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NEW BOUNDED SKEW CENTRAL DIFFERENCE
SCHEME, PART I: FORMULATION AND TESTING

F. Moukalled and M. Darwish
American University of Beinu, Faculty of Engineering & Architecture,
Mechanical Engineering Department, P.O. Box 11-0236, Beirut, Lebanon

The skew central difference scheme is combined with the normalized variable formulation to
yield a new bounded skew central difference scheme. The newly developed scheme is tested
and compared with the upwind scheme, the bounded skew upwind scheme, and the
high-resolution SMART scheme by solving four problems: (I) pure convection of a step
profile in an oblique velocity field; (2) sudden expansion of an oblique flow fleld in a
rectangular cavity; (3) driven flow in a skew cavity; and (4) gradual expansion in an
axisymmetric, nonorthogonal channel. Results generated reveal the new scheme to be
bounded and to be the most accurate among those investigated.

INTRODUCTION

When solving numerical transfer phenomena problems, one of the main
sources of error in calculating the convective flux is numerical diffusion in both the
cross-stream and streamwise directions. Cross-stream diffusion occurs in a multidi-
mensional flow [1-3] when gradients in a convected quantity exist perpendicular to
the flow and the direction of flow is cblique to the grid lines. Streamwise diffusion
takes place when gradients in a convected quantity exist parallel to the flow [4],
even in one-dimensional situations. Over the last decade, researchers have tried to
suppress this error by either reducing streamwise diffusion through the use of
higher-order schemes [5-7] or by decreasing cross-stream diffusion by employing
skew upwind schemes [8—11]. Both approaches are more accurate than the highly
diffusive first-order upwind scheme, but they suffer from a lack of boundedness;
i.e., they tend to give rise to nonphysical oscillations that induce large errors,
known as numerical dispersion [12].

To suppress numerical dispersion, a variety of procedures have also been
reported. These procedures can be divided into two major categories, known as the
flux-blending technique and the flux-limiter approach. Methods based on the
blending strategy may alsc be decomposed into two classes. In the first class, a
limiting antidiffusive flux is added to a first-order upwind scheme [13] in such a way
that the resulting scheme is capable of resolving sharp gradients without undue
under- or overshoots. In the second class, however, an opposite route is followed,
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NOMENCLATURE
a coefficient in finite-difference equation a, 8,y metric quantities
b source term in the discretized equation T diffusion coefficient
B volume integral of Q' n transformed coordinate
C convective flux coefficient v kinematic viscosity
e east face of a control volume ¢ transformed coordinate
E east neighbor of the P grid point P density
§i@) functional relationship ¢ dependent variable
G,,G; convective terms normal to grid
cell boundaries
J Jacobian; total scalar flux across Subscripts
cell face ‘
n north face of a control volume C,D central and downstream grid points
N north neighbor of the P grid point dc deferred correction
P thermodynamic pressure E refers to east grid point
P dimensionless pressure; main grid point ¢ refers to east control-volume face
Q source term in the transport equation f refers to any of the control-volume
s south face of a control volume faces
5 south neighbor of the P grid point N refers to north grid point
u,U dimensional and dimensionless nb refers to neighbors
x velocities P refers to main grid point
v,V dimensional and dimensiontess S refers to south grid point
y velocities ) upstream grid point
w west face of a control volume w refers to West grid peint
W west neighbor of the P grid point
x X dimensional and dimensionless Superscripts
coordinates along the horizontal
direction — refers to normalized variable
»Y dimensional and dimensionless o convection contribution
coordiantes along the vertical D diffusion contribution
direction U upwind formulation

where, starting with an unbounded higher-order scheme, some kind of smoothing
diffusive agency is introduced into the scheme so as to damp oscillations [14-16]).
In general, because of their multistep nature and the difficulty in balancing the two
fluxes, accurate flux-blending techniques tend to be very expensive computation-
ally. A cheaper way to remove nonphysical oscillation is to use the flux-limiter
approach. This technique is based on modifying the numerical flux at the interface
of the computational cell by the use of a flux limiter that enforces a monotonicity
(boundedness) criterion, Higher-order schemes bounded by this approach are
usually denoted by high-resolution schemes. The family of “shock-capturing”
schemes based on the total variational diminishing flux limiters (TVD) [17], widely
used in compressible flow simulations, are well-known examples of this technique.
A more recent formulation for high-resolution flux limiters has been developed by
Leonard based on the normalized variable formulation (NVF) [18].

