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ABSTRACT 
The paper deals with the formulation of a variety of boundary conditions for 
incompressible and compressible flows in the context of the segregated 
pressure-based unstructured finite volume method. The focus is on the 
derivation and the implementation of these boundary conditions and their 
relation to the various physical boundaries and geometric constraints. While 
a variety of boundary conditions apply at any of the physical boundaries 
(inlets, outlets, and walls), geometric constraints define the type of boundary 
condition to be used. The emphasis is on relating the mathematical 
derivation of the boundary conditions to the algebraic equations defined at 
each centroid of the boundary elements and their coefficients. All derived 
boundary conditions are validated through a set of test cases with 
comparison of computed results to available numerical and/or experimental 
data. 
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Introduction 

The Finite Volume Method (FVM) is the most popular numerical technique in Computational Fluid 
Dynamics (CFD). This is not surprising since both the FVM and the velocity-pressure coupling 
algorithms at the core of the CFD solution algorithms, and exemplified by the SIMPLE algorithm 
[1, 2], originated within the same CFD group at the Imperial College [3]. Nowadays, the SIMPLE 
algorithm and its variants [4–13] are being successfully used to solve a wide spectrum of flow 
problems ranging from incompressible low speed flows [1–3, 14–18] to compressible hypersonic 
flows [19–24], single [25–28] and multiphase flows [29–35], laminar [25–28] and turbulent flows 
[36–41], free-surface flows [42, 43], and particle laden flows, to cite a few. 

Furthermore, many of the issues encountered in the discretization of the conservation equations 
governing fluid flow and transport phenomena problems have been well documented in numerous 
papers [19, 22, 24] and books [2, 44]. Information on boundary conditions in general and details 
on their implementation in particular have not received comparable scrutiny, and except for a few 
papers and books [2, 44–49], they have only been reported in very general terms, this in spite of the 
critical role they play in ensuring the accuracy, correctness, and robustness of the numerical solutions. 

It is the purpose of this article to present a detailed and comprehensive review of boundary con-
ditions as applied to pressure based segregated finite volume solvers for the solution of incompressible 
and compressible flow problems. This is done using a unified and consistent notation and details 
down to the form of the boundary element coefficients. 

To set the ground for the derivations, the discretized forms of the continuity, momentum, and 
energy equations governing incompressible and compressible flows are first presented. This is 
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followed by a thorough review of frequently used boundary conditions with complete details on the 
related discretization and implementation issues. Finally, a set of test problems involving many of the 
cited boundary conditions are used as validation tests. 

The governing equations 

The mass, momentum, and energy equations governing fluid flow and heat transfer problems are 
written as 

qq

qt
þr � qvð Þ ¼ 0; ð1Þ

q

qt
qv½ � þ r � qvvf g ¼ � rpþ r � s½ � þ fb; ð2Þ

q

qt
qcpT
� �

þr � qcpvT
� �

¼ r � krT½ � þ qT
Dcp

Dt
þ

Dp
Dt
�

2
3
mWþ mUþ _qV; ð3Þ

where v, p, T, ρ, fb, cp, k, μ, and _qV represent the velocity vector, pressure, temperature, density, body 
force per unit volume, specific heat at constant pressure, thermal conductivity, dynamic viscosity, and 
heat generation per unit volume, respectively. In addition, τ is the deviatoric stress tensor, which, for a 

Nomenclature 

av
C; av

F coefficients in discretized momentum equations 
a/

C ; a/
F coefficients in discretized equations 

bv
C source term in the discretized momentum 

equation 
bu

C source term in the discretized equations 
cp specific heat at constant pressure 
Cρ variable equal to 1/RT 
dCF vector joining the grid points C and F 
dCF magnitude of dCF 

D tensor operator 
D scalar defined by Eq. (17) 
e unit vector 
E Distance vector in the direction of dCF 
E magnitude of E 
fb body force per unit volume 
Fb force exerted by wall on fluid 
I identity matrix 
k thermal conductivity 
ℓ chord length 
M Mach number 
_m mass flow rate 

p pressure 
p′ pressure correction 
_qV heat generation per unit volume 
R gas constant 
S surface vector 
S magnitude of S 
t time 
T temperature 
T vector equal to S � E 
u, v, w velocity components in x, y, and z direction, 

respectively 
v velocity vector 

V cell volume 

Greek Symbols 
/ general variable 
σ⊥ normal stress 
μ dynamic viscosity 
γ ratio of specific heats 
ρ fluid density 
τ deviatoric stress tensor 
Ψ, Φ dissipation terms in energy equation 

Subscripts 
b refers to boundary 
C refers to main grid point 
f refers to control volume face 
F refers to the F grid point 
nb refers to values at the faces obtained by  

interpolation between C and its neighbors 
NB refers to the neighbors of the C grid point 
wall refers to wall 
x,y,z refer to x,y, and z component, respectively 
0 refers to stagnation condition 
jj component of a vector parallel to a surface 
⊥ component of a vector normal to a surface 

Superscripts 
p refers to pressure 
T refers to temperature 
T refers to the transpose of a vector 
u, v, w refers to the u, v, and w-velocity component, 

respectively 
n refers to value at the previous iteration 

refers to an interpolated value 
* refers to an updated value during an iteration 
○ refers to an old time value   
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Newtonian fluid is given by 

s ¼ m rv þ rvð Þ
T

n o
�

2
3
m r � vð ÞI: ð4Þ

For compressible flow, an equation of state relating density to temperature and pressure is 
required. For an ideal gas this equation is written as 

q ¼
p

RT
; ð5Þ

where R is the gas constant. 

The discretized equations 

In the FVM the discretization process starts by integrating the governing equations over the cells 
into which the domain has been subdivided (Figure 1) and with the divergence theorem, the volume 
integrals of the convection and diffusion terms are transformed into surface integrals. The resulting 
surface integrals and the volume integrals of the transient and other source terms are expressed in 
terms of the discrete volumes of the respective elements. In a second step, numerical integration is 
performed producing a set of semi-discretized equations that represent surface and volume fluxes. 
Finally, linearizing these fluxes and expressing them in terms of the unknowns defined at element 
centroids yields a set of algebraic equations that represents the numerical equivalent of the original 
conservation equations. Details on this procedure can be found in the literature [2, 19, 22, 24, 44]. 
In this work, this represents the starting point of the derivations. A summary of these equations 
is presented next with their forms obtained using an upwind scheme for the discretization of the 
convection term and an implicit backward Euler scheme for the transient term. 

