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ABSTRACT ARTICLE HISTORY

The paper deals with the formulation of a variety of boundary conditions for Received 8 September 2015
incompressible and compressible flows in the context of the segregated Accepted 24 November 2015
pressure-based unstructured finite volume method. The focus is on the

derivation and the implementation of these boundary conditions and their

relation to the various physical boundaries and geometric constraints. While

a variety of boundary conditions apply at any of the physical boundaries

(inlets, outlets, and walls), geometric constraints define the type of boundary

condition to be used. The emphasis is on relating the mathematical

derivation of the boundary conditions to the algebraic equations defined at

each centroid of the boundary elements and their coefficients. All derived

boundary conditions are validated through a set of test cases with

comparison of computed results to available numerical and/or experimental

data.

Introduction

The Finite Volume Method (FVM) is the most popular numerical technique in Computational Fluid
Dynamics (CFD). This is not surprising since both the FVM and the velocity-pressure coupling
algorithms at the core of the CFD solution algorithms, and exemplified by the SIMPLE algorithm
[1, 2], originated within the same CFD group at the Imperial College [3]. Nowadays, the SIMPLE
algorithm and its variants [4-13] are being successfully used to solve a wide spectrum of flow
problems ranging from incompressible low speed flows [1-3, 14-18] to compressible hypersonic
flows [19-24], single [25-28] and multiphase flows [29-35], laminar [25-28] and turbulent flows
[36-41], free-surface flows [42, 43], and particle laden flows, to cite a few.

Furthermore, many of the issues encountered in the discretization of the conservation equations
governing fluid flow and transport phenomena problems have been well documented in numerous
papers [19, 22, 24] and books [2, 44]. Information on boundary conditions in general and details
on their implementation in particular have not received comparable scrutiny, and except for a few
papers and books [2, 44-49], they have only been reported in very general terms, this in spite of the
critical role they play in ensuring the accuracy, correctness, and robustness of the numerical solutions.

It is the purpose of this article to present a detailed and comprehensive review of boundary con-
ditions as applied to pressure based segregated finite volume solvers for the solution of incompressible
and compressible flow problems. This is done using a unified and consistent notation and details
down to the form of the boundary element coefficients.

To set the ground for the derivations, the discretized forms of the continuity, momentum, and
energy equations governing incompressible and compressible flows are first presented. This is
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Nomenclature

af, ay,  coefficients in discretized momentum equations Vv cell volume

¢ o e .
al, ap coefficients in discretized equations

o F . quati Greek Symbols
b(. source term in the discretized momentum b eneral variable

equation &

0 . . . . o, normal stress

be source term in the discretized equations d RN
. u ynamic viscosity
¢ specific heat at constant pressure : :
. y ratio of specific heats

Co variable equal to 1/RT fluid densi
dc tor joining the grid points C and F P uid density
dCF vector) 4 ?d gnd p T deviatoric stress tensor

CF magnitude of dcy ¥, @  dissipation terms in energy equation
D tensor operator
D scalar defined by Eq. (17) Subscripts
e unit vector b refers to boundary
E Distance vector in the direction of d¢g C refers to main grid point
E magnitude of E f refers to control volume face
fb bOdy force per unit volume F refers to the F grid point
E, force exerted by wall on fluid nb refers to values at the faces obtained by
I identity matrix interpolation between C and its neighbors
k thermal conductivity NB refers to the neighbors of the C grid point
[4 chord length wall  refers to wall
M Mach number x,y,z  refer to x,y, and z component, respectively
1 mass flow rate 0 refers to stagnation condition
p pressure Il component of a vector parallel to a surface
P' pressure correction 1 component of a vector normal to a surface
qv heat generation per unit volume
R gas constant Superscripts
S surface vector p refers to pressure
S magnitude of S T refers to temperature
¢ time T refers to the transpose of a vector
T temperature u, v, w refers to the u, v, and w-velocity component,
T vector equal to S—E respectively
u, v, w velocity components in x, y, and z direction, " refers to value at the previous iteration

respectively — refers to an interpolated value
v velocity vector * refers to an updated value during an iteration
refers to an old time value

followed by a thorough review of frequently used boundary conditions with complete details on the
related discretization and implementation issues. Finally, a set of test problems involving many of the
cited boundary conditions are used as validation tests.

The governing equations

The mass, momentum, and energy equations governing fluid flow and heat transfer problems are
written as

op
il . = 1
o TV (pv) =0, (1)
0
3 PV V- {pwh = —Vp + [V 1 + £, (2)
0 Dc, Dp 2 )
o (pepT) + V- [pepvT] = V - [kVT] + pTD_:+Ft - gu‘l‘ + u® + gv, (3)

where v, p, T, p, fi,, ¢, k, W, and gy represent the velocity vector, pressure, temperature, density, body
force per unit volume, specific heat at constant pressure, thermal conductivity, dynamic viscosity, and
heat generation per unit volume, respectively. In addition, Tt is the deviatoric stress tensor, which, for a
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Newtonian fluid is given by

T= u{Vv + (VV)T} - %u(v -v)L. (4)

For compressible flow, an equation of state relating density to temperature and pressure is
required. For an ideal gas this equation is written as

_r
P =27 (5)

where R is the gas constant.

The discretized equations

In the FVM the discretization process starts by integrating the governing equations over the cells
into which the domain has been subdivided (Figure 1) and with the divergence theorem, the volume
integrals of the convection and diffusion terms are transformed into surface integrals. The resulting
surface integrals and the volume integrals of the transient and other source terms are expressed in
terms of the discrete volumes of the respective elements. In a second step, numerical integration is
performed producing a set of semi-discretized equations that represent surface and volume fluxes.
Finally, linearizing these fluxes and expressing them in terms of the unknowns defined at element
centroids yields a set of algebraic equations that represents the numerical equivalent of the original
conservation equations. Details on this procedure can be found in the literature [2, 19, 22, 24, 44].
In this work, this represents the starting point of the derivations. A summary of these equations
is presented next with their forms obtained using an upwind scheme for the discretization of the
convection term and an implicit backward Euler scheme for the transient term.

