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IMPROVEMENTS TO INCOMPRESSIBLE FLOW 
CALCULATION ON A NONSTAGGERED 
CURVILINEAR GRID 

S.  Acharya and E H.  Moukalled 
Mechanical Engineering Department, Louisiam State University, Baton Rouge, 
Louisiana 70803 

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm of Rhie and 
Chow [6] for flow pmblems on nonstaggered curvilinear grids is extended, and a 
SIMPLE-revised (SIMPLER) algorithm is formulated on nonstaggered curvilinear grids. 
In addition, a new algorilhm, SIMPLE-modifed (SIMPLEM)), is formulated. The pe#for- 
mance of these three algorilhms is examined thmugh two test pmhlems (driven flow in a 
cavity and flow in a srrdden expansion). The inlegml form of the continuity equation is 
shown lo be not satikfied in the SIMPLE formulotion. In the SIMPLER formulation, the 
residuals ofthe momentum equation do not decrease to acceptably low values. The SIM- 
PLEM algorithm shows reasonably good convergence behavior a d  is superior to both the 
SIMPLE and SIMPLER algorithms. On the basis of these comparisons, the SlMPLEM 
algorithm is recommended for use in nonstaggered curvilinear meshes. 

INTRODUCTION 

In solving incompressible flow equations, a staggered grid (Fig. la) is generally 
used in finite difference methods to eliminate the possibility of predicting checkerboard 
pressure and velocity fields [ l ,  21. Such unrealistic fields are linked to the fact that the 
first derivative of pressure appears in the momentum equation, but pressure does not 
have an explicit equation for itself even though its values are implicitly specified by the 
continuity constraint. When pressure and velocities are stored at the same grid point 
(nonstaggered grid, Fig. Ib) and when central differences are used to express the first- 
order derivatives of pressure in the momentum equation and velocity in the continuity 
equation, pressure and velocity differences between alternate grid points result in the 
system of equations. Therefore the momentum equations detect no difference between a 
uniform and a checkerboard pressure field, whereas the continuity equation is satisfied 
by both uniform and checkerboard velocity fields. These checkerboard pressure and 
velocity fields are eliminated if a staggered grid arrangement such as that shown in Fig. 
la is used. In such a grid system, pressure and velocity differences between adjacent 
(rather than alternate) grid points are involved in the system of equations, and hence 
checkerboard pressure and velocity fields are inadmissible. 

The primary disadvantage of the staggered grid arrangement is !he greater geomet- 
rical, and therefore, mathematical complexity associated with three sets of grids (one for 
the x-component of velocity, one for the y-component of velocity, and one for pressure 
and other scalar variables). These complexities are particularly overwhelming in curvi- 
linear coordinate systems. It is therefore desirable to calculate the pressure and velocity 
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NOMENCLATURE 

a, A coefficients in the discretized equation t transformed coordinate 
b. B coefficients of the pressure gradient p density 

term in the 6 direction 6 dependent variable 
c. C coefficients of the pressure gradient r diffusion coefficient 

term in the 7 direction A6 control volume spacing in .+direction 

c~ specific heat at constant pressure A? control volume spacing in ?direction 
G contravariant velocity component 
G contravariant term corresponding to u Subscripts j 

and v 
J jacobian e ,  n, s, w east, north, south, and west control 

k thermal conductivity volume faces surrounding grid point P 

L characteristic length E, N. S. 

Re Reynolds number W east, north, south, and west grid 

8, S source terms 
points surrounding grid point P 

u. U x-component of velocity P main grid point 

v ,  V y-component of velocity I corresponding to the x-momentum 

temporary velocity variables equation 
vt u 
x, X canesian coordinate direction 2 corresponding to the y-momentum 

y, Y canesian coordinate direction equation 

a metric quantity (xi  + y:) Superscripts 
b metric quantity (x + x + yty,) 
Y 

4 1 metric quantity (xt + y d  * previous iteration value 
6 central difference operator correction value 
6t grid point spacing in €direction 1 corresponding to the x-momentum 
611 grid point spacing in ?direction equation 
11 transformed coordinate 2 corresponding to the y-momentum 
Ic viscosity equation 