A literature survey reveals that most unbounded higher-order schemes have
been bounded through the use of one or more of the above methods [18-21). On
the other hand, only a few workers have implemented bounded streamline schemes.
The unbounded skew upwind difference and the skew upwind weighted-difference
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schemes were initially developed by Raithby {9). Sharif and Busnaina [22] bounded
the skew upwind difference scheme (SUDS) and the second-order upwind differ-
ence scheme (SOUDS) using the flux-corrected transport (FCT) method developed
by Boris and Book [23] and the filtering remedy and methodology (FRAM)
proposed by Chapman [14]. Sharif [11] have also used the FCT method to bound
the directional transportive upwind differencing scheme (DTUDS). These bound-
ing techniques follow the flux-blending approach and are thus expensive. More
recently, Darwish and Moukalled [24] advertised a new approach to bound skew
schemes and applied it to the skew upwind scheme. The resulting NVF SUDS [24]
was applied to purely convective problems in Cartesian coordinates, and its
performance was found to be impressive. However, for problems in which the
variations in the source term are important, as in buoyancy-driven and suddenly
expanding flows, the performance of the first-order skew upwind scheme degrades
[3]. This degradation in performance is due to the importance of streamwise
diffusion, which cannot be resolved by a first-order interpolation profile. To reduce
both components of diffusion, a streamline-based scheme of higher order should
be used.

To this end, a similar approach to that in [24] is adopted in this work to
bound the skew central difference scheme. This is done by combining the skew
central difference scheme (SCDS) with the NVF bounding approach to yield a
composite skew high-resolution scheme (NVF SCDS) with a light increase in
computational cost in comparison with the unbounded SCDS. By going into a
higher-order skew scheme, both streamwise and cross-stream diffusion are re-
duced. Therefore, the resultant scheme should be capable of accurately resolving
source-dominated flow problems. Moreover, the applicability of the new approach
is extended to flow problems in general planar and axisymmetric curvilinear
coordinates. Furthermore, the performance of the newly developed scheme is
tested and compared with the upwind scheme, the NVF SUDS, and the high-reso-
lution SMART scheme by solving four problems: (1) pure convection of a step
profile in an oblique velocity field; (2) sudden expansion of an oblique flow field in
a rectangular cavity; (3) driven flow in a skew cavity; and (4) gradual expansion in
an axisymmetric, nonorthogonal channel. Results generated reveal the new scheme
to be bounded and to be the most accurate.

NUMERICAL DISCRETIZATION OF THE TRANSPORT
EQUATIONS

The conservation equations governing two-dimensional, incompressible
steady-flow problems may be expressed in the following general form:

i Up-T Al + o Ve —-T A (6))
x|\ PU-Tox) * oyl PVe-Toyp) =2
where ¢ is any dependent variable; U and V are the X and Y components of the
velocity vector; p is the density; and I and (9, specific to a particular meaning of
¢, are the diffusivity and source term, respectively. Since the new scheme is tested
in nonconventional geometry, a general curvilinear boundary-fitted coordinate
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system is used. In this coordinate system, Eq. (1) is given by

d r a¢- T{ o¢
2oo- T2 -a )]s 2[ucs- T2 a2 - o
where
I S I [ R e
a=|—| +|— B=
n n
_ax2 Y \?
y_(a_]+[t9_] (3)
G—UﬁY ax G. X aY dX dY 9X dY @
U T e TV TV T w w Tm w

Integrating the above equation over the control volume shown in Figure 1a and
applying the divergence theorem, the following discretized equation is obtained:

J

e

- J

w

+J, -] =B €))

whegre J; represents the total flux of ¢ across cell face f(f=e,w,n,ors),and B
is the volume integral of the source term Q. Each of the surface fluxes J; contains
a convective contribution, J£, and a diffusive contribution, J7, hence
= JC D
Je=Jf +J} (6