The discretized momentum equation

Designating the value of the dependent variable at the centroid of an element and at an
element face with subscript C and f, respectively, the discretized momentum equation using vector

Figure 1. An example of a boundary element.
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notation is written as

atve+ Y apve = by (6)
F=NB(C)

with the coefficients calculated using the following expressions:

at =L S o+ Y e

f=nb(C) f=nb(C)
. Ef
ay = —||—, 0] — py=—
E =l Ol — -
oV,
by, = "CA vt (E)eVe+ S (ne(Vv)-Tr)+ (7)
t
f=nb(C)
D we(VV)ESe = (Vp)Ve = (2/3) Y (WV - )8
fEnb(C) FEnblC)

compressible contribution

The mass flow rate at a cell face is defined as

g = peve - St (8)

with the interface velocity calculated using the Rhie-Chow interpolation technique [38] as

vi = Vi — D} (Vpr — Vpy) )

In Eq. (9), the bar indicates a value obtained by interpolation. Moreover, D} can be written

simply as
— Ve
7= () "

Also, S¢is the surface vector, dcg is the magnitude of the vector dcr joining C and F, and E is the
magnitude of the vector Eg, which is related to S¢ and Ty via the following equation:

S =Ee+ Ts (11)

where Eg is set in the direction of d s [47, 50-52].

The discretized continuity equation

In the segregated pressure-based SIMPLE algorithm adopted here, the continuity equation is not
solved directly. Rather, a pressure correction variable (p) is defined and the semi-discretized form
of the continuity equation is transformed into a pressure correction equation by combining it with
the algebraic form of the momentum equation [19, 22, 24]. The final algebraic form of this equation
is written as

dpe+ S dlph =10 (12)

F=NB(C)
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with its coefficients given by

/

a}; :_pFIDf_ H_m;fa

compressible contribution
VG C o .
o - c:Atrx,c:Jr Z ( p*,f||mf,o|[)+ Z pi Dy
f=nbic) N Pt FEnb(c) (13)

compressible contribution

' pc— P
bt = - (CTCC+Z’W
——— (©)

compressible contribution

where superscript * refers to values obtained from solving the momentum equation during the same
iteration and superscript ° refers to old values, i.e., values from the previous time step. For an ideal gas
the term C, is computed as

1

Cp:ﬁ

(14)

Moreover, by neglecting the non-orthogonal contribution of (DfVp';) - S, Dy is calculated such
that

(DYVP's) - Ee = De(ps — ') (15)

The discretized energy equation

The discretization of the energy equation leads to the following algebraic relation:

alTc + Z al Ty = bl (16)
F=NB(C

with the expressions for the coefficients given by

E
al = —ke—— — || —rie, 0l| (cp),
dcr
al=az > al + Z ring(cp) + || a0
F=NB(C) f=nb(C
Cpele)Ve . p&(c;) Ve De
et MOS0

b = Z (ke(VT)g - Tg) +agTe + TcHag’,OH-i-

f=nb(C)
Dp 2 .
[(50), #re(-3weac) + oo

where k is the fluid thermal conductivity, and (D/Dt) is the material derivative.
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Boundary conditions

It is important to differentiate between physical conditions, geometric constraints, and boundary

conditions at a domain boundary. An “Inlet”, an “Outlet”, or a “Wall” represents a physical

condition, while “Symmetry” and “Periodicity” represent geometric constraints. A boundary
condition refers to the set of equations used along a domain boundary to obtain a specific solution
to the problem. For a given physical condition, the boundary condition depends on the equation
solved and its known variables, with several options possible. For example on a physical “Wall”, the
boundary condition for the momentum equation could be a slip or a no-slip condition, while for
the energy equation it could be a specified flux, an imposed temperature, or a convection heat
transfer condition. A variety of boundary conditions will also apply to other physical conditions;
at an “Inlet”, it is possible to enforce a specified pressure and velocity direction, or to describe
the velocity components without assigning any value for the pressure. On the other hand, one
boundary condition describes a geometric condition, usually imposed with the intention of reduc-
ing the size of the computational domain. For example, the only boundary condition applicable
along a symmetry line is a zero normal flux.

Generally, the boundary conditions used are a part of one of the following three basic categories:

1. a Dirichlet condition, where the unknown variable is defined at the boundary;

2. avon Neumann condition, where the flux expressed in the conservation equation is defined at the
boundary face;

3. a Robin-type condition, where the unknown variable and flux at the boundary are expressed via a
constitutive relation.

Boundary conditions apply to boundary elements, which are elements that have at least one

boundary face (Figure 1).

For the pressure correction equation, which plays a central role in solving flow problems via the

Navier-Stokes equations, these categories are expressed as follows:

1. a von Neumann like boundary condition whereby 1, is specified (e.g., walls) with no need to
modify the p" equation. The boundary pressure however is extrapolated from the interior field;

2. a Dirichlet-like boundary condition whereby a boundary pressure py, is defined. In this case 7, is
written in terms of the nearest element velocity vector and pressure gradient;

3. a Robin-type boundary condition specified via an implicit relation between pressure and velocity
from which an explicit formula is derived and substituted in the pressure correction equation.
Another important issue to consider is related to the way by which the Rhie-Chow interpolation at

a boundary face is handled. Specifically the averaging procedure is modified at boundary faces so that

the boundary face average is written in terms of the element value as

Obs = Oc (18)

where b and C refer to the boundary face and the element centroid, respectively, and to any variable
or expression. Adopting this practice transforms the velocity at a boundary face from the expression
given by Eq. (9) into

v = v - Dy (Vp) — V) (19)

Discretized boundary equations

In the derivation of boundary conditions, it is sometimes more insightful to use the conservation
equations in their semi-discretized form rather than their algebraic form. To this end, the semi-dis-
cretized forms of the momentum, continuity, and energy equations for a boundary element with a
boundary face are expressed as
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o