components at the same location but in such a way that unrealistic fields are not pre- 
dicted. Such methods have been presented by Abdallah [3], Hsu [4], Reggio and Ca- 
marero [5], and Rhie and Chow [6]. In [3] the pressure poisson equation is obtained by 
adding the derivatives of the momentum equations. The momentum equations are solved 
by an explicit formulation. Unrealistic fields are avoided by ensuring that the boundary 
conditions exactly satisfy compatibility conditions. In [4], [5], [6], and the present paper, 
the pressure equation is obtained by combining the continuity and momentum equations 
as in the semi-implicit method for pressure-linked equations (SIMPLE) method [2] or 
the SIMPLE-revised (SIMPLER) method [9]. Hsu [4] developed special interpolation 
expressions from the momentum equations for the mass fluxes leaving the faces of a 
control volume surrounding a grid point. These expressions, which contain pressure 
differences between adjacent nodes, are used in the continuity equation to obtain the 
equation for pressure, and a SIMPLER type algorithm is used in the calculations. Reggio 
and Camarero [5] used an overlapping nonstaggered grid with forward and backward 
differencing for mass and pressure gradients, respectively, and the SIMPLE algorithm 
was used in the calculations. Rhie and Chow [6] added a correction term to the mass 
fluxes along the control volume faces. This correction term is proportional to the differ- 
ence between a pressure gradient calculated by a centered 2-6 (26-[ or 26-7) difference 
scheme and a pressure gradient calculated on a 1-6 difference scheme. Thus the correc- 
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u,  v, p C.V. - 

C.V. : 

Location of u 

Location of v 

Location of p and 
Other Scalar Variables 

Control Vc~lume 

C.V. around a 
Grid Point P 

Fig. 1 (a) Staggered grid arrangement for two-dimensional situations. (b)  Nonstaggered grid 
arrangement for twodimensional situations. 

tion term immediately detects and suppresses the development of checkerboard pressure 
fields. Only the SIMPLE algorithm was used in their calculations, and the method was 
applied to flow over an airfoil. No results were presented, however, regarding the 
convergence characteristics of the momentum and continuity equations or the degree to 
which conservation was satisfied. 

Similar efforts in equally representing the pressure and velocity fields (called 
equal-order interpolation) have been undertaken in the finite element literature. Exam- 
ples of such efforts have been reported by Schneider, Raithby, and Yovanovich [7] and 
by Sani et al. 181. 

This paper has two objectives. The first is to extend the method of Rhie and Chow 
[6] (which used the SIMPLE algorithm) to the SIMPLER algorithn~ and to evaluate the 
convergence characteristics of the two methods and the degree to which conservation 
over each control volume is satisfied. The second is to present a new algorithm, 
SIMPLE-modified (SIMPLEM), which is shown to be considerably superior to the SIM- 
PLE and SIMPLER algorithms on nonstaggered curvilinear grids. The unique features 
of this algorithm are its simplicity, its good convergence characteristics, and its ability to 
suppress checkerboard pressure and velocity fields. 
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GOVERNING EQUATIONS 

In cartesian coordinates, the momentum and mass conservation equations can be 
written as 

where & is 1 for the mass conservation equation, u for the conservation of x-momentum, 
and v for the conservation of y-momentum. The diffusion coefficient is denoted by r, 
and S is the source term. If curvilinear coordinates 6 and t) are introduced, Eq. (1) can 
be transformed according to the general transformation t - t (x, y)  and 7 -. (x, y) and 
can be rewritten as 

where a, 0, 7 ,  and the jacobian J are given by 

and the contravariant velocity components G ,  and G2 are defined as 

The differential terms in parentheses on the left side of Eq. (2) represent the total fluxes 
across lines of constant t and 7, respectively. 