The discretized momentum equation 

Designating the value of the dependent variable at the centroid of an element and at an 
element face with subscript C and f, respectively, the discretized momentum equation using vector 

Figure 1. An example of a boundary element.  
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notation is written as 

av
CvC þ

X

F¼NB Cð Þ
av

FvF ¼ bv
C ð6Þ

with the coefficients calculated using the following expressions: 

av
C ¼

qCVC

Dt
þ
X

f¼nb Cð Þ

_mf ; 0k k þ
X

f¼nb Cð Þ
mf

Ef

dCF

av
F ¼ � � _mf ; 0k k � mf

Ef

dCF

bv
C ¼

q�CVC

Dt
v�C þ fbð ÞCVC þ

X

f¼nb Cð Þ
mf rvð Þf � Tf
� �

þ

X

f¼nb Cð Þ
mf rvð Þ

T
f �Sf � rpð ÞCVC � 2=3ð Þ

X

f¼nb Cð Þ
mr � vð Þf Sf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
compressible contribution

ð7Þ

The mass flow rate at a cell face is defined as 

_mf ¼ qf vf � Sf ð8Þ

with the interface velocity calculated using the Rhie–Chow interpolation technique [38] as 

vf ¼ vf � Dv
f rpf � rpf
� �

ð9Þ

In Eq. (9), the bar indicates a value obtained by interpolation. Moreover, Dv
f can be written 

simply as 

Dv
f ¼

VC

av
f

� �

ð10Þ

Also, Sf is the surface vector, dCF is the magnitude of the vector dCF joining C and F, and Ef is the 
magnitude of the vector Ef, which is related to Sf and Tf via the following equation: 

Sf ¼ Ef þ Tf ð11Þ

where Ef is set in the direction of dcf [47, 50–52]. 

The discretized continuity equation 

In the segregated pressure-based SIMPLE algorithm adopted here, the continuity equation is not 
solved directly. Rather, a pressure correction variable (p′) is defined and the semi-discretized form 
of the continuity equation is transformed into a pressure correction equation by combining it with 
the algebraic form of the momentum equation [19, 22, 24]. The final algebraic form of this equation 
is written as 

ap0
C p0C þ

X

F¼NB Cð Þ
ap0

F p0F ¼ bp0
C ð12Þ
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with its coefficients given by 

ap0
F ¼ � q�fDf � � _m�f ; 0

�
�

�
�Cq;f

q�f|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
compressible contribution

ap0
C ¼

VCCq;C

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
compressible contribution

þ
X

f¼nb Cð Þ

q�fDf

bp0
C ¼ �

q�C � q�C
� �

Dt
VC

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
compressible contribution

þ
X

f¼nb Cð Þ

_m�f

0

B
B
@

1

C
C
A

ð13Þ

where superscript * refers to values obtained from solving the momentum equation during the same 
iteration and superscript ○ refers to old values, i.e., values from the previous time step. For an ideal gas 
the term Cρ is computed as 

Cq ¼
1

RT
ð14Þ

Moreover, by neglecting the non-orthogonal contribution of Dv
frp0f

� �
� Sf , Df is calculated such 

that 

Dv
frp0f

� �
� Ef ¼ Df p0F � p0C

� �
ð15Þ

The discretized energy equation 

The discretization of the energy equation leads to the following algebraic relation: 

aT
CTC þ

X

F¼NB Cð Þ
aT

F TF ¼ bT
C ð16Þ

with the expressions for the coefficients given by 

aT
F ¼ � kf

Ef

dCF
� � _mf ; 0k k cp

� �

f

aT
C ¼ a�C

X

F¼NB Cð Þ
aT

F þ
X

f¼nb Cð Þ

_mf cp
� �

f þ � acp
C ; 0

�
�

�
�

a¼C
qC cp
� �

CVC

Dt
a�C ¼

q�C c�p
� �

C
VC

Dt
acp

C ¼ qCVC
Dcp

Dt

� �

C

bT
C ¼

X

f¼nb Cð Þ
kf rTð Þf � Tf
� �

þ a�CT�C þ TC acp
C ; 0

�
�

�
�þ

Dp
Dt

� �

C
þ mC �

2
3
WC þ UC

� �

þ _qV
� �

C

� �

VC

ð17Þ

where k is the fluid thermal conductivity, and (D/Dt) is the material derivative. 
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Boundary conditions 

It is important to differentiate between physical conditions, geometric constraints, and boundary 
conditions at a domain boundary. An “Inlet”, an “Outlet”, or a “Wall” represents a physical 
condition, while “Symmetry” and “Periodicity” represent geometric constraints. A boundary 
condition refers to the set of equations used along a domain boundary to obtain a specific solution 
to the problem. For a given physical condition, the boundary condition depends on the equation 
solved and its known variables, with several options possible. For example on a physical “Wall”, the 
boundary condition for the momentum equation could be a slip or a no-slip condition, while for 
the energy equation it could be a specified flux, an imposed temperature, or a convection heat 
transfer condition. A variety of boundary conditions will also apply to other physical conditions; 
at an “Inlet”, it is possible to enforce a specified pressure and velocity direction, or to describe 
the velocity components without assigning any value for the pressure. On the other hand, one 
boundary condition describes a geometric condition, usually imposed with the intention of reduc-
ing the size of the computational domain. For example, the only boundary condition applicable 
along a symmetry line is a zero normal flux. 

Generally, the boundary conditions used are a part of one of the following three basic categories: 
1. a Dirichlet condition, where the unknown variable is defined at the boundary; 
2. a von Neumann condition, where the flux expressed in the conservation equation is defined at the 

boundary face; 
3. a Robin-type condition, where the unknown variable and flux at the boundary are expressed via a 

constitutive relation.  
Boundary conditions apply to boundary elements, which are elements that have at least one 

boundary face (Figure 1). 
For the pressure correction equation, which plays a central role in solving flow problems via the 

Navier–Stokes equations, these categories are expressed as follows: 
1. a von Neumann like boundary condition whereby _mb is specified (e.g., walls) with no need to 

modify the p′ equation. The boundary pressure however is extrapolated from the interior field; 
2. a Dirichlet-like boundary condition whereby a boundary pressure pb is defined. In this case _mb is 

written in terms of the nearest element velocity vector and pressure gradient; 
3. a Robin-type boundary condition specified via an implicit relation between pressure and velocity 

from which an explicit formula is derived and substituted in the pressure correction equation.  
Another important issue to consider is related to the way by which the Rhie–Chow interpolation at 

a boundary face is handled. Specifically the averaging procedure is modified at boundary faces so that 
the boundary face average is written in terms of the element value as 