Along the east face of a contro] volume, these fluxes are given by

r J d
r-[i)f-0%
Jec = (PG1)¢e (8)

The diffusive flux is discretized using a second-order central difference
scheme. Along the east face, the discretized form of the diffusive flux is

_(Ta B\ éng — bsg + On — &5
P - [—J—]c(¢p—¢ﬁ)+ [T :

9

The fluxes along the west, north, and south faces are found in a similar manner.
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The convective flux across face f can be written as
Jf =Crd, 10)

where C; is the convective flux coefficient at cell face f (pG ;). As can be seen
from Eq. (10), the accuracy of the control-volume solution for the convective scalar
flux depends on the proper estimation of the face value ¢, as a function of the
neighboring ¢ nodes values. Using some assumed interpolation profile, ¢, can be
explicitly formulated in terms of its node values by a functional relationship of the
form

by = F(bu) (1)

where ¢, denotes the neighboring node ¢ values (g, dw, dn, @5, Pues
Srws Pses Psws - - ). After substituting Eq. (11) into Eq. (10) for each cell face and
using the resulting equation along with Eq. (9), Eq. (5) is transformed after some
algebraic manipulations into the following discretized equation:

apdp = 3 (ay,dy) + bp (12)
nb

where the coefficients a, and a,, depend on the selected scheme and by is the
source term of the discretized equation.

Since the functional relationship can involve a large number of neighboring
grid points, especially when using higher-order or streamline-based schemes, the
solution of Eq. (12) can become very expensive computationally, hence the use of a
compacting procedure is most welcome. In the present work the deferred correc-
tion procedure of Rubin and Khosla [25] is used. In this procedure, Eq. (5) is
rewritten as

JU—JU +Ju v

=B+ [CA$Y — ) — C.(d¥ — ¢,) + C,(8Y,) — C (¥ — )] (13)

where ¢;be is the face value, JfU is the total flux of ¢, both calculated using the
first-order upwind scheme; ¢, is the cell face value calculated using the chosen
streamline-based or high-resolution scheme; and the underlined 1enns represent
the extra source term due to the deferred correction. Substituting the value of the
cell flux obtained from the functional relationship of the upwind and streamline-
based or high-resolution scheme at hand, the deferred correction results in an
equation similar in form to Eq. (12), but where the coefficient matrix is pentadiago-
nal (for two dimensions) and always diagonally dominant, since it is formed using
the first-order upwind scheme. The discretized equation, Eq. (12), becomes

apdp = L (ay,éy) + by + by (14)
nb
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where now the coefficients a; and a, are obtained from a first-order upwind
discretization, nb = (E, W,S,N), and b, is the extra deferred correction source
term. This compacting procedure is simple to implement and very effective when
using streamline-based or high-resolution schemes.

SKEW CENTRAL DIFFERENCE SCHEME

In the skew central difference scheme, the advected values of ¢ at the
control-volume faces are approximated by considering the direction of the velocity
vector at the cell face and interpolating between the values at the four appropriate
nodes among the nodes surrounding the cell face. The two appropriate
upstream /downstream nodes are selected by going upstream/downstream along
the direction of the velocity vector at the cell face all the way to the line joining the
centers of the adjacent cells as shown in Figure 1a. The local profile for ¢,, for
example, may be obtained as follows:

. =mydp + myds + mydyp + mbye (15)

where m,, m,, m,, and m, are weighing factors for ¢,, ¢s, ¢g, and Pyg,
respectively, and depend on the stream direction and the grid. For the configura-
tion shown in Figure 1a, these weighing factors are given by

dg d,
™72+ d, d, +d,
d, 4,
T4 v d, d, + d,
“ 4 (16)
M= 4, v d, d; + d,
d,  d,
™= 4.vd, d, +d,

where d,, d,, d;, d,, ds, and d are distances defined in Figure la.