In obtaining the discrete approximation of Eq. (2) on a nonstaggered curvilinear 
grid, the governing differential equation is integrated over the control volume surround- 
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ing a grid point P (see Fig. l b  for example), and profile approximations are made in 
each coordinate direction. This results in the following system of equations. 
X-momentum: 

Continuity: 

where up denotes the velocity at the point P; u, denotes the velocity at its four neigh- 
bors, E, W, N, and S ;  and a; and a: are the corresponding coefficients whose expres- 
sions depend on the nature of the profile approximations made. In the present work the 
power-law profile approximation recommended by Patankar [9] is chosen. The terms, is 
the x-momentum source term, and b, and c, are given by the following expressions: 

I - - ( )  A A c = (g) Ap A,, 

A similar nomenclature applies to the y-momentum equation [Eq. (lo)]. Equations (9) 
and (10) can be re-expressed simply as 

where 

and 
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SIMPLE AND SIMPLER ALGORITHMS 
ON NONSTAGGERED CURVILINEAR GRIDS 

SIMPLE Algorithm 

The pressure-correction equation is used in the SIMPLE algorithm to update both 
velocity and pressure. The pressure correction p' is a correction to the currently avail- 
able estimate for pressure (p*), so that the correct pressure field p - p *  + p' when 
substituted into the momentum equation produces a continuity-satisfying velocity field. 
If u* is the velocity field based on p*, then Eq. (13) can be written as 

Subtracting Eq. (17) from Eq. (13) and arbitrarily dropping the C A;(U, - u:) term 
results in the velocity-correction equation 

A similar equation can be written for v,: 

The corresponding correction equations for GI and G, can be obtained by substi- 
tuting Eqs. (18) and (19) into Eqs. (7) and (8). This results in 

all 
(20) 

and 

If the grid is orthogonal, the last terms in Eqs. (20) and (21) are negligible. 
Neglecting these terms, GI and G, can be written as 

apt G, - G: + C- 
all 

where 
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These approximate relations for GI and G, [Eqs. (22) and (:23)] can be used to 
derive new correction equations for u and v as follows: 

The pressure-correction equation is obtained by substituting C;, and G, from Eqs. 
(22) and (23) into the continuity equation [Eq. (1 I)]. Its final form is given by 

where 

In Eq. (33), b is the local imbalance of mass and the subscripts e, w, n, and s refer 
to the interfaces of a control volume (see Fig. 1). In the SIMPLE algorithm, once the 
pressure-correction field is obtained, pressure is updated by adding p' top* and veloci- 
ties are updated by using Eqs. (25) and (26). When updating u and v, a second-order 
centered 2-6 (26-[ or 28-11) difference scheme is used for the pressure-correction gradi- 
ents at the grid nodes. The contravariant components GI and G, are needed at the 
interfaces and are updated by using a 1-6 difference scheme for the pressure-correction 
gradients at the control volume faces. Oscillations in the pressure field are thus detected 
by G, and G,, which are always used in the momentum equations. This practice alone is 
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however, insufficient to suppress spurious oscillations completely. This is because, after 
the momentum equations are solved to obtain u and v, the contravariant velocities GI 
and G, are calculated at the nodes by using Eqs. (7) and (8) and linear interpolation is 
used to calculate the interface values. These interface contravariant values (GI and G,) 
are used in calculating the source term of the p' equation, but because they are obtained 
by linear interpolation and because a 26-[ (or 26-v) scheme for Vp is used in the momen- 
tum equation, spurious oscillations may not be easily destroyed. In view of this, Rhie 
and Chow [6] added the following correction term to G* in the source term of the 
pressure-correction equation to eliminate oscillations in the predicted solutions. 

where the overbar indicates that the results are obtained by linear interpolation between 
grid nodes. This practice, although successful in suppressing oscillations, suffers from 
the problem of satisfying continuity and is discussed later. 

The SIMPLE algorithm consists of the following steps. 

1. Start with guessed fields u*, v*,  and p*. 
2. Calculate the coefficients of the momentum equations using a 26-[ or 26-7 

scheme for Vp, and solve the momentum equations to obtain a new velocity 
field. 

3. Calculate new GI and G, values at the grid nodes using the, new values of the 
velocity components. Interpolate to find GI and G, at the control volume faces. 

4. Calculate the correction terms to be added to GI and G, in the pressure- 
correction equation (continuity equation) only. 

5. Calculate the coefficients of the pressure-correction equation, and solve to ob- 
tain the pressure-correction field. 

6. Use the pressure-correction field to update p, u, v, GI ,  and G,. The contra- 
variant velocities GI and G, are updated directly at the control volume faces by 
using a centered 1-6 difference scheme. 