&b ¼&C ð18Þ

where b and C refer to the boundary face and the element centroid, respectively, and to any variable 
or expression. Adopting this practice transforms the velocity at a boundary face from the expression 
given by Eq. (9) into 

v�b ¼ v�C � Dv
C rp nð Þ

b � rp nð Þ
C

� �
ð19Þ

Discretized boundary equations 

In the derivation of boundary conditions, it is sometimes more insightful to use the conservation 
equations in their semi-discretized form rather than their algebraic form. To this end, the semi-dis-
cretized forms of the momentum, continuity, and energy equations for a boundary element with a 
boundary face are expressed as 
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qvð ÞC � qvð Þ�C
Dt

VC þ
X

f¼interior nbðCÞ

_mf vfð Þ þ _mbvb|ffl{zffl}
boundary face

¼ � pbSb
|ffl{zffl}

boundary face

þ sb � Sb|fflffl{zfflffl}
boundary face

�
X

f¼interior nbðCÞ
pf Sfð Þ þ

X

f¼interior nbðCÞ
sf � Sfð Þ þ BC

ð20Þ

q�C � q�C
� �

Dt
VC

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
compressible contribution

þ
X

f¼interior nbðCÞ

_mf þ _mb|{z}
boundary face

¼

q�C � q�C
� �

Dt
VC

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
compressible contribution

þ
X

f¼interior nbðCÞ

_m�f þ _m0f
� �

þ _m�b þ _m0b
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
boundary face

¼ 0
ð21Þ

qcpT
� �

C � qcpT
� ��

C
Dt

VC þ
X

f¼interior nbðCÞ

_mcpT
� �

f þ _mcpT
� �

b|fflfflfflfflffl{zfflfflfflfflffl}
boundary face

¼

X

f¼interior nbðCÞ

krT � Sð Þf þ krT � Sð Þb|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
boundary face

þ qCTC
Dcp

Dt

� �

C
VCþ

Dp
Dt

� �

C
þ mC �

2
3
WC þ UC

� �

þ _qV
� �

C

� �

VC

ð22Þ

where f refers to an interior face, b to a boundary face, superscript * to a value obtained after solving 
the momentum equation, and prime to a correction term. Terms evaluated at the boundary face are 
written explicitly as they should be modified based on the type of boundary condition used. With an 
average quantity at the boundary written in terms of the boundary cell value, combining Eq. (18) 
with Eqs. (15) and (19) results in the following equations for the boundary mass flow rate and its 
correction: 

_mb ¼ q�bv�C � Sb � q�bDv
C rpðnÞb � rpðnÞC

� �
� Sb þ

_m�b
q�b

� �

qb � _m�b

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
compressible

_m0b ¼ � q�bDC p0b � p0C
� �

þ
_m�b
q�b

� �

Cq;bp0b
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

compressible contribution

ð23Þ

With these definitions the boundary conditions for incompressible and then compressible flows 
can now be presented for the various physical and geometric conditions. For completeness all deriva-
tions will start with Eqs. (20)–(23). 

Incompressible flow 

The most common types of boundary conditions encountered in solving incompressible flow prob-
lems are presented next. 

Physical condition: Wall 

At a stationary or a moving wall, a no-slip (Figure 2a) or a slip (Figure 2b) boundary condition is 
usually applied. The following paragraphs describe the implementation of both conditions. 
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Boundary condition: No-slip wall 

This boundary condition is used for viscous flows and indicates that the fluid velocity vb is equal to 
the wall velocity vwall (zero for a stationary wall). The pressure at the wall is set to ensure a stagnation 
point for the velocity component normal to the wall, while the velocity component parallel to the wall 
defines the value of the wall shear stress. This is akin to a shear flux applied to the component of the 
momentum equation parallel to the wall and to a Dirichlet condition applied to the normal compo-
nent. For the pressure correction equation, this is similar to a von Neumann condition applied to the 
boundary face. 

Momentum equation 

A common misconception in the application of the no slip condition is to view it as a Dirichlet 
boundary condition. While this treatment leads to correct results for Cartesian grids, it does not 
do so for general curvilinear grids. As shown in Figure 2a, a correct implementation of this boundary 
condition should guarantee that the shear stress τwall (and consequently the force Fb) is tangent to the 

Figure 2. (a) Schematics of a no-slip wall boundary condition, (b) schematic of a slip wall boundary condition.  
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wall along with vb ¼ vwall. The force Fb can be written as 

Fb ¼ swallSb ¼ � m
qvk
qd?

Sb ð24Þ

where v∥ is the component of velocity parallel to the wall and d⊥ the normal distance to the wall, both 
given by 

vk ¼ v � v?|{z}
normal component

v? ¼ v � e?ð Þe? d? ¼ dCb � e? ¼ dCb �
Sb

Sb
ð25Þ

An approximation for the wall shear stress can be derived from Eq. (24) and is written as 

swall � � mb
vC � vbð Þk

d?
¼ � mb

vC � vbð Þ � vC � vbð Þ � e?½ �e?
d?

ð26Þ

Combining Eqs. (26) and (24), the modified coefficients for the boundary elements of the x, y, and 
z components of the momentum equation are obtained with their expressions displayed in Table 1a 
(rows 1–3). 

Continuity or pressure correction equation 

Since at a wall the mass flow rate is zero, the mass flow rate correction is also zero _m0b ¼ 0ð Þ, with no 
modifications required for the pressure-correction equation. The pressure pb at the boundary is 
obtained by extrapolation as 

pb ¼ pC þrp nð Þ
C � dCb ð27Þ

The coefficient of the boundary element is modified as displayed in row 4 of Table 1a. 

Energy equation 

Since at the wall _mb is zero, the term _mcpT
� �

b is zero. The only modification is for the diffusion flux, 
which can be specified in three different ways such as using the wall temperature (Dirichlet boundary 
condition), the wall heat flux (von Neumann boundary condition), or by defining a heat transfer 
coefficient and a surrounding temperature (mixed or Robin-type boundary condition). Details of 
these three types are as follows. 

Table 1a. Modified coefficients of the momentum, continuity, and energy equations for a no-slip wall boundary condition.   

aC|{z}
interior faces contribution

þ

aF¼b

¼

bC|{z}
interior faces contribution

þ

1 u mb Sb
d?

1 � e2
?x

� � 0 mb Sb
d?

ub 1 � e2
?x

� �
þ vC � vbð Þe?y e?x þ wC � wbð Þ e?z e?x

� �
� pbSx

b 
2 v mb Sb

d?
1 � e2

?y

� � 0 mb Sb
d?

uC � ubð Þe?x e?y þ vb 1 � e2
?y

� �
þ wC � wbð Þ e?z e?y

h i
� pbSy

b 
3 w mb Sb

d?
1 � e2

?z

� � 0 mb Sb
d?

uC � ubð Þe?x e?z þ vC � vbð Þe?y e?z þ wb 1 � e2
?z

� �� �
� pbSz

b 
4 p′ 0 0 0 
5 T kb

Eb
dCb 

0 kb
Eb

dCb
Tspecified þ krTð Þb � Tb 

6 T 0 0 � qspecifiedSb 
7 T h1Sbkb

Eb
dCb

h1Sb þ kb
Eb

dCb  

0 h1Sbkb

h1Sb þ kb
Eb

dCb

Eb

dCb
T1 þ rTð Þb � Tb

� �
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Dirichlet boundary condition 

For this type the temperature is specified at the boundary, i.e. 