(pv)c — (pv)

C . .
Ve + meve) +  mpvy = — S, + w-S
At C ' Z (rgve) bVb Ppdb b * b
=interior nb(C) boundary face boundary face ~ boundary face (20)
- > eS)+ >, (w-S)+Bc
f=interior nb(C) f=interior nb(C)
Pc — PC , :
( ¢ C) Ve + Z mys + my =
At L= ~~
—_——— f=interior nb(C) boundary face
compressible contribution (21)
(pc = p2)

Ve + (rinf + rid'¢) + (ring, + 1ir'y) =0
A,_/ :interi;nb(c) ' ﬁbf—‘

compressible contribution boundary face

7). — (pepT);
(pcp )CA (Pep )¢ Ve + Z (rcpT); + (mcpT)b =
t =interior nb(C) S
boundary face
D
> (kVT-8);+ (kVT-S), + pcTc (ﬁ) Vet (22)
=interior nb(C) boundary face ¢

K%)C ; uc(-gwc +q>c) + (qv)c} Ve

where frefers to an interior face, b to a boundary face, superscript * to a value obtained after solving
the momentum equation, and prime to a correction term. Terms evaluated at the boundary face are
written explicitly as they should be modified based on the type of boundary condition used. With an
average quantity at the boundary written in terms of the boundary cell value, combining Eq. (18)
with Egs. (15) and (19) results in the following equations for the boundary mass flow rate and its
correction:

compressible

——~

. kg K * T3V m* s ok

ty, = ppVe - Sp — pyDe (Vp£"> — Vp(c”)) - Sp + <p—f> py, — fiy
b

m*
s * / / b /
'y = —pyDe(py —p'c) + (T) CobP'y
Py
compressible contribution

With these definitions the boundary conditions for incompressible and then compressible flows
can now be presented for the various physical and geometric conditions. For completeness all deriva-
tions will start with Eqs. (20)-(23).

Incompressible flow

The most common types of boundary conditions encountered in solving incompressible flow prob-
lems are presented next.

Physical condition: Wall

At a stationary or a moving wall, a no-slip (Figure 2a) or a slip (Figure 2b) boundary condition is
usually applied. The following paragraphs describe the implementation of both conditions.
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v.=v—(v-e e,

(a)

(b)

Figure 2. (a) Schematics of a no-slip wall boundary condition, (b) schematic of a slip wall boundary condition.

Boundary condition: No-slip wall

This boundary condition is used for viscous flows and indicates that the fluid velocity v, is equal to
the wall velocity v,y (zero for a stationary wall). The pressure at the wall is set to ensure a stagnation
point for the velocity component normal to the wall, while the velocity component parallel to the wall
defines the value of the wall shear stress. This is akin to a shear flux applied to the component of the
momentum equation parallel to the wall and to a Dirichlet condition applied to the normal compo-
nent. For the pressure correction equation, this is similar to a von Neumann condition applied to the
boundary face.

Momentum equation

A common misconception in the application of the no slip condition is to view it as a Dirichlet
boundary condition. While this treatment leads to correct results for Cartesian grids, it does not
do so for general curvilinear grids. As shown in Figure 2a, a correct implementation of this boundary
condition should guarantee that the shear stress 1., (and consequently the force Fy) is tangent to the
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Table 1a. Modified coefficients of the momentum, continuity, and energy equations for a no-slip wall boundary condition.

dac dF—p bc
interior faces contribution = interior faces contribution
+ +
1 u (1 —el)) g 5% [uy (1 - €,) + (ve — vb)erye s + (We — Wb) e1€1] — puS}
2
. v % (1 _ eiy) ubsb [( C— Up)eiely + vb( — eL) + (we — wp) eLZeLy] — poS,
w “g—(1 -é,) 0 “"5" [(uc — up)ersers + (Ve — vp)eryer, +wy (1—€2,)] — poS}
4 p’ 0 0 0
5 T kb d% 0 kb %Tspecified + (kVT)b T
6 T 0 0 qspeaﬂedsb
’ r hocSoks g 0 ook (Eb +(VT) Tb>
(2T, b
h 5b+kbd(b h 5b+kbd deo

wall along with v;, =V, The force F,, can be written as

aVH
od, Sp (24)

where vj is the component of velocity parallel to the wall and d, the normal distance to the wall, both
given by

Fp = TwaSp = —HU

Sp
V| =V— v, vi,=(v-e)e; d =dcp-e; =dcp- (25)

~— Sb

normal component
An approximation for the wall shear stress can be derived from Eq. (24) and is written as
(ve — W) Ve —Vp) — (Ve —Vvp) - € |e
o T o) = (Yo =) elJes )
dL dl

Combining Egs. (26) and (24), the modified coefficients for the boundary elements of the x, y, and
z components of the momentum equation are obtained with their expressions displayed in Table la
(rows 1-3).

Continuity or pressure correction equation

Since at a wall the mass flow rate is zero, the mass flow rate correction is also zero (', = 0), with no
modifications required for the pressure-correction equation. The pressure p,, at the boundary is
obtained by extrapolation as

po=pe+Vpd - doy (27)
The coefficient of the boundary element is modified as displayed in row 4 of Table 1la.

Energy equation

Since at the wall ri, is zero, the term (ric, T)b is zero. The only modification is for the diffusion flux,
which can be specified in three different ways such as using the wall temperature (Dirichlet boundary
condition), the wall heat flux (von Neumann boundary condition), or by defining a heat transfer
coefficient and a surrounding temperature (mixed or Robin-type boundary condition). Details of
these three types are as follows.
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Dirichlet boundary condition

For this type the temperature is specified at the boundary, i.e.

Ty = Tspeciﬁed (28)

The diffusion flux at the wall is computed as

(KVT-S), = (KVT), - (B +Tp) = kde—;(Tb ~ T+ (KVT)y - T (29)

leading to the modified coefficients of the boundary element shown in row 5 of Table la.

Von Neumann boundary condition

For this type, the boundary flux is known, i.e.