7. Return to step 2 and repeat until a converged solution is obtained. 

SIMPLER Algorithm 

In this paper, a SIMPLER algorithm is developed for nonstaggered curvilinear 
grids. The rationale for developing this algorithm is based on the demonstrated superior- 
ity of the SIMPLER algorithm over the SIMPLE algorithm on staggered grids. A similar 
superiority is therefore expected on nonstaggered grids. 

In SIMPLER, pressure is updated through an equation for pressure and velocity is 
updated through the pressure-correction equation. The pressure equation is derived by 
writing the momentum equations in the following form: 
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where 

With the above definitions of u and v ,  expressions are obtained for GI and G, as 
follows: 

GI - GI + B, 2 - B, e)  ( g )  + ( c ,  3 - c, 2) (E) (39) ( a7 a? a7 a7 

where 

Introducing these values of GI and G, into the continuity equation, the final form 
of the pressure equation is obtained as 

where a,, a,, a,, a,, and a, are given by Eqs. (28) through (32) and 

In Eq. (44), b, is the contribution due to nonorthogonality. It is expressed as 
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Fig. 2 Recirculating flow in a square cavity. 

+ [ ( B  - B  ) ( $ 1  - [ ( 4  g - B1 2 )  ( $ ) I  " (45) 
a t  a t  

To avoid checkerboard fields, a correction term as in Eq. (34) is added to the 
interface contravariant components appearing in the source term of the pressure- 
correction equation. The specific steps in the SIMPLER algorithm are as follows. 

Fig. 3 Recirculating flow due to sudden expansion in a pipe. 
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A X G . A .  (Integral Form of 
~ b n l i n u i t ~ )  

o u, v Momentum Equotion Residuals 
Residuols of the Pressure 

Correction Eouotion w i t h  
Correction Terms 

I I I I :- 
2 0 6 0 100 140 

ITER 

Fig. 4 Maximum residuals of conservation equations for flow in a square cavity on a 
15 x 15 orthogonal mesh obtained with SIMPLE (Re - 100). ITER along the horizontal 
axis denotes number of iterations. 

1. Start with guessed fields u* and v*. 
2. Calculate the coefficients of the momentum equations and then u and v. Use 

these values to find GI and G, at the grid nodes. Interpolate linearly to find GI 
and G, at the control volume faces. 

3. Calculate the coefficients of the pressure equation, and solve the pressure 
equation to obtain a new pressure field. 

4. Use this new pressure field to calculate the pressure gradients in the momen- 
tum equations using a 26-t or 28-11 centered difference scheme. 

5. Solve the momentum equations to obtain a new velocity field. 
6. Use this field to obtain new GI and G, values at the grid nodes. By linear 

interpolation, obtain GI and G, at the control volume faces. 
7. Calculate the correction terms that will be added to GI and G, in the source 

term of the pressure-correction equation. 
8. Solve the pressure-correction equation to obtain a pressure-correction field. 
9. Use this field to update u,  v,  GI, and G,. Do not update the pressure. Update 

GI and G, directly at the interfaces using a 16-t or 16-7 centered difference 
scheme for Vp '  . 

10. Return to step 2 and repeat until convergence is obtained. 
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PROPOSED SIMPLEM ALGORITHM 
ON NONSTAGGERED CURVILINEAR GRIDS 

The SIMPLEM algorithm was developed because of the unsatisfactory perfor- 
mances by the SIMPLE and the SIMPLER algorithms and is based on experience gath- 
ered from test problems run with these algorithms. In the SIMPLEM algorithm, a pres- 
sure equation is used to update the pressure field and also the velocity field such that 
they satisfy continuity in each step. 

The SIMPLEM algorithm consists of the following steps. 

1. Start with guessed fields u* and v* .  
2. Calculate the coefficients of the momentum equations and then solve for u and 

v.  Use these values to find GI and G2 at the grid nodes. Interpolate linearly to 
find GI and G2 at the control volume faces. 

3. Calculate the coefficients of the pressure equation, and solve it to obtain a new 
pressure field. 

4. Use this new pressure field to calculate the pressure gradients in the momentum 
equation using a 26-[ or 28-11 centered difference scheme. 