NORMALIZED VARIABLE FORMULATION

Normalized Variable

The proposed scheme is bounded on the basis of the normalized variable
formulation proposed by Leonard [18]. Considering the control volume shown in
Figure 1b, defining ¢, ¢p, and ¢ as the upstream (U), downstream (D), and
central (C) nodal values, the normalized value of ¢ is defined as

¢_¢U

— a”n
¢p — by

=
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(b) ©

Figure 1. (a) Typical grid point cluster, control volume, and SCDS interpolation.
() Interpolation points used in calculating ¢;. (c) Convective boundedness
criterion on a normalized variable diagram (NVD).

Note that with this normalization ¢, = 1 and ¢y, = 0. The normalized value of ¢
at a control-volume face is denoted by ¢,. The use of the normalized variable
simplifies the definition of the functional relationships of high-resolution schemes
and is helpful in defining the conditions that the functional relationships should
satisfy in order to be bounded and numerically stable.

Convective Boundedness Criterion

Based on the normalized variable analysis, Gaskell and Lau [26) formulated a
convection boundedness criterion (CBC) for implicit steady-flow calculation, which
states that for a scheme to have the boundedness property, its functional relation-
ship should be continuous, should be bounded from below by ¢; = ¢, and from
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above by unity, and should pass through the points (0,0) and (1,1), in the
monotonic range (0 < ¢ <1,andforl < d’c or ¢ < 0, the functional relation-
ship f($c) should equal ¢.. The above conditions, illustrated on a normalized
variable diagram (NVD) in Figure 1c, can be formulated as

f(&c) is continuous

f(éc) =0 for ¢c =0

f(q'&C) =1 for ¢ =1 (18)
f(éc) <land f(dc) > de  for0< . <1

f(‘f’c)= be for g < Oor e > 1

NVF SKEW CENTRAL DIFFERENCE SCHEME

After the calculation of ¢, using the skew central difference scheme, the cell
face value is normalized to yield ¢, and the CBC is enforced in the event when it is
not satisfied. It is clear that this modification to the original skew central differ-
ence scheme is not difficult to implement and is not expensive computationally.

CALCULATION OF THE VELOCITY FIELD

So far, the velocity field has been assumed to be known and the methodology
to solve for a scalar variable has been presented. For some of the problems
considered here, the flow field is unknown. Therefore, to obtain the solution, the
continuity and momentum equations should be solved simultaneously. These
equations are usually solved on a staggered grid to eliminate the possibility of
predicting checkerboard pressure and velocity fields. The use of a staggered grid
arrangement with a nonorthogonal curvilinear grid complicates the programming
and implementation of the solution algorithm and results in geometric, and related
mathematical, complexities. It is therefore desirable, in curvilinear coordinates, to
calculate the pressure and velocity components at the same location. However, a
special procedure is needed to eliminate the possibility of predicting unrealistic
fields. A nonstaggered grid is used in this work, and unrealistic fields are elimi-
nated through the use of the pressure-weighted interpolation method of Peric [15].
Moreover, since the pressure is implicitly specified by the continuity constraint, a
pressure correction equation is derived by combining the momentum and continu-
ity equations as in the SIMPLE algorithm [2]. The resulting pressure correction
equation in a two-dimensional nonorthogonal coordinate has a computational
stencil involving five grid points in each coordinate direction and is very expensive
to solve. This has led workers to neglect the nonorthogonal terms to reduce the
computational stencil to involve three grid points in each coordinate direction.
However, when the grid is highly skewed, Peric [27] reported that the simplified
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pressure correction equation does not converge at all or the convergence rate is
too slow, In addition, the range of relaxation factors was seen to become narrower
for the higher skewness of the nonorthogonal grid. In order not to face these
problems, neither here nor in a companion article [28] in which the newly
developed scheme is used to solve a natural-convection problem over a highly skew
grid, the treatment method for the nonorthogonal terms suggested by Cho and
Chung [29] is adopted.