Qbsb = %peciﬁedsb = *(kVT : s)b (30)

The modifications to the coefficients of the boundary element are shown in row 6 of Table la.

Mixed (or Robin-type) boundary condition

For this boundary condition a convection heat transfer coefficient (h..) and a surrounding tempera-
ture (T..) are specified. At the wall, the diffusion flux is set equal to the convection flux to give

E
(KVT-8), = ko - (Ty = Tc) + (kVT), - Ty
Cb

(31)
= hoo(Too — Tv)Sp
Using Eq. (31), the wall temperature (T},) is expressed as
hooSyToo + ki 22T — (kVT), - T
g, = ST R Te = (VD), - To (32)
hooSy + ki ﬁ
Substitution of Eq. (32) in Eq. (31), yields the boundary flux as
B Spk 22 hooSy(KVT), - T
(VT -§), = — e gy PSRV, T (33)

B hocsb +kde_cbb ]/looSb"‘kbf_cbb

Then the coefficients of the boundary element are modified as displayed in row 7 of Table 1la.

Boundary condition: Slip wall boundary for inviscid flow

For a slip wall boundary condition the normal velocity component at the wall remains zero. However,
with the shear stress set to zero, the parallel component at the wall is set equal to the parallel
component of the boundary element.
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Momentum equation

In this case, the shear stress at the wall is zero leading to a zero boundary force (Figure 2b). Thus,
dropping the stress term from the momentum equation its coefficients become

v o_ v
ac = ac
~—
interior faces contribution
bt = bt —PbSb
~—

interior faces contribution

Pressure correction and energy equations

The modifications to the continuity and energy equations are exactly the ones presented for the no-
slip case with the boundary pressure computed using Eq. (27).

Physical condition: Inlet

At the inlet to a domain, a number of boundary conditions can be imposed (Figure 3) and the ones
considered here include: (i) specified velocity (Figure 3a); (ii) specified static pressure and velocity
direction (Figure 3b); and (iii) specified total pressure and velocity direction (Figure 3c). For the
energy equation, the temperature is usually specified.

Boundary condition: Specified velocity
Momentum equation

For an incompressible flow, a specified velocity at the inlet (Figure 3a) implies a known mass flux.
Therefore, the boundary force (F,=1,-Sp) and convection flux (#,v,) are calculated using the
known rit, and vy,. Similar to the no-slip boundary condition, the pressure at the boundary is extra-
polated using Eq. (27). The known terms in the equation are evaluated explicitly and added to the
source term with the modified boundary element coefficients given by

bl =bl—aj_,w (35)

v
ag_, =0

men’..b P specified "'\
\

(a) (b) ()

Figure 3. Schematics of (a) specified velocity (b) specified pressure and velocity direction, and (c) specified total pressure and
velocity direction boundary conditions at the inlet.
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Pressure correction equation

Since #n, is known, its correction is zero, ie., iy = 0. Therefore, for a boundary element 7 is
dropped with no modifications required for the coefficients (i.e., aj_, = 0).

Energy equation

For a specified static temperature at inlet, since 1, and v;, are known, the boundary terms (ric, T)b
and (kV T-S)y, are directly computed. As for the momentum equation, known terms in the equation
for the boundary cell are evaluated explicitly and added to the source term with the modified bound-
ary element coefficients given by

T T_ T
be  =bc—apyTh 36
o, (36)
F=b —

Boundary condition: Specified pressure and velocity direction
Momentum equation

For the boundary element, the known value of the inlet pressure py, is used in the calculation of V pg,
which, in turn, is used in computing the velocity vy,. To be able to perform this task, the flow direction
should be known (Figure 3b). Denoting the unit velocity vector by e, and assuming the mass flow rate
has been calculated from the continuity equation as 7, = rity + my, v, is computed as

oy
pb(ev : Sb)

Thus for the momentum equation, the boundary condition is a specified velocity that is iteratively
updated from the continuity equation and the equation of the boundary cell is modified according to
Eq. (35).

iy = Py|[Vollev - Sp = [|vo]| = = Vb = [[volev. (37)

Pressure correction equation

Since py, is known, p'y, is zero (st # 0) and a Dirichlet boundary condition is applied. Thus, the
coefficient of the boundary cell of the p’ equation is modified as

a= > pDi+ pDc (38)
f=interior nb(C) S~

boundary face contribution
Energy equation

For the energy equation, the temperature is usually specified. Therefore, the modifications to the
coefficients of the boundary elements are similar to those given in Eq. (36).

Boundary condition: Specified total pressure and velocity direction
Momentum equation

The relation between total (p,) and static (p) pressure for incompressible flow is given by

1
Po = \‘Ii/ + 2 pv-v . (39)
total pressure static pressure —

dynamic pressure
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The calculation of i, (Figure 3c) requires a special procedure, which will be explained in
connection with the continuity equation. Assuming #1, is known, v, is calculated using Eq. (37)
and the coefficients in the momentum equation are modified according to Eq. (35).

Pressure correction equation

Since py, is unknown, p’;, is not zero and an equation for its calculation should be derived. Using
Eq. (37), Eq. (39) is reorganized into
1 m
Pob =Pb+ 725 (40)
’ 2p (ev . Sb)z
A relation between mass flow rate, pressure, and their corrections at the boundary element can be
developed as

oo PP Py

rimy 1 — g, ity

o

= pp = i, . (41)

Combining Eqs. (41) and (23), a relation between #1, and p’c is obtained as

. Py Dc /
* 14 piDe e Pc (42)

Oriny,

An expression for Opy,/0Oriy, is found by differentiating Eq. (40) with respect to 7, and is
given by

opy 1 my
i LR S L 43
Orin, Pley-Sy)’ (43)

Replacing iy, given by Eq. (42) in Eq. (21), the modified alé for the boundary element becomes

/ *D
al = Z p¢Ds + —Poe (44)
% E
f=interior nb(C) 1+ prC 6’#};
————

boundary face contribution

Energy equation

For this boundary condition, the temperature is usually specified. Therefore, the algebraic equation of
the boundary element is modified according to Eq. (36).