Tb ¼ Tspecified ð28Þ

The diffusion flux at the wall is computed as 

krT � Sð Þb ¼ krTð Þb � Eb þ Tbð Þ ¼ kb
Eb

dCb
Tb � TCð Þ þ krTð Þb � Tb ð29Þ

leading to the modified coefficients of the boundary element shown in row 5 of Table 1a. 

Von Neumann boundary condition 

For this type, the boundary flux is known, i.e. 

qbSb ¼ qspecifiedSb ¼ � krT � Sð Þb ð30Þ

The modifications to the coefficients of the boundary element are shown in row 6 of Table 1a. 

Mixed (or Robin-type) boundary condition 

For this boundary condition a convection heat transfer coefficient (h∞) and a surrounding tempera-
ture (T∞) are specified. At the wall, the diffusion flux is set equal to the convection flux to give 

krT � Sð Þb ¼ kb
Eb

dCb
Tb � TCð Þ þ krTð Þb � Tb

¼ h1 T1 � Tbð ÞSb

ð31Þ

Using Eq. (31), the wall temperature (Tb) is expressed as 

Tb ¼
h1SbT1 þ kb

Eb
dCb

TC � krTð Þb � Tb

h1Sb þ kb
Eb
dCb

ð32Þ

Substitution of Eq. (32) in Eq. (31), yields the boundary flux as 

krT � Sð Þb ¼
h1Sbkb

Eb
dCb

h1Sb þ kb
Eb
dCb

T1 � TCð Þ þ
h1Sb krTð Þb � Tb

h1Sb þ kb
Eb
dCb

ð33Þ

Then the coefficients of the boundary element are modified as displayed in row 7 of Table 1a. 

Boundary condition: Slip wall boundary for inviscid flow 

For a slip wall boundary condition the normal velocity component at the wall remains zero. However, 
with the shear stress set to zero, the parallel component at the wall is set equal to the parallel 
component of the boundary element. 
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Momentum equation 

In this case, the shear stress at the wall is zero leading to a zero boundary force (Figure 2b). Thus, 
dropping the stress term from the momentum equation its coefficients become 

av
C ¼ av

C|{z}
interior faces contribution

av
F¼b ¼ 0

bv
C ¼ bv

C|{z}
interior faces contribution

� pbSb

ð34Þ

Pressure correction and energy equations 

The modifications to the continuity and energy equations are exactly the ones presented for the no- 
slip case with the boundary pressure computed using Eq. (27). 

Physical condition: Inlet 

At the inlet to a domain, a number of boundary conditions can be imposed (Figure 3) and the ones 
considered here include: (i) specified velocity (Figure 3a); (ii) specified static pressure and velocity 
direction (Figure 3b); and (iii) specified total pressure and velocity direction (Figure 3c). For the 
energy equation, the temperature is usually specified. 

Boundary condition: Specified velocity 

Momentum equation 

For an incompressible flow, a specified velocity at the inlet (Figure 3a) implies a known mass flux. 
Therefore, the boundary force (Fb ¼ τb · Sb) and convection flux _mbvbð Þ are calculated using the 
known _mb and vb. Similar to the no-slip boundary condition, the pressure at the boundary is extra-
polated using Eq. (27). The known terms in the equation are evaluated explicitly and added to the 
source term with the modified boundary element coefficients given by 

bv
C ¼ bv

C � av
F¼bvb

av
F¼b ¼ 0

ð35Þ

Figure 3. Schematics of (a) specified velocity (b) specified pressure and velocity direction, and (c) specified total pressure and 
velocity direction boundary conditions at the inlet.  
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Pressure correction equation 

Since _mb is known, its correction is zero, i.e., _m0b ¼ 0. Therefore, for a boundary element _m0b is 
dropped with no modifications required for the coefficients (i.e., av

F¼b ¼ 0). 

Energy equation 

For a specified static temperature at inlet, since _mb and vb are known, the boundary terms _mcpT
� �

b 
and (k ∇ T · S)b are directly computed. As for the momentum equation, known terms in the equation 
for the boundary cell are evaluated explicitly and added to the source term with the modified bound-
ary element coefficients given by 

bT
C ¼ bT

C � aT
F¼bTb

aT
F¼b ¼ 0

ð36Þ

Boundary condition: Specified pressure and velocity direction 

Momentum equation 

For the boundary element, the known value of the inlet pressure pb is used in the calculation of ∇ pC, 
which, in turn, is used in computing the velocity vb. To be able to perform this task, the flow direction 
should be known (Figure 3b). Denoting the unit velocity vector by ev and assuming the mass flow rate 
has been calculated from the continuity equation as _mb ¼ _m�b þm0b, vb is computed as 

_mb ¼ qb vbk kev � Sb ) vbk k ¼
_mb

qb ev � Sbð Þ
) vb ¼ vbk kev: ð37Þ

Thus for the momentum equation, the boundary condition is a specified velocity that is iteratively 
updated from the continuity equation and the equation of the boundary cell is modified according to 
Eq. (35). 

Pressure correction equation 

Since pb is known, p′b is zero ( _m0b 6¼ 0) and a Dirichlet boundary condition is applied. Thus, the 
coefficient of the boundary cell of the p′ equation is modified as 

ap0
C ¼

X

f¼interior nbðCÞ
qfDf þ qbDC

|fflffl{zfflffl}
boundary face contribution

ð38Þ

Energy equation 

For the energy equation, the temperature is usually specified. Therefore, the modifications to the 
coefficients of the boundary elements are similar to those given in Eq. (36). 

Boundary condition: Specified total pressure and velocity direction 

Momentum equation 

The relation between total (po) and static (p) pressure for incompressible flow is given by 

p0
|{z}

total pressure

¼ p
|{z}

static pressure

þ
1
2
qv � v
|fflfflffl{zfflfflffl}

dynamic pressure

: ð39Þ
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The calculation of _mb (Figure 3c) requires a special procedure, which will be explained in 
connection with the continuity equation. Assuming _mb is known, vb is calculated using Eq. (37) 
and the coefficients in the momentum equation are modified according to Eq. (35). 