RESULTS AND DISCUSSION

To check the performance of the new scheme against the upwind, NVF
SUDS, and SMART schemes, one purely convective problem and three flow
problems are solved. Results are obtained by covering the physical domains with
uniform grids. Grid networks are generated using the transfinite interpolation
technique [30]. In all tests, computational results are considered converged when
the residual error (RE), defined as

n
RE = MAlx[
i

apdp — ( E anpbnp + bp + bdc)
NB=E,W,N,§5,EE, WW _NN,§§

] (19)
becomes smaller than 1077,

Test 1: Pure Convection of a Step Profile in an Oblique Velocity Field

Figure 2a shows the well-known benchmark test problem consisting of pure
convection of a transverse step profile imposed at the inflow boundaries of a
square computational domain. A 27 X 27 mesh is used giving Ax = Ay = 1/25.
The angle @ is chosen to be 45°, and [V| = 1. The governing conservation equation
of the problem is

U  a(Ve)
+ =0

X oY 20)

where ¢ is the dependent variable and U and V are the Cartesian components of
the uniform velocity vector V. The computed values of ¢ using upwind, SMART,
NVF SUDS, NVF SCDS, and the exact analytical solution to the problem are
shown, along the vertical centerline of the domain, in Figure 2b. The results
presented are very clear and self-explanatory. The best results obtained are for the
NVF SCDS and NVF SUDS, which are very smooth, very accurate, and
oscillation-free because the CBC criterion is enforced. NVF SCDS performs
marginally better than NVF SUDS in this problem, because ¢ is constant in the
streamline direction. The results generated by the upwind scheme are highly
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Figure 2. (a) Physical domain for pure convection of a scalar
discontinuity. (b)) ¢ values along the vertical centerline of the
domain,

diffusive, as revealed by the smeared profile. The SMART scheme results are much
better than those generated by the upwind scheme but of a quality lower than
those obtained with the skew schemes, because of the high importance of cross-
stream diffusion. The SCDS solution, not presented, did not converge and showed
oscillations. These oscillations are the result of the SCDS not satisfying the CBC.
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Test 2: Sudden Expansion of an Oblique Flow Field in a Rectangular
Cavity

The physical situation under consideration is depicted in Figure 3a. The flow
is assumed to be steady, laminar, and two-dimensional. The nondimensional mass
and momentum equations governing the flow field are

u + ad 1n
9X 3y
U U VaU P N 1 {0 N U @
X ey T Tax Trelaxz T av?
U v v Vv P 1 {3V 4% 23)
£). ¢ Y Y Relox? oaY?
where the following dimensionless variables have been defined:
x y u v p
X=- Y=— U= V= P= 24
L L l’/rcf K’ef pKzf ( )
The boundary conditions used ate
u=1 V =1 at the inlet (25)
v _ v 0 he exi (26)
ﬁ = X = at the exat
U=V=0 elsewhere %))

The problem is solved using the various schemes for a value of Reynolds
number (Re = pV,,L/u, L the cavity height or width and V,; the reference
velocity) of 400. The U- and V-velocity components along the vertical and horizon-
tal centerlines of the domain are presented in Figures 3b and 4a, respectively. In
these figures, the profiles obtained using the SMART scheme with a dense grid of
size 42 X 42 are compared against the respective profiles generated by the SMART
scheme, upwind scheme, NVF SUDS, and NVF SCDS employing 22 x 22 grid
points and the upwind scheme using a 62 X 62 grid network. The results in both
figures are similar and show the NVF SCDS solution on a coarse grid (22 X 22) to
agree very well with the fine-grid SMART solution. The performance of the
upwind scheme is very bad, even with the very dense grid. Therefore, for problems
in which the flow is highly skew with respect to the grid lines, the upwind scheme
should not be used if the size of the grid is to remain reasonable. Because of the
importance of cross-stream diffusion, the SMART scheme (a third-order interpola-
tion profile) with 22 x 22 grid points cannot compete with the skew schemes (first-
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UgrsV =0

Q15L

0=A={1

04 P NVESUDS 22%22 1

0.0

®)

Figure 3. (a) Physical domain, streamlines, boundary conditions, and dimen-
sions for the sudden expansion of an oblique flow field in a rectangular cavity
(Re = 400). (b) U-velocity profiles along the vertical centerline of the domain
using various schemes.

and second-order interpolation profiles). The NVF SCDS results are better than
those generated by the NVF SUDS, but the difference is not very large because of
the importance, as mentioned above, of cross-stream diffusion, which is easily
resolved by both skew schemes. In Figure 4b, the solutions generated by SMART
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using dense grids of sizes 42 X 42 and 62 X 62 are compared against the NVF
SCDS results generated on a 42 X 42 grid. This comparison is made in order to
test the grid dependency of the NVF SCDS solution. Again, the results generated
by the new skew scheme are better than those generated by SMART using a much
denser grid. Moreover, it is easily seen that the profile predicted with the SMART
scheme on the denser grid approaches the one predicted by NVF SCDS and is
expected to fall on top of it if the grid size is increased further.