Physical condition: Outlet

The following outlet boundary conditions are considered (Figure 4): (i) a specified static pressure, (ii)
a specified mass flow rate, and (iii) a fully developed flow.

Boundary condition: Specified static pressure
Momentum equation

When the static pressure is known at the outlet (Figure 4a), a fully developed flow is expected and is
enforced by setting the component of the gradient of the velocity vector normal to the outlet to zero.
The outlet velocity is extrapolated from the value at the boundary element centroid by first equating
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Figure 4. Schematics of (a) specified static pressure, and (b) specified mass flow rate boundary conditions at outlet.

the velocity gradient at the boundary to the normal component at cell centroid (to guarantee that the
component normal to the surface is zero) yielding

Vv, = Vve — (Vve - ep)ep (45)
and then computing v}, as
Vb = Ve + Vvy, - dep (46)

With this treatment the modified coefficients become

v A'4 .
ar = a + mb

C C

~—
interior faces contribution ~ boundary face contribution

v —
ap—p =0 (47)

\4 \'4 .
be = be —1ip (Vv - dep) — poSp

~—

interior faces contribution ~ boundary face contribution

Pressure correction equation

Since py, is known, the pressure correction is zero while iz, is not and is calculated from Eq. (23). The
direction of vy, is needed and is usually set equal to vc. The af. coefficient in the p’ equation is modi-
fied as

ac = Z peDs + P, Dc (48)

f=interior nb(C) boundary face contribution

Energy equation

For the energy equation, the gradient of temperature which is normal to the boundary is set to zero.
Thus, the term (kV T'-S),, is zero with the temperature extrapolated from the value at the centroid of
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the boundary element using Eqs. (45) and (46) with v replaced by T. The modified coefficients are
given by

N T
~—~
interior faces contribution  boundary face contribution
T
ap_, =0 (49)
T T :
b- = bC —mbcpﬁb(VTb . dCb)
~—~

interior faces contribution boundary face contribution

Boundary condition: Specified mass flow rate
Momentum equation

A specified uniform mass flow rate (Figure 4b) indicates a known normal velocity component. To be able
to calculate vy, it is assumed to have the same direction as v, i.e., (e,), = (e,)c. Thus, ||vp|| is computed as

1y,
Po(ev)c - Sb

The known v, is used to enforce a specified velocity boundary condition and the coefficients of the
algebraic equation of the boundary elements of the momentum equation are modified according to
Eq. (35).

ol = (50)

Pressure correction equation

Since iy, is specified, 1, does not appear in the p’ equation. Further, Eq. (23) indicates that p, = pc.

Energy equation

For the energy equation, the gradient of temperature normal to the boundary is set to zero. Thus, the
modification to the coefficients of the boundary element follows Eq. (49).

Boundary condition: Fully developed flow

In analyzing fully developed flows, the outlet section should not be located in any recirculation region.
Assuming this condition is satisfied, the modifications to the equations are as described below.

Momentum equation

For the momentum equation, the normal velocity gradient is set to zero and v, is computed using
Egs. (45) and (46). The boundary pressure is extrapolated from the interior of the domain using

Py = pc+ Vpc - dep (51)

Thus the computed vy, is used to enforce a specified velocity boundary condition and the coeffi-
cients of the algebraic equation for the boundary elements are altered according to Eq. (35).

Pressure correction equation

Knowing the velocity v;, allows computing 7, thereby eliminating the need for any mass flow rate
correction. Thus 7 is set to zero and dropped from the equation of the boundary elements. Because
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v}, is not the correct solution at the outlet until convergence is reached, the overall mass conservation
is not satistied. With incompressible flows, overall mass conservation is enforced at any iteration via a
special treatment based on modifying . This is achieved by computing the total mass flow rates
entering > i, and leaving > #itgy which is the domain and modifying the mass flow rate at an
outlet using

Z min
Z mout (52)

Mout = Mout

Energy equation

Again the gradient of temperature normal to the boundary is set to zero. Thus, the coefficients of the
boundary element of the energy equation are modified according to Eq. (49).

Geometric condition: Symmetry

Only one set of equations applies at a symmetry boundary condition. The purpose of its use is to
reduce the size of the computational domain and is applicable along a symmetry plane that subdivides
the physical domain of interest into two parts that mirrors each other when the solution for all
variables is symmetrical. As a symmetry plane reflects scalar variables, a symmetry boundary
condition is imposed by setting the fluxes or the normal gradient of all scalar variables to zero.
For a vector equation (like momentum), it is a little more complicated. The modifications along a
symmetry boundary condition for the momentum, pressure correction, and energy equations of a
boundary element are described next.

Momentum equation

Since no flow crosses a symmetry plane (Figure 5), the velocity component normal to the symmetry
plane is zero while the component parallel to the symmetry plane retains its magnitude and direction.
Mathematically this is written as

V) = 0
AT (53)
on
where v, and v, are as defined in Eq. (25). Therefore, opposite to a no-slip wall boundary condition,
the shear stress is zero while the normal stress is not. Thus, the boundary force is given by

Fb = GLSb >~ —2],J.b (VC)J‘ Sb (54)
di
where o, is the normal stress. Since the pressure gradient normal to the symmetry plane is zero, the
pressure is computed using Eqgs. (45) and (46) with v replaced by p.
The modifications to the coefficients of the boundary elements for the momentum equation in the
x, y and z directions are given in Table 1b (rows 1-3).

Pressure correction equation

Since no flow crosses a symmetry plane, 1 is zero. Thus similar to a wall boundary condition no
modification to the coefficients is required as shown in row 4 of Table 1b.
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Figure 5. Schematic of a symmetry boundary condition.

Energy equation

Similar to pressure, the gradient of the temperature which is normal to the boundary is set to zero.
Thus, the term (kV T-S)y, is zero with the temperature extrapolated from the value at the centroid of
the boundary element using Eqs. (45) and (46) with v replaced by T. Since 1, is zero, the boundary
contribution is dropped (row 5 in Table 1b).