5. Update G, and G2 [Eqs. (39) and (40)] at the interfaces using the new pressure 
field and a 18-[ or 16-11 centered difference scheme for Vp. 

6. On the basis of the new GI and G, values, recalculate the coefficients and solve 
the momentum equations to obtain a new velocity field (u and v values). 

Fig. 5 Maximum residuals of conservation equations for flow in a square 
cavity on a 15 x 15 nonorthogonal mesh obtained with SIMPLE (Re - 
100). See Fig. 4 for explanation of symbols. 
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t o Residuals of Pressure 
Correction Equation with Corrc!ction Terms 

A u ,  v Momentum Equation Residuals 
Residuals of the Pressure 

I Equation 

Fig. 6 Maximum residuals of conservation equations for flow in a square cavity on a 15 x I5 
orthogonal mesh obtained with SIMPLER (Re - IM)). 

7. Use these u and v values as a new guess. Return to step ;! and repeat until a 
converged solution is obtained. 

TEST PROBLEMS AND RESULTS 

The three algorithms were used to solve two test problems to determine the con- 
vergence characteristics and the degree to which conservation is satisfied. 

The first problem, driven flow in a square cavity (Fig. 2). is one of the standard 
problems used in the literature [4, 10, 111 to test the solution method~~logy for fluid-flow 
problems. 

By introducing the following dimensionless variables 

where us is the velocity of the moving boundary and L is the length of the square cavity, 
the governing equations for this problem can be written as 
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The Reynolds number, defined by puJlp, is the only variable parameter in this prob- 
lem. The results presented are for Reynolds number of 100. The boundary conditions for 
this problem are zero velocities along all boundaries except at the moving wall, where U 
is set to 1. 

The second problem is sudden expansion in a pipe (Fig. 3). This problem is chosen 
because of the strong pressure gradients in the domain that can give rise to spurious 
oscillations if the solution scheme is not appropriately formulated. The governing equa- 
tions for this problem can be written as 

v . (pu) - 0 (50) 

Fig. 7 Maximum residuals of conservation equations for flow in a quare 
cavity on a 15 x 15 nonorthogonal mesh obtained with SIMPLER (Re - 
100). See Fig. 6 for explanation of symbols. 
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4 A C G i A i  when Updoting Gi 
' from Momentum Equation 

- $ G i ~ i  without Updoting G I  
I from Momentum Equotiorl 

0 Residuals of u , v ,  ond p 
Equations for Both Coses 

- 

Fig. 8 Maximum residuals of conservation equations for flow in a square 
cavity on a 15 x 15 orthogonal mesh obtained with SIMPLEM (Re -. 100). 

where p is the viscosity of the fluid used, k is the thermal conductivity, and c, is the 
specific heat. At the inlet, a uniform v-velocity of 100 m/s at room temperature is 
assumed. Air is taken to be the working fluid, and p, k, c,,, and p for constant density 
flows are evaluated at the inlet room temperature. Results are also obtained for variable 
density flows, for which the equation of state is used to calculate the density. Along the 
outflow boundary a high-Peclet number unidirectional flow is assumed, and the outflow 
velocity is modified to satisfy overall continuity. 

The first problem is solved for both orthogonal and nonorthogonal coordinates. 
The solution for the second problem is obtained only on an orthogor~al grid. 

Of primary interest are the maximum residuals of the equations solved and the 
convergence rate of these residuals. The maximum residual is a comnionly used norm to 
check the convergence rate of a numeric scheme and is adopted here in preference to 
other alternative norms, such as the root-mean-square value of the rc:siduals or the sum 
of the magnitude of the residuals. 

In Figs. 4, 5, and 10 the maximum residuals of the momentum, continuity [Eq. 
(1 I)], and pressure-correction equations [Eq. (27)] obtained by using SIMPLE are pre- 
sented. All results predict the same behavior. The residuals of the momentum equations 
and the pressure-correction equation (including the correction terms) are driven to zero. 
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The residuals of the continuity equation reach a certain level of convergence, however, 
and stop decreasing further with iterations. 