Pressure correction equation 

Since pb is unknown, p′b is not zero and an equation for its calculation should be derived. Using 
Eq. (37), Eq. (39) is reorganized into 

po;b ¼ pb þ
1

2q

_m2
b

ev � Sbð Þ
2 : ð40Þ

A relation between mass flow rate, pressure, and their corrections at the boundary element can be 
developed as 

qpb

q _mb
�

pb � p�b
_mb � _m�b

¼
p0b
_m0b
) p0b ¼

qpb

q _mb
_m0b: ð41Þ

Combining Eqs. (41) and (23), a relation between _m0b and p′C is obtained as 

_m0b ¼
q�bDC

1þ q�bDC
qpb
q _mb

p0C ð42Þ

An expression for qpb=q _mb is found by differentiating Eq. (40) with respect to _mb and is 
given by 

qpb

q _mb
¼ �

1
q

_mb

ev � Sbð Þ
2 ð43Þ

Replacing _m0b given by Eq. (42) in Eq. (21), the modified ap0
C for the boundary element becomes 

ap0
C ¼

X

f¼interior nbðCÞ

qfDf þ
q�bDC

1þ q�bDC
qpb
q _mb|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

boundary face contribution

ð44Þ

Energy equation 

For this boundary condition, the temperature is usually specified. Therefore, the algebraic equation of 
the boundary element is modified according to Eq. (36). 

Physical condition: Outlet 

The following outlet boundary conditions are considered (Figure 4): (i) a specified static pressure, (ii) 
a specified mass flow rate, and (iii) a fully developed flow. 

Boundary condition: Specified static pressure 

Momentum equation 

When the static pressure is known at the outlet (Figure 4a), a fully developed flow is expected and is 
enforced by setting the component of the gradient of the velocity vector normal to the outlet to zero. 
The outlet velocity is extrapolated from the value at the boundary element centroid by first equating 
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the velocity gradient at the boundary to the normal component at cell centroid (to guarantee that the 
component normal to the surface is zero) yielding 

rvb ¼ rvC � rvC � ebð Þeb ð45Þ

and then computing vb as 

vb ¼ vC þrvb � dCb ð46Þ

With this treatment the modified coefficients become 

av
C ¼ av

C|{z}
interior faces contribution

þ _mb|{z}
boundary face contribution

av
F¼b ¼ 0

bv
C ¼ bv

C|{z}
interior faces contribution

� _mb rvb � dCbð Þ � pbSb
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary face contribution

ð47Þ

Pressure correction equation 

Since pb is known, the pressure correction is zero while _m0b is not and is calculated from Eq. (23). The 
direction of vb is needed and is usually set equal to vC. The ap0

C coefficient in the p′ equation is modi-
fied as 

ap0
C ¼

X

f¼interior nbðCÞ
qfDf þ qbDC

|fflffl{zfflffl}
boundary face contribution

ð48Þ

Energy equation 

For the energy equation, the gradient of temperature which is normal to the boundary is set to zero. 
Thus, the term (k ∇ T · S)b is zero with the temperature extrapolated from the value at the centroid of 

Figure 4. Schematics of (a) specified static pressure, and (b) specified mass flow rate boundary conditions at outlet.  
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the boundary element using Eqs. (45) and (46) with v replaced by T. The modified coefficients are 
given by 

aT
C ¼ aT

C|{z}
interior faces contribution

þ _mbcp;b
|fflffl{zfflffl}

boundary face contribution

aT
F¼b ¼ 0

bT
C ¼ bT

C|{z}
interior faces contribution

� _mbcp;b rTb � dCbð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
boundary face contribution

ð49Þ

Boundary condition: Specified mass flow rate 

Momentum equation 

A specified uniform mass flow rate (Figure 4b) indicates a known normal velocity component. To be able 
to calculate vb, it is assumed to have the same direction as vC, i.e., (ev)b ¼ (ev)C. Thus, ||vb|| is computed as 

vbk k ¼
_mb

qb evð ÞC � Sb
ð50Þ

The known vb is used to enforce a specified velocity boundary condition and the coefficients of the 
algebraic equation of the boundary elements of the momentum equation are modified according to 
Eq. (35). 

Pressure correction equation 

Since _mb is specified, _m0b does not appear in the p′ equation. Further, Eq. (23) indicates that p′b ¼ p′C. 

Energy equation 

For the energy equation, the gradient of temperature normal to the boundary is set to zero. Thus, the 
modification to the coefficients of the boundary element follows Eq. (49). 

Boundary condition: Fully developed flow 

In analyzing fully developed flows, the outlet section should not be located in any recirculation region. 
Assuming this condition is satisfied, the modifications to the equations are as described below. 

Momentum equation 

For the momentum equation, the normal velocity gradient is set to zero and vb is computed using 
Eqs. (45) and (46). The boundary pressure is extrapolated from the interior of the domain using 

pb ¼ pC þrpC � dCb ð51Þ

Thus the computed vb is used to enforce a specified velocity boundary condition and the coeffi-
cients of the algebraic equation for the boundary elements are altered according to Eq. (35). 

Pressure correction equation 

Knowing the velocity vb allows computing _mb thereby eliminating the need for any mass flow rate 
correction. Thus _m0b is set to zero and dropped from the equation of the boundary elements. Because 
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vb is not the correct solution at the outlet until convergence is reached, the overall mass conservation 
is not satisfied. With incompressible flows, overall mass conservation is enforced at any iteration via a 
special treatment based on modifying _mb. This is achieved by computing the total mass flow rates 
entering 

P
_min and leaving 

P
_mout which is the domain and modifying the mass flow rate at an 

outlet using 

_mout ¼ _mout

P
_min

P
_mout

ð52Þ

Energy equation 

Again the gradient of temperature normal to the boundary is set to zero. Thus, the coefficients of the 
boundary element of the energy equation are modified according to Eq. (49). 

Geometric condition: Symmetry 

Only one set of equations applies at a symmetry boundary condition. The purpose of its use is to 
reduce the size of the computational domain and is applicable along a symmetry plane that subdivides 
the physical domain of interest into two parts that mirrors each other when the solution for all 
variables is symmetrical. As a symmetry plane reflects scalar variables, a symmetry boundary 
condition is imposed by setting the fluxes or the normal gradient of all scalar variables to zero. 
For a vector equation (like momentum), it is a little more complicated. The modifications along a 
symmetry boundary condition for the momentum, pressure correction, and energy equations of a 
boundary element are described next. 

Momentum equation 

Since no flow crosses a symmetry plane (Figure 5), the velocity component normal to the symmetry 
plane is zero while the component parallel to the symmetry plane retains its magnitude and direction. 
Mathematically this is written as 

v? ¼ 0
qv==
qn
¼ 0

ð53Þ

where v⊥ and v// are as defined in Eq. (25). Therefore, opposite to a no-slip wall boundary condition, 
the shear stress is zero while the normal stress is not. Thus, the boundary force is given by 

Fb ¼ r?Sb ’ � 2mb
vCð Þ?
d?