Geometric condition: Periodic boundary condition

The periodic boundary condition schematically depicted in Figure 6 is used to reduce the
computational domain when solutions are periodic in space and is always defined with a pair of
boundary surfaces. The pair of surfaces can be either translated (translational periodicity,
Figure 6a) or rotated (rotational periodicity, Figure 6b). For both types, each face in a boundary
has a corresponding face and neighbor cell on the other boundary, in accordance with the geometric
transformation (i.e., translation or rotation).

With translational periodicity, the same relation governs scalar (pressure, density, etc.) and vector
(velocity, gradients) variables. Since in rotational periodicity the coordinate system is rotated, all vector
quantities have to be transformed accordingly. On the other hand, scalar quantities remain unchanged.

Table 1b. Modified coefficients of the momentum, continuity, and energy equations for a symmetry boundary condition.

dc dr—p bc
~—~
interior faces contribution = interior faces contribution
+ +
2upSp 2 0 201, S,
1 Heel, — 2 [vee |, + weeiz]er — ppSh
2 2055y 2 0 24,5 y
el — 4 [uce x +weeilery — oS,y
3 21,5y 2 0 24, Sy
Brel, — 22 [uce i +veeryler, — oS
4 0 0 0
5 0 0 0
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In terms of implementation, after defining the addressing between faces and cells at both boundary
sides, the discretization process treats the boundary faces as internal. Thus, the flux at the boundary
face is written in the same way as for an internal face, except that the variable on the other side of the
periodic boundary condition should be connected to the first side, through a transformation relation
if needed. For a scalar value, the transformation is simply the identity matrix.

Momentum equation

The discretization of the momentum equation on the boundary face follows exactly the discreti-
zation at an interior face with Eq. (7) defining the coefficients, where now the neighbor cell is
the corresponding cell on the other boundary (Figure 6). Since the momentum equation is a vector
equation, the corresponding velocity vg of the neighbor cell has to be transformed accordingly with
a rotation tensor R. In case of translational periodicity (Figure 6a) the transformation matrix is
given by

R=1I (55)

where I is the 3 x 3 identity matrix.
For rotational periodicity of angle 8 (positive in the clockwise direction, Figure 6b) around an axis
of unit vector a=(a;, a,, as) (Figure 6b), the rotation tensor is given by [53]

A By G
R=1+W?*(1—cos0)+Wsin0= | A, B, G (56)
A; By G

where W is the skew symmetric tensor associated with the axis of rotation expressed as

0 —as a
W = as 0 —a; (57)
—a) ay 0

outer wall

inner wall

axis of rotation
a= (al,az,a3)
(a) (b)

Figure 6. (a) Translational and (b) rotational periodic boundary conditions.
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and with the components of R given by

A =1-— (a§+a§)(1—c036) B; = aja3(1 — cos0) — a3 sin
Ci = a1a3(1 — cos0) + a,sin 0

Ay =ayar(1 —cosB) +azsin® By =1-— (af—i—ag)(l—cos@)
C, = apa3(1 — cos0) — a; sin 0

A; = aja3(1 —cos0) —a,sin® Bz = azaz(1 — cos0) + a; sin 0
C;=1— (a} +a3)(1 — cos )

Then, the velocity of the neighbor to the element at boundary B; (Figure 6a or 6b) is written in
terms of the element velocity at boundary B, as

Ajuc, + Bive, + Ciwg,
ve, = Rvg, = | Ayuc, + Byve, + Gowg, (59)
A3L{C2 + B3Vc2 + C?,WC2

Since scalars are invariant with respect to coordinate rotation, the values of pressure, density, and
temperature of the neighbor to the element at boundary B, are given by

pF1 :PCz pF] = pCZ TF1 = TCz (60)
The mass flow rate at the boundary face is computed using the Rhie-Chow interpolation as

compressible
—_—~

aak

— — - m
mbl = pb] |:V_b1'Sbl _Dbl(pCZ _pcl) - <DZIVPb1 'Tbl _DZIVPbl : Sbl)i| + <pfl>pb1 - mzl (61)

by

where interpolated values are obtained by linear interpolation according to

C2 bz C1 bl

— 2 O +
C,b, + Cyb, He

Do = 1T by + Coby

O, (62)

With estimates for all variables computed at every iteration, the segregated approach adopts
a Dirichlet-like condition in the calculation of the convection, diffusion, and pressure gradient
terms leading to the following modified coefficients in the algebraic equation for the boundary
element C;:

v R 4 v
bC1 = bC1 — aFl V]:l
~—~
=Rvc, (63)
v o _
ag, =0

Similar modifications are required for element C,.

Pressure correction equation

For the mass flow rate across a periodic boundary condition, the corresponding correction 7, is
given by

./ * v / / mzl /
my, = —pp, Dy, (P oy 4 cl) + (p_*> CopPp, > (64)
by

compressible contribution
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leading to the following modifications to the coefficients of the algebraic equation for the boundary
element Ci:

_ P
b%l *blél —ap P
~—

=r'c, (65 )
af;l =0
The additional source term can be neglected since at convergence the pressure correction field is
zero.

Energy equation

Again the treatment for the energy equation only requires that the connection from the periodic cell
to its neighbor be done appropriately, leading to the following modified coefficients for the algebraic
equation of the boundary element C;:

WL = bL —al T
=Tc, (66)

T _
ap =0

Compressible flow

The implementation of boundary conditions in the momentum and energy equations is generally
independent of whether the flow is incompressible or compressible. Therefore, the modifications pre-
sented for incompressible flow are applicable to compressible flow and will not be repeated. The only
difference is with a prescribed stagnation temperature at the inlet instead of static temperature. In this
case, the static temperature is extracted based on the known or computed velocity field and the
boundary condition is treated like a known static temperature.

As described next, the main difference in the implementation is in the pressure correction
equation at inlet and outlet boundaries where an additional convection-like term resulting from
density correction appears for compressible flow.