The residuals of the momentum, pressure, and pressure-correction equations when 
using SIMPLER are presented in Figs. 6, 7, and 11. From these figures, it is clear that 
all residuals, with the exception of the residuals of the pressure equation, stabilize after 
reaching a certain level of convergence. 

Figures 8, 9, 12, and 13 show the residuals of the various quantities obtained by 
using the new algorithm SIMPLEM. In all figures, the maximum residuals of u, v ,  p, 
and Eq. (1 1) (the continuity equation) are presented by means of two different practices. 
The first practice is to update the contravariant velocity components needed at the inter- 
faces after solving the momentum equation (i.e., after step 6 in the SIMPLEM algo- 
rithm). In the second practice, outlined earlier, these components are not updated from 
momentum and therefore are always based on the solution of the pressure equation. All 
results show the same trend, with maximum conservation obtained for the case when the 
flow is incompressible and the grid is orthogonal. The residuals of Eq. (11) are com- 
puted to study the effect of interpolation on continuity. Furthermore, Eq. (1 1) is the 
integral form of the continuity equation, whereas the pressure equation represents the 
discretized form of continuity. 

The residuals of the pressure and momentum equations are always driven to zero. 
For some of the cases, however, the maximum imbalance of mass [Eq. (1 I)] converges 
to a certain extent and stops decreasing further after a number of iterations. This behav- 
ior is noticed in a skewed grid or in variable-density flow as shown in Figs. 9 and 12, 

Fig. 9 Maximum residuals of conservation equations for flow in a square 
cavity on a 15 x 15 nonorthogonal mesh obtained with SIMPLEM (Re - 
100). See Fig. 8 for explanation of symbols. 
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Fig. 10 Maximum residuals of consewation equations for recirculating 
flow in a sudden expansion obtained with a 14 x 14 orthogonal mesh and 
SIMPLE (variable density flow). See Fig. 4 for explanation of symt~ols. 

respectively. In all figures, the practice of updating the contravariant velocity compo- 
nents after solving the momentum equations slows convergence considerably. 

DISCUSSION OF RESULTS 

In SIMPLE, the integral form of the continuity equation [Eq. (1 l)] was not satis- 
fied (Figs. 4, 5, and 10). This is attributed to the correction terms added to the interface 
contravariant velocities appearing in the source term of the pressure-correction equation. 
These approximations are introduced after, not before, deriving the :pressure-correction 
equation. Therefore the source term b in the pressure-correction equation [Eq. (33)], 
which represents the local deviation from continuity, is altered by the inclusion of the 
correction terms and hence is no longer exactly equal to the local mass conservation 
imbalance. As a result, the pressure-correction equation that is solved is not the dis- 
cretized continuity equation but rather an approximate form of the continuity equation, 
with the approximation being of the order of the correction term (which, in some cases, 
is quite large). This conclusion is confirmed by obtaining results, when possible (i.e., 
when checkerboard pressure fields can be avoided), for the same problems without 
adding these correction terms, in which case the residuals of the continuity and pressure- 
correction equations are identical and both converge to zero. It is possible to obtain 
oscillation-free results for the driven cavity flow problem only. Oscillation occurred in 
the sudden expansion problem, where pressure gradients play a dominant role. There- 
fore, the addition of these terms is necessary to suppress oscillation effectively. Because 
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pressure and velocity components are updated from the same pressure-correction equa- 
tion, convergence of their equations is expected. The results in Figs. 4, 5, and 10 
confirm this expectation. 

In SIMPLER, a different behavior is noted. Results obtained with the correction 
terms added to the contravariant velocities in the source term of the pressure-correction 
equation (Figs. 6, 7, and 11) indicate that the only quantity that converges is pressure. 
To explain this behavior, it is helpful to recall Eqs. (20) and (39). Both equations are 
used at different stages of the procedure to evaluate the contravariant velocity compo- 
nents needed at the control volume faces. Equation (39) is used in the pressure equation; 
therefore the contravariant velocities based on the pressure field always satisfy continu- 
ity as long as these contravariant velocities are calculated from Eq. (39). The G values in 
this equation are obtained by linear interpolation from the nodal values, which are 
obtained from the momentum equations. On the other hand, Eq. (20) is used after 
solving the pressure-correction equation to find G, and G, at the interfaces. 