This problem has clearly demonstrated the importance of resolving cross-
stream diffusion and has shown that first- or second-order skew interpolation
profiles are by far better than a third-order interpolation profile when the flow
field is skew with respect to the grid lines. The next problem will show the virtues
of NVF SCDS over NVF SUDS.

Test 3: Driven Flow in a Skew Cavity

A schematic of the physical situation is given in Figure 5. The governing
equations of the problem are the same as for the previous one [Eqs. (21)-(23)].
However, the dimensionless parameters are defined as

x y u v p
= == =— V=— PpP=
X L Y L v u, u, pu? 28)
and the applicable boundary conditions are
U=1 V=20 atY=1 (29)
U=V=0 elsewhere (30)

Results are presented for two values of Reynolds number (Re = pu,L/u, L the
cavity height or width and u, the velocity of the top horizontal wall) of 100 and S00.
The side walls are skewed at an angle of 45°. The problem is solved using the
various schemes and a number of grid sizes. The streamlines for Re = 100 and 500
are depicted in Figures 5a and 5b, respectively. In Figure 5c the results obtained
with NVF SCDS and NVF SUDS using a mesh consisting of 22 X 22 grid points
are compared, for Re = 500, against the most accurate results generated by
SMART employing a 62 X 62 grid network. (Results obtained with 42 x 42 grid
points are as accurate as those generated with the 62 X 62 grid, but the latter are
included in order to eliminate any doubts about accuracy.) As shown, the U profile
at X = 0.85 computed by NVF SCDS is very close to the one predicted by
SMART. The NVF SUDS profile, however, is of much lower quality and justifies
the need to go to streamline-based schemes of higher order when solving problems
in which variations in the source term are important.

Comparison of the U-velocity profile at X = 0.85 generated by NVF SCDS
against profiles predicted by SMART and the upwind scheme are depicted in
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Figure 4. {a) V-velocity profiles along the horizontal centerline of the
domain using various schemes; (b) U-velocity profiles along the vertical
centerline of the domain using dense grids (test 2, Re = 400).

Figures 6a and 65 for Re = 100 and Re = 500, respectively. At Re = 100 (Figure
6a), the profiles are very close, with the one obtained by the NVF SCDS being the
closest to that obtained using a denser grid. On the other hand, the profiles for
Re = 500 (Figure 6b) are very different and show the NVF SCDS solution on a
coarse grid (22 X 22) agreeing very well with the fine-grid SMART solution. The
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Figure 5. Streamlines for driven flow in a skew cavity: {@) Re = 100; (b) Re = 500. (c)
Comparison of U-velocity profiles at X = 0.85 for driven flow in a skew cavity using NVF
SCDS, NVF SUDS, and SMART at Re = 500.

result is even better than the profile obtained by the upwind scheme when using a
much denser grid of size 62 X 62. This outstanding performance of the NVF SCDS
is due to its ability to handle both sources of numerica! errors arising from the flow
skewness and from the important variations in the pressure source term. While the
performance of SMART is not greatly affected by the variations of the source
because of its high-order interpolation profile, the skewness of the flow degrades
its accuracy to a certain degree when the number of grid points is relatively low.
The high diffusivity of the upwind scheme is obviously due to its inability to deal
with both sources of errors. In conclusion, the previous test problems have clearly
demonstrated that for a scheme to be highly accurate, it should be streamline-based
and of high-order interpolation profile.
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Figure 6. U-velocity profiles at X = 0.85 for a driven flow in a skew cavity using
various schemes and grid densities: (a) Re = 100; () Re = 500.
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Test 4: Gradual Expansion in an Axisymmetric, Nonorthogonal
Channel