Physical condition: Inlet

The conditions to be imposed at inlet and outlet boundaries depend on whether the flow is subsonic
or supersonic as it affects the mathematical type of the equation (i.e., elliptic or hyperbolic).

Subsonic flow

The same boundary conditions discussed for incompressible flow can be imposed for subsonic com-
pressible flow. For transonic flows, it is advisable to specify the stagnation pressure and velocity
direction.

Boundary condition: Specified velocity

For compressible flow a specified velocity (Figure 3a) does not imply a known mass flow rate since the
density depends on pressure (i.e., i1, = pyvj, - Sp 7# 0). Moreover, assuming an ideal gas, density cor-
rection can be written in terms of p’ as

p' =p'/RT = C,p’ (67)
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Therefore, expressing p', in terms of internal nodes using a zero order interpolation profile
(i.e., p's =p'c), the modified coefficient for the boundary element is obtained as

aqk

 VeC C
=Yk 5 (Do) + 3 wiper G ()
f=nbic) \ Pr f=nb(C) Py

L S boundary face contribution
interior faces contribution

Boundary condition: Specified static pressure and velocity direction

For a specified static pressure at the inlet (Figure 3b), the pressure correction is zero and based on
Eq. (67) the density correction is also zero. Thus, the implementation of this boundary condition
follows that for incompressible flow presented earlier, with the modified coefficient for the boundary
element computed as

p__YcC :P <:P1f .k ) * *
ac = + E —=||m:, 0| ) + E peDs + pr.Dc (69)
¢ t f=nb(C) pf H ' ” f=nb(C) ! b“

boundary face contribution

interior faces contribution

Boundary condition: Specified total pressure and velocity direction

The procedure followed for the implementation of this boundary condition, shown schematically in
Figure 3c, is slightly different than the one used with incompressible flow. The main difference is in
the use of the volume flow rate, rather than the mass flow rate, for the calculation of the velocity cor-
rection at the inlet boundary. In [44], the mass flow rate was used in the derivations. However, for
problems with large drop in density at the inlet the new formulation presented below resulted in
better convergence behavior. The use of the new procedure with incompressible flow leads to the
same results reported above since the density is constant.
For compressible flow, the total pressure relation is given by

— 1 v/(y=1)
pon = (1475 %) (70)

where y refers to the ratio of specific heats, and M, to the Mach number at inlet.
The velocity flux at the boundary is expressed using the Rhie-Chow interpolation as

Ub =Vp Sb =Vc" Sb — DC(pb _PC) — (DCVp{; . Tb — DCVpZ‘: . Sb) (71)
with its correction given by
Uy = —Dc(py = P'c) (72)

Moreover, a Taylor series expansion leads to

0
o =55 Ur (73)

Combining Eq. (72) with Eq. (73), the pressure correction at the boundary is given by

P
/ au, ~ € / /
= = (74
Py I+ aall,}; ,DCPC Pc )
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The velocity vector at the boundary can be expressed in terms of U, as

Uy
= v 75
v €y - Sb € ( )
while the stagnation pressure becomes
v/ (v=1)
(v—1) U\’
= 1 C 76
Pob Pb( T Gl s, ; (76)
. . . 3
leading to the following expression for a%‘;:
Opy PoUs
_ , 77
U, ToR (77)
The mass flow rate correction at the boundary becomes
sl * mlﬁ !
my = prC(l — Cl) + ?Cp,bcl Pc- (78)
b

Substitution in the pressure correction equation yields the modified coefficient for the boundary
element as

/ VcC C E RIS * * i,
ag thJr Z ( : Hmf,0”> * Z piDr+ pyDe(l = 1) + 2 Coper (79)
i) \ Pi F=nb(C) Py

boundary face contribution

interior faces contribution

Supersonic flow
Boundary condition: Specified pressure, velocity, and temperature

If the flow is supersonic at the inlet, then the values for all variables have to be specified implying that
#y, = p;, = 0. Thus, for a boundary element, the modified coefficient is written as

Vel C i .

f=nb(C) N\ Tf =nb(C)

interior faces contribution

Physical condition: Outlet
Subsonic flow

Boundary condition: Specified pressure

Similar to a specified pressure at the inlet, a specified p,, at the outlet (Figure 4a) implies a zero press-
ure and density corrections. However, the mass flow rate correction is not zero and is obtained from
Eq. (23) by setting p',, to zero leading to the following modified coefficient for the boundary element:

p_ VG <Cp,f - ) " «
ae = + E || g, 0] ) + E piDs + pyDc (81)
© M f=mbic) \ Pr ol F=mb(C) ' =~

boundary face contribution

interior faces contribution
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Boundary condition: Specified mass flow rate
For this boundary condition (Figure 4b), 1 is zero and does not appear in the p’ equation with the
coefficient of the boundary element computed as

VG Cot
o = LC=p P
¢ At+z P

f=nb(C) \Ff

f70H> fz pe Ds (82)

nb(C)

interior faces contribution

An expression for p, is obtained from Eq. (23) by setting 1 to zero and is given by

; Py D ,
Py = "—Cpc (83)

ok

prC - (p_) Cob

Equation (83) allows computing the boundary pressure and density.

Supersonic flow
Boundary condition: Zero normal gradient

Nothing is specified at a supersonic outlet and all variables are extrapolated from the domain interior.
Assuming a zero-order interpolation profile for pressure correction leads to the following modified ac
coefficient:

a{’; = th—i— Z < Pf f’0H> Z prf+ <_E>Cp,b (84)
f=nb(C) P f=nb(C) Py

. a boundary face contribution
interior faces contribution

Results and discussion

The boundary conditions described above are realized in a homemade program developed within
OpenFOAM? [54], which is a finite volume based open source code framework that can be used
to build a variety of CFD solvers based on the finite volume discretization. The solver implements
the pressure correction SIMPLE algorithm for both incompressible and compressible flows. Second
order schemes are used for convection discretization while Gauss reconstruction and linear interp-
olation are adopted for second order terms. The chosen test cases validate the previously reported
boundary conditions for both incompressible and compressible flows.

