertical
centerline of the domain generated by the VHR and AVHR schemes using both
grid layouts are compared, in Figure 6, against the profile predicted by SMART
using a very dense grid of size 242 X 242. For all schemes and on both grids, the
AVHR and VHR solutions fall on top of each other, indicating that this decrease
in computation cost is attained without affecting the accuracy of the solution.

Test 3: Laminar Sudden Expansion of an Oblique Flow Field in &
Rectangular Cavity

The physical situation under consideration along with the flow field are
displayed in Figure 7a. The flow is assumed to be steady, laminar, and two-dimen-
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Figure 4. Values of ¢ along the vertical centerline of the domain for the pure convection of a scalar
discontinuity problem.

sional. The problem is solved using the MUSCL and MINMOD schemes in their
AVHR and VHR forms for a value of Reynolds number (Re = pVL /u, L being
the cavity height or width and V' the reference velocity) of 500. As in the previous
test problem, two uniform grid systems of sizes 22 X 22 and 42 X 42 are used.
The time required to solve the problem by both schemes is depicted in Figure
7b. For the 22 X 22 grid the use of the adaptive approach reduces the cost by
47.63% for the MUSCL scheme and by 57.90% for the MINMOD scheme, with an
average savings in computation power of 53.05%. These values are 40.11% and
32.25%, respectively, for the 42 X 42 grid, with an average savings of 36.5%. The
accuracy of the solution of the adaptive scheme is checked through the U velocity
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{a}

Figure 5. {(a) Physical domain and
streamlines for the driven flow in a skew
cavity problem {Re = 500). (b) Time
comparison for the driven flow in a skew
(9] cavity problem.

profiles along the vertical centerline of the domain presented in Figure 8 for both
grid layouts. These values are also compared against the solution generated by the
SMART scheme using a very dense grid of size 242 x 242. For both schemes and
on both grids, the AVHR and VHR solutions coincide, verifying that this reduction
in computation cost is accomplished without touching the accuracy of the solution.

Test 4: Turbulent Sudden Expansion of an Oblique Flow Field in a
Rectangular Cavity

The physical domain for this problem, illustrated schematically in Figure 94,
is the same as that in Test 3; however, the working fluid is assumed to enter the
domain with a high velocity, resulting in a fully turbulent flow field. Without going
into details, the two-equation k-e turbulence model [24] is invoked in the flow
solver to evaluate the turbulent viscosity and Reynolds stresses, and the law of the
wall is used at the walls. The time-averaged equations governing the flow field are
solved using the SMART and EXPONENTIAL schemes in their AVHR and VHR
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Figure 6. Comparison of the U velocity profiles along the vertical centerline of the domain for the
driven flow in a skew cavity problem.

forms for a value of Reynolds number (Re = pVL /pu, L being the cavity height or
width and V the reference velocity) of 50,000. Three uniform grid systems of sizes
22 X 22,42 x 42, and 62 X 62 are used.

The computation time needed to solve the problem by both schemes is
depicted in Figure 9b. Important reduction in cost is realized on all grids with the
AVHR schemes. For the SMART scheme, savings vary with the increase in grid
size from 33.6% up to 66.78% and then down to 52.03%. For the EXPONENTIAL
scheme these values are 19.86%, 46.59%, and 37.27%, respectively. The average
savings vary with the increase in grid size from 27.32% up to 56.79% and then
down to 44.73%. Therefore, for all grid sizes tested in this work, the adaptive
schemes appreciably reduce the computation time required to solve the turbulent
flow problem. The accuracy of the solution of the adaptive schemes is checked by
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Figure 6. Comparison of the U velocity profiles along the vertical centerline of the domain for the
driven flow in a skew cavity problem (Continued).

presenting, for all grid sizes, the U velocity profiles along the vertical centerline of
the domain (Figure 10) in addition to the solution generated by the SMART
scheme using a very dense grid of size 242 X 242.,In all cases, the AVHR and
VHR solutions fall on top of each other, verifying once more that this reduction in
computation cost is accomplished without deteriorating the accuracy of the solu-
tion. Finally, the overall reduction in cost, defined as the difference between the
total time needed to solve all problems presented using the VHR schemes and the
AVHR schemes divided by the time needed by the VHR schemes, is found to be
48.74%.

CLOSING REMARKS

A new family of adaptive very high resolution schemes was developed. This
was done by adaptively combining the family of high resolution schemes with the
family of skew very high resolution (VHR) schemes via a new adaptive switching
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Figure 7. (o) Physical domain and streamlines for laminar
sudden expansion in a rectangular cavity (Re = 500). (b) Time
comparison for laminar sudden expansion in a rectangular
cavity.

criterion. The performance of the new family was compared in terms of accuracy
and computation cost against that of the VHR base family of schemes by solving
four problems. For the same accuracy, important economies were achieved with
the new family for all cases tested. The overall savings in computation time was
found to be 48.74%.
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