Sb ð54Þ

where σ⊥ is the normal stress. Since the pressure gradient normal to the symmetry plane is zero, the 
pressure is computed using Eqs. (45) and (46) with v replaced by p. 

The modifications to the coefficients of the boundary elements for the momentum equation in the 
x, y and z directions are given in Table 1b (rows 1–3). 

Pressure correction equation 

Since no flow crosses a symmetry plane, _m0b is zero. Thus similar to a wall boundary condition no 
modification to the coefficients is required as shown in row 4 of Table 1b. 
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Energy equation 

Similar to pressure, the gradient of the temperature which is normal to the boundary is set to zero. 
Thus, the term (k ∇ T · S)b is zero with the temperature extrapolated from the value at the centroid of 
the boundary element using Eqs. (45) and (46) with v replaced by T. Since _mb is zero, the boundary 
contribution is dropped (row 5 in Table 1b). 

Geometric condition: Periodic boundary condition 

The periodic boundary condition schematically depicted in Figure 6 is used to reduce the 
computational domain when solutions are periodic in space and is always defined with a pair of 
boundary surfaces. The pair of surfaces can be either translated (translational periodicity, 
Figure 6a) or rotated (rotational periodicity, Figure 6b). For both types, each face in a boundary 
has a corresponding face and neighbor cell on the other boundary, in accordance with the geometric 
transformation (i.e., translation or rotation). 

With translational periodicity, the same relation governs scalar (pressure, density, etc.) and vector 
(velocity, gradients) variables. Since in rotational periodicity the coordinate system is rotated, all vector 
quantities have to be transformed accordingly. On the other hand, scalar quantities remain unchanged. 

Table 1b. Modified coefficients of the momentum, continuity, and energy equations for a symmetry boundary condition.  

aC|{z}
interior faces contribution

þ

aF¼b

¼

bC|{z}
interior faces contribution

þ

1 2mb Sb
d?

e2
?x 

0 �
2mb Sb

d?
vC e?y þ wC e?z
� �

e?x � pbSx
b 

2 2mb Sb
d?

e2
?y 

0 �
2mb Sb

d?
uCe?x þ wC e?z½ �e?y � pbSy

b 
3 2mb Sb

d?
e2
?z 

0 �
2mb Sb

d?
uCe?x þ vCe?y
� �

e?z � pbSz
b 

4 0 0 0 
5 0 0 0  

Figure 5. Schematic of a symmetry boundary condition.  
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In terms of implementation, after defining the addressing between faces and cells at both boundary 
sides, the discretization process treats the boundary faces as internal. Thus, the flux at the boundary 
face is written in the same way as for an internal face, except that the variable on the other side of the 
periodic boundary condition should be connected to the first side, through a transformation relation 
if needed. For a scalar value, the transformation is simply the identity matrix. 

Momentum equation 

The discretization of the momentum equation on the boundary face follows exactly the discreti-
zation at an interior face with Eq. (7) defining the coefficients, where now the neighbor cell is 
the corresponding cell on the other boundary (Figure 6). Since the momentum equation is a vector 
equation, the corresponding velocity vF of the neighbor cell has to be transformed accordingly with 
a rotation tensor R. In case of translational periodicity (Figure 6a) the transformation matrix is 
given by 

R ¼ I ð55Þ

where I is the 3 � 3 identity matrix. 
For rotational periodicity of angle θ (positive in the clockwise direction, Figure 6b) around an axis 

of unit vector a ¼ (a1, a2, a3) (Figure 6b), the rotation tensor is given by [53] 

R ¼ IþW2ð1 � cos hÞ þW sin h ¼

A1 B1 C1
A2 B2 C2
A3 B3 C3

0

@

1

A ð56Þ

where W is the skew symmetric tensor associated with the axis of rotation expressed as 

W ¼
0 � a3 a2
a3 0 � a1
� a2 a1 0

0

@

1

A ð57Þ

Figure 6. (a) Translational and (b) rotational periodic boundary conditions.  
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and with the components of R given by 

A1 ¼ 1 � a2
2 þ a2

3
� �

1 � cos hð Þ B1 ¼ a1a2 1 � cos hð Þ � a3 sin h

C1 ¼ a1a3 1 � cos hð Þ þ a2 sin h

A2 ¼ a1a2 1 � cos hð Þ þ a3 sin h B2 ¼ 1 � a2
1 þ a2

3
� �

1 � cos hð Þ

C2 ¼ a2a3 1 � cos hð Þ � a1 sin h

A3 ¼ a1a3 1 � cos hð Þ � a2 sin h B3 ¼ a2a3 1 � cos hð Þ þ a1 sin h

C3 ¼ 1 � a2
1 þ a2

2
� �

1 � cos hð Þ

ð58Þ

Then, the velocity of the neighbor to the element at boundary B1 (Figure 6a or 6b) is written in 
terms of the element velocity at boundary B2 as 

vF1 ¼ RvC2 ¼

A1uC2 þ B1vC2 þ C1wC2

A2uC2 þ B2vC2 þ C2wC2

A3uC2 þ B3vC2 þ C3wC2

2

4

3

5 ð59Þ

Since scalars are invariant with respect to coordinate rotation, the values of pressure, density, and 
temperature of the neighbor to the element at boundary B1 are given by 

pF1 ¼ pC2 qF1
¼ qC2

TF1 ¼ TC2 ð60Þ

The mass flow rate at the boundary face is computed using the Rhie–Chow interpolation as 

_mb1 ¼ qb1
vb1 � Sb1 � Db1 pC2 � pC1ð Þ � Dv

b1
rpb1 � Tb1 � Dv

b1
rpb1 � Sb1

� �h i
þ

_m�b1

q�b1

 !

qb1
� _m�b1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
compressible

ð61Þ

where interpolated values are obtained by linear interpolation according to 

&b1 ¼
C2b2

C1b1 þ C2b2
&C1 þ

C1b1

C1b1 þ C2b2
&F1 ð62Þ

With estimates for all variables computed at every iteration, the segregated approach adopts 
a Dirichlet-like condition in the calculation of the convection, diffusion, and pressure gradient 
terms leading to the following modified coefficients in the algebraic equation for the boundary 
element C1: 

bv
C1

¼ bv
C1
� av

F1
vF1|{z}
¼RvC2

av
F1
¼ 0

ð63Þ

Similar modifications are required for element C2. 

Pressure correction equation 

For the mass flow rate across a periodic boundary condition, the corresponding correction _m0b1 
is 

given by 

_m0b1
¼ � q�b1Db1 p0C2

� p0C1

� �
þ

_m�b1

q�b1

 !