The last problem presented deals with a gradual expansion of a fluid in a
nonorthogonal, axisymmetric geometry. A schematic of the physical situation, the
computed flow field, the channel’s dimensions, and the equation used to generate
the channel’s surface are depicted in Figure 7. The conservation of mass and
momentum equations governing the flow field are given by

s Zmn=o 3D
ax TR IR -
6(U2)+1 a(RUV) 6P+ 1 a {olU N 11 4 R&U
% R oR " 9X  Re ax|oX) Re R oR\|" 4R
(32)
a V) 1 ¢ (RV? apP + 1 9 (éV 1 1 ¢ aVv
X TRIR ~ @R  Re aX\3Xx) Re R aR\" 4R
LY (33)
" Re R?
where the following dimensionless variables have been used:
u v r x p
U= — V=— R=- X=—= P=— (34)
Uin U;n ri r; pu;,
The boundary conditions employed are
U=1 V = 0 at the inlet (35)
U=V=0 along walls (36)
v _ ¥ t the exit 37
X X at the exi

The problem is solved for a Reynolds number (Re = pu, r,/u, where r;, = 1)
of 100. The length L of the pipe (= Re/3) is long enough to apply the outflow
boundary condition safely. The U-velocity profiles at X = 5 and X = 20, generated

2+Tanh{2)-Tank(2-30X/Re)
(Re/3.Y(Ref3))

Y
x 2
‘°‘£f

0.0) (Ra3,0)

Figore 7. Physical domain and streamlines for gradual expan-
sion in a nonorthogonal, axisymmetric geometry.
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using the various schemes and grid densities, are displayed in Figures 8a and 8b,
respectively. As shown, the performance of NVF SCDS (a multidimensional
second-order scheme) is comparable (slightly better) to that of SMART (a one-di-
mensional third-order scheme). Both schemes perform, with 22 X 22 grid points,
better than the upwind scheme when using 62 X 62 grid points. This slight

125 I
1.00 i -
! SMART 22x22 ]
0.75 - -
[ X=S J
v ]
P 1
850 |- UPWIND 62x62 y
[ UPWIND 22x22 ]
025 -4
i SMART 42142 1
NVF SCDS 22222
0.00 PTG ST U DN SH S S G (S GG R S S U ]
0.00 0.25 0.50 u .75 1.00 1.2%
(a)

T — r T T T

aa Ll

NVF SCDS 22222 |
SMART22x22 |
SMART 42542

08 [- -
UPWIND 62x62
UPWIND 22x22 ]
0.0 i PR T 1 " i " L L " n 1
0.00 0.2% U 0.50 0.75

(&)

Figure 8. U-velocity profiles for gradual expansion in a nonorthogonal,
axisymmetric geometry using various schemes and grid densities: (@)
X =5 (b) X =20.
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difference in results between SMART and NVF SCDS is due to the unimportance
of cross-stream diffusion and the alignment, more or less, of the flow with the grid
lines. This behavior is anticipated, and the problem is deliberately chosen to
demonstrate clearly that when streamwise diffusion is dominant and the skewness
of the flow with respect to the grid lines is low, the third-order SMART scheme
should perform better than the second-order skew scheme (NVF SCDS).

CONCLUDING REMARKS

A new, bounded, skew central difference scheme was presented. The newly
developed high-resolution convective scheme was formulated by combining the
skew central difference scheme with the NVF bounding technique. By comparing
the performance of the new scheme against the upwind scheme, the NVF SUDS,
and the third-order SMART scheme, it can be safely stated that the best perfor-
mance can always be obtained with high-order skew schemes. For recirculating
flow problems (tests 2 and 3), the performance of the second-order skew scheme is
much better than that of the SMART scheme. This conclusion will be exploited in
a companion article [28] to study natural-convection heat transfer in an eccentric
annulus. Therefore, the development of higher-order skew schemes is highly
desirable. One issue that should be investigated further is the implementation of
such schemes in three-dimensional spaces.
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