Flow around a stator blade

The first validation application focuses on a compressible benchmark test problem based on the work
of Goldman et al. [55]. It is a two-dimensional RANS turbulent simulation of a stator blade at mid-
span. The Reynolds number, based on the chord length and the free-stream velocity, is Re =5 x 10°
and the free-stream Mach number is M.. =0.2. As shown in Figure 7a, total-to-static, symmetry, and
periodic boundary conditions are used to reproduce the experimental conditions in a reduced com-
putational domain. The mesh shown in Figure 7b is hybrid of hexahedra in the proximity of the blade
and prisms in the outer region, with a total number of 7,200 cells and an average y* of 200.

A comparison of predicted blade loading (defined as the ratio of static pressure to the inlet total
pressure) with experimental data is shown in Figure 7c. Numerical results are in good agreement with
measurements demonstrating the reliability of the presented analysis of boundary conditions.
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Figure 7. (a) Physical situation and boundary conditions, (b) grid system used, and (c) a comparison of predicted blade loading
with the experimental data for the turbulent compressible flow around a stator blade.

0.55

The GAMM test

The correct treatment of boundary conditions is again demonstrated by computing the inviscid
flow in a channel with either one (Figure 8a) or two (Figure 8b) circular arc airfoils along its cen-
terline, which is denoted in the literature by the GAMM test. Many researchers [19, 48] have used
this problem as a benchmark to test their numerical algorithms. Applications of the method to two
different inviscid flow types, transonic and supersonic, are presented. The physical configuration for
transonic calculations is shown in Figure 8a and it represents a channel of width twice the length of
the bump chord ¢, and of length 3¢. For the supersonic case shown in Figure 8b, the same channel
width as for the transonic case is used. The total length of the channel is 4.5 € with two bumps,
each of chord ¢, placed in series separated by a distance of 0.5¢. In both cases, the circular arc
bumps are placed at a distance ¢ from the channel inlet and outlet. For transonic calculations,
the thickness-to-chord ratio is 10% while for supersonic flow calculations it is 4%. The geometric
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Figure 8. Physical domain (a) for transonic and (b) supersonic flows; Magnitude of density gradient for (c) transonic and (d) super-
sonic flow; Mach number profiles along the centerline of the domain and the wall of the airfoil (upper part) and the upper wall of
the channel in the (e) transonic and (f) supersonic cases.

and flow symmetry are exploited to solve both problems over the upper half of their physical
domains. During post processing, solutions are reflected across the horizontal centerline to show
fields over the entire domains.

For transonic computations, uniform stagnation conditions are prescribed at the inlet
(corresponding to an inlet Mach number of 0.675) along with an axial velocity direction, while
at outlet the pressure is assigned. For supersonic flow, all variables are uniformly specified at inlet
(resulting in a Mach number with a value of 1.65), while they are extrapolated from the interior
solution at the outlet. The slip boundary condition applies at all walls and the symmetry condition
along the centerline.

Maps of the density gradient magnitude for both configurations are presented in Figures 8c and d.
In addition, the numerically computed Mach number values along the centerline (including the upper
wall of the circular arc bumps; designated lower wall in Figures 8e and f) and the outer wall of the
channel (designated upper wall in Figures 8e and f) are displayed in Figures 8e and f for the transonic
and supersonic cases, respectively. All generated results are in excellent agreement with correspond-
ing ones reported in the literature [19, 48].
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Flow around a NACA 0012 airfoil

The last test problem deals with the three-dimensional incompressible flow around a wing with a
rounded tip and is based on the work of Dacles-Mariani et al. [56]. Experimentally measured data
for the configuration are available for comparison. The physical situation, displayed in Figure 9a,
comprises the wing and the wind tunnel. The wing cross-section is a NACA 0012 airfoil with a chord
of length 1.22 m. The wing semi-span is 0.91 m. The mesh is in agreement with the restrictions of the
low-speed wind tunnel used during measurements. Figure 9b depicts the three-dimensional grid used,
which is composed of 1,551,560 elements. As shown, the computational domain extends beyond the
physical domain to promote numerical stability. Further, computations are performed over half
the width (i.e., half the span of the wing) of the physical domain with the symmetry plane located
at the middle of the wing.

As for boundary conditions, a uniform velocity field is specified at the inlet where a turbulence
length scale and intensity are prescribed for the turbulence quantities. A uniform pressure is imposed
at the outlet and the symmetry boundary condition is applied along the symmetry plane.

To compare numerical results with experimental data, a cross-flow velocity is defined as

Ucrossflow = V v: + uZ/ Ulnlet (85)

and predicted and measured profiles of U ossfiow at two stream-wise locations are displayed in Figures
9c and d. The first location is in the vertical plane at the trailing edge of the wing, while the second is
in the vertical plane located at a distance 0.24c beyond the wing. At both locations, profiles are along
horizontal lines (i.e., in the span wise direction) that pass through the developed wingtip vortex core
[56]. Numerical results are in good agreement with measurements demonstrating the correctness of
the presented analysis of boundary conditions.
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Figure 9. (a) Experimental setup [41]; (b) computational domain and grid system used; comparison of measured and numerically
computed Ugossiow Profiles along the horizontal line passing through the vortex core at the following two positions in the stream-
wise direction: (c) airfoil trailing edge, and (d) 0.24c beyond the trailing edge.
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Closing remarks

The paper described the formulation of boundary conditions encountered in solving incompressible
and compressible flow problems. Issues related to the implementation of boundary conditions in the
context of a segregated pressure-based unstructured FVM were thoroughly clarified. Specifically, the
modifications to the coefficients of the algebraic equations at boundary elements were detailed.
Several incompressible and compressible flow problems involving many of the presented boundary
conditions were solved and their solutions are shown to be in agreement with published experimental
and/or numerical data, confirming correctness of the suggested formulation.
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