Cq;b1 p0b1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
compressible contribution

; ð64Þ
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leading to the following modifications to the coefficients of the algebraic equation for the boundary 
element C1: 

bp0
C1
¼ bp0

C1
� ap0

F1
p0F1|{z}
¼p0C2

ap0
F1
¼ 0

ð65Þ

The additional source term can be neglected since at convergence the pressure correction field is 
zero. 

Energy equation 

Again the treatment for the energy equation only requires that the connection from the periodic cell 
to its neighbor be done appropriately, leading to the following modified coefficients for the algebraic 
equation of the boundary element C1: 

bT
C1
¼ bT

C1
� aT

F1
TF1|{z}
¼TC2

aT
F1
¼ 0

ð66Þ

Compressible flow 

The implementation of boundary conditions in the momentum and energy equations is generally 
independent of whether the flow is incompressible or compressible. Therefore, the modifications pre-
sented for incompressible flow are applicable to compressible flow and will not be repeated. The only 
difference is with a prescribed stagnation temperature at the inlet instead of static temperature. In this 
case, the static temperature is extracted based on the known or computed velocity field and the 
boundary condition is treated like a known static temperature. 

As described next, the main difference in the implementation is in the pressure correction 
equation at inlet and outlet boundaries where an additional convection-like term resulting from 
density correction appears for compressible flow. 

Physical condition: Inlet 

The conditions to be imposed at inlet and outlet boundaries depend on whether the flow is subsonic 
or supersonic as it affects the mathematical type of the equation (i.e., elliptic or hyperbolic). 

Subsonic flow 

The same boundary conditions discussed for incompressible flow can be imposed for subsonic com-
pressible flow. For transonic flows, it is advisable to specify the stagnation pressure and velocity 
direction. 

Boundary condition: Specified velocity 

For compressible flow a specified velocity (Figure 3a) does not imply a known mass flow rate since the 
density depends on pressure (i.e., _m0b ¼ q0bv�b � Sb 6¼ 0). Moreover, assuming an ideal gas, density cor-
rection can be written in terms of p′ as 

q0 ¼ p0=RT ¼ Cqp0 ð67Þ
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Therefore, expressing p′b in terms of internal nodes using a zero order interpolation profile 
(i.e., p′b ¼ p′C), the modified coefficient for the boundary element is obtained as 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ Cq;b
_m�b
q�b|fflfflffl{zfflfflffl}

boundary face contribution

ð68Þ

Boundary condition: Specified static pressure and velocity direction 

For a specified static pressure at the inlet (Figure 3b), the pressure correction is zero and based on 
Eq. (67) the density correction is also zero. Thus, the implementation of this boundary condition 
follows that for incompressible flow presented earlier, with the modified coefficient for the boundary 
element computed as 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ q�bDC
|fflffl{zfflffl}

boundary face contribution

ð69Þ

Boundary condition: Specified total pressure and velocity direction 

The procedure followed for the implementation of this boundary condition, shown schematically in 
Figure 3c, is slightly different than the one used with incompressible flow. The main difference is in 
the use of the volume flow rate, rather than the mass flow rate, for the calculation of the velocity cor-
rection at the inlet boundary. In [44], the mass flow rate was used in the derivations. However, for 
problems with large drop in density at the inlet the new formulation presented below resulted in 
better convergence behavior. The use of the new procedure with incompressible flow leads to the 
same results reported above since the density is constant. 

For compressible flow, the total pressure relation is given by 

po;b ¼ pb 1þ
c � 1

2
M2

b

� �c= c� 1ð Þ

ð70Þ

where γ refers to the ratio of specific heats, and Mb to the Mach number at inlet. 
The velocity flux at the boundary is expressed using the Rhie–Chow interpolation as 

Ub ¼ vb � Sb ¼ vC � Sb � DC pb � pCð Þ � DCrp�b � Tb � DCrp�C � Sb
� �

ð71Þ

with its correction given by 

U 0b ¼ � DC p0b � p0C
� �

ð72Þ

Moreover, a Taylor series expansion leads to 

p0b ¼
qpb

qUb
U 0b: ð73Þ

Combining Eq. (72) with Eq. (73), the pressure correction at the boundary is given by 

p0b ¼
qpb
qUb
DC

1þ qpb
qUb
DC

p0C ¼ c1p0C ð74Þ
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The velocity vector at the boundary can be expressed in terms of Ub as 

vb ¼
Ub

ev � Sb
ev ð75Þ

while the stagnation pressure becomes 

p0;b ¼ pb 1þ
c � 1ð Þ

2c
Cq;b

Ub

ev � Sb

� �2
 !c= c� 1ð Þ

; ð76Þ

leading to the following expression for qpb
qUb

: 

qpb

qUb
¼ �

pbUb

T0R
: ð77Þ

The mass flow rate correction at the boundary becomes 

_m0b ¼ q�bDC 1 � c1ð Þ þ
_m�b
q�b

Cq;bc1

� �

p0C: ð78Þ

Substitution in the pressure correction equation yields the modified coefficient for the boundary 
element as 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ q�bDC 1 � c1ð Þ þ
_m�b
q�b

Cq;bc1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
boundary face contribution

ð79Þ

Supersonic flow 

Boundary condition: Specified pressure, velocity, and temperature 

If the flow is supersonic at the inlet, then the values for all variables have to be specified implying that 
_m0b ¼ p0b ¼ 0. Thus, for a boundary element, the modified coefficient is written as 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

ð80Þ

Physical condition: Outlet 

Subsonic flow 

Boundary condition: Specified pressure 
Similar to a specified pressure at the inlet, a specified pb at the outlet (Figure 4a) implies a zero press-
ure and density corrections. However, the mass flow rate correction is not zero and is obtained from 
Eq. (23) by setting p′b to zero leading to the following modified coefficient for the boundary element: 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ q�bDC
|fflffl{zfflffl}

boundary face contribution

ð81Þ
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Boundary condition: Specified mass flow rate 
For this boundary condition (Figure 4b), _m0b is zero and does not appear in the p′ equation with the 
coefficient of the boundary element computed as 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

ð82Þ

An expression for pb is obtained from Eq. (23) by setting _m0b to zero and is given by 

p0b ¼
q�bDC

q�bDC �
_m�b
q�b

� �
Cq;b

p0C ð83Þ

Equation (83) allows computing the boundary pressure and density. 

Supersonic flow 

Boundary condition: Zero normal gradient 

Nothing is specified at a supersonic outlet and all variables are extrapolated from the domain interior. 
Assuming a zero-order interpolation profile for pressure correction leads to the following modified aC 
coefficient: 

ap0
C ¼

VCCq

Dt
þ
X

f¼nb Cð Þ

Cq;f

q�f
_m�f ; 0

�
�

�
�

� �

þ
X

f¼nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ
_m�b
q�b

� �

Cq;b

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
boundary face contribution

ð84Þ

Results and discussion 

The boundary conditions described above are realized in a homemade program developed within 
OpenFOAM® [54], which is a finite volume based open source code framework that can be used 
to build a variety of CFD solvers based on the finite volume discretization. The solver implements 
the pressure correction SIMPLE algorithm for both incompressible and compressible flows. Second 
order schemes are used for convection discretization while Gauss reconstruction and linear interp-
olation are adopted for second order terms. The chosen test cases validate the previously reported 
boundary conditions for both incompressible and compressible flows. 

Flow around a stator blade 

The first validation application focuses on a compressible benchmark test problem based on the work 
of Goldman et al. [55]. It is a two-dimensional RANS turbulent simulation of a stator blade at mid- 
span. The Reynolds number, based on the chord length and the free-stream velocity, is Re ¼ 5 � 105 

and the free-stream Mach number is M∞ ¼ 0.2. As shown in Figure 7a, total-to-static, symmetry, and 
periodic boundary conditions are used to reproduce the experimental conditions in a reduced com-
putational domain. The mesh shown in Figure 7b is hybrid of hexahedra in the proximity of the blade 
and prisms in the outer region, with a total number of 7,200 cells and an average yþ of 200. 

A comparison of predicted blade loading (defined as the ratio of static pressure to the inlet total 
pressure) with experimental data is shown in Figure 7c. Numerical results are in good agreement with 
measurements demonstrating the reliability of the presented analysis of boundary conditions. 
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The GAMM test 

The correct treatment of boundary conditions is again demonstrated by computing the inviscid 
flow in a channel with either one (Figure 8a) or two (Figure 8b) circular arc airfoils along its cen-
terline, which is denoted in the literature by the GAMM test. Many researchers [19, 48] have used 
this problem as a benchmark to test their numerical algorithms. Applications of the method to two 
different inviscid flow types, transonic and supersonic, are presented. The physical configuration for 
transonic calculations is shown in Figure 8a and it represents a channel of width twice the length of 
the bump chord ℓ, and of length 3ℓ. For the supersonic case shown in Figure 8b, the same channel 
width as for the transonic case is used. The total length of the channel is 4.5 ℓ with two bumps, 
each of chord ℓ, placed in series separated by a distance of 0.5ℓ. In both cases, the circular arc 
bumps are placed at a distance ℓ from the channel inlet and outlet. For transonic calculations, 
the thickness-to-chord ratio is 10%�while for supersonic flow calculations it is 4%. The geometric 

Figure 7. (a) Physical situation and boundary conditions, (b) grid system used, and (c) a comparison of predicted blade loading 
with the experimental data for the turbulent compressible flow around a stator blade.  
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and flow symmetry are exploited to solve both problems over the upper half of their physical 
domains. During post processing, solutions are reflected across the horizontal centerline to show 
fields over the entire domains. 

For transonic computations, uniform stagnation conditions are prescribed at the inlet 
(corresponding to an inlet Mach number of 0.675) along with an axial velocity direction, while 
at outlet the pressure is assigned. For supersonic flow, all variables are uniformly specified at inlet 
(resulting in a Mach number with a value of 1.65), while they are extrapolated from the interior 
solution at the outlet. The slip boundary condition applies at all walls and the symmetry condition 
along the centerline. 

Maps of the density gradient magnitude for both configurations are presented in Figures 8c and d. 
In addition, the numerically computed Mach number values along the centerline (including the upper 
wall of the circular arc bumps; designated lower wall in Figures 8e and f) and the outer wall of the 
channel (designated upper wall in Figures 8e and f) are displayed in Figures 8e and f for the transonic 
and supersonic cases, respectively. All generated results are in excellent agreement with correspond-
ing ones reported in the literature [19, 48]. 

Figure 8. Physical domain (a) for transonic and (b) supersonic flows; Magnitude of density gradient for (c) transonic and (d) super-
sonic flow; Mach number profiles along the centerline of the domain and the wall of the airfoil (upper part) and the upper wall of 
the channel in the (e) transonic and (f) supersonic cases.  
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Flow around a NACA 0012 airfoil 

The last test problem deals with the three-dimensional incompressible flow around a wing with a 
rounded tip and is based on the work of Dacles-Mariani et al. [56]. Experimentally measured data 
for the configuration are available for comparison. The physical situation, displayed in Figure 9a, 
comprises the wing and the wind tunnel. The wing cross-section is a NACA 0012 airfoil with a chord 
of length 1.22 m. The wing semi-span is 0.91 m. The mesh is in agreement with the restrictions of the 
low-speed wind tunnel used during measurements. Figure 9b depicts the three-dimensional grid used, 
which is composed of 1,551,560 elements. As shown, the computational domain extends beyond the 
physical domain to promote numerical stability. Further, computations are performed over half 
the width (i.e., half the span of the wing) of the physical domain with the symmetry plane located 
at the middle of the wing. 

As for boundary conditions, a uniform velocity field is specified at the inlet where a turbulence 
length scale and intensity are prescribed for the turbulence quantities. A uniform pressure is imposed 
at the outlet and the symmetry boundary condition is applied along the symmetry plane. 

To compare numerical results with experimental data, a cross-flow velocity is defined as 

Ucrossflow ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ u2
p

=Uinlet ð85Þ

and predicted and measured profiles of Ucrossflow at two stream-wise locations are displayed in Figures 
9c and d. The first location is in the vertical plane at the trailing edge of the wing, while the second is 
in the vertical plane located at a distance 0.24c beyond the wing. At both locations, profiles are along 
horizontal lines (i.e., in the span wise direction) that pass through the developed wingtip vortex core 
[56]. Numerical results are in good agreement with measurements demonstrating the correctness of 
the presented analysis of boundary conditions. 

Figure 9. (a) Experimental setup [41]; (b) computational domain and grid system used; comparison of measured and numerically 
computed Ucrossflow profiles along the horizontal line passing through the vortex core at the following two positions in the stream- 
wise direction: (c) airfoil trailing edge, and (d) 0.24c beyond the trailing edge.  
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Closing remarks 

The paper described the formulation of boundary conditions encountered in solving incompressible 
and compressible flow problems. Issues related to the implementation of boundary conditions in the 
context of a segregated pressure-based unstructured FVM were thoroughly clarified. Specifically, the 
modifications to the coefficients of the algebraic equations at boundary elements were detailed. 
Several incompressible and compressible flow problems involving many of the presented boundary 
conditions were solved and their solutions are shown to be in agreement with published experimental 
and/or numerical data, confirming correctness of the suggested formulation. 
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