From the above description, different equations are used at two different stages to 
find the same contravariant velocity components. Further, in view of the correction 
terms the discretized continuity equation for the pressure-correction equation is different 

Fig. 11 Maximum residuals of conservation equations for recirculating flow in 
a sudden expansion obtained with a 14 x 14 orthogonal mesh and SIMPLER 
(variable density flow). See Fig. 6 for explanation of symbols. 
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A Z G i A i  when Updating Gi 
' from Momentum Equation 

Z G i A i  without Updating Gi  
' f rom Momentum Equation 

v u, v Momentum Equation Residuals 
when Updating Gi 

7 u, v Momentum Equation Residuals 
without Updating Gi 

A Pressure Equation Residual 
when Updating Gi 

t 0 Pressure Equation Residual 
without Updating Gi 

Fig. 12 Maximum residuals of conservation equations for recirculating llow in a 
sudden expansion obtained with a 14 x 14 orthogonal mesh and SIMPLEM (vari- 
able density flow). 

from the discretized continuity equation for the pressure. These discrepancies cause the 
nonconsewative behavior, and as a consequence the converged velocity field from the 
momentum equation is not identical to the velocity field updated from the pressure- 
correction equation. 

What is learned from this discussion is that, for all quantities to converge, only one 
of the two discretized continuity equations should be used. This means that one of either 
Eq. (20) or Eq. (39) should be used to update the contravariant velocity components at 
the interfaces. One of them [Eq. (20)] is used in SIMPLE (after thep '  equation), and the 
convergence problem arises because of the correction terms that are required to suppress 
oscillations. SIMPLEM uses the oressure eauation without the correction terms but in 
such a way as to suppress oscillation. A simple idea is found to be effective in accom- 
plishing this objective. This idea is to solve the pressure equation only and to update the 
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contravariant velocity components needed at the control volume faces by using a cen- 
tered 16-t or 16-11 pressure difference scheme in the same equation for the contravariant 
velocities that is used to derive the pressure equation [Eqs. (39) and (40)l. Therefore any 
oscillation that arises can be felt, and immediately suppressed, by the interface contrava- 
riant velocities, which are always used in calculating the coefficients of the momentum 
equation. With the new treatment, the only connection between the contravariant and the 
cartesian velocity components are the G values that are calculated from u and v. A 26-.$ 
or 26-q difference scheme for the pressure gradients and the GI and G, values updated in 
step 5 of the SIMPLEM algorithm by means of a 16- scheme for V p  are used to calculate 
the coefficients of the momentum equation. The corresponding GI and G, values in the 
SIMPLE and SIMPLER algorithms are those that are updated by means of a 16- scheme 
for Vp'  after the solution of the pressure-correction equation. Therefore, using pressure 
gradients that are based on a 16-i or 16-11 difference scheme for the G values in Eqs. (39) 
and (40) to obtain (or to update) the contravariant velocity components can be seen as a 
correction procedure similar to the one used by Rhie and Chow [6] but without the 
introduction of any extra terms. The additional work done is in the recalculation of the 
coefficients of the momentum equation after updating the interface velocities to make 
sure that the velocities used in the coefficients and the pressure field satisfy the same 
continuity equation. The work involved in this step is actually comparable to calculating 
the correction terms in SIMPLE and to solving the pressure-correction equation in SIM- 
PLER. The difference in computer time between SIMPLE and SIMPLEM is about 8% 

Fig. 13 Maximum residuals of conservation equations for recirculating flow in a 
sudden expansion obtained with a 14 X 14 orthogonal mesh and SIMPLEM (con- 
stant density flow). See Fig. 12 for explanation of symbols. 
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(SIMPLEM needs more time). The solutions obtained with this practice show no sign of 
oscillation. 

The results shown in Figs. 8, 9, 12, and 13 indicate the advantages of this treat- 
ment, by which the residuals of u, v ,  and p are always driven to zero. From these 
figures it is clear that the contravariant components should always be based on continuity 
(i.e., the pressure equation), and any attempt to update these components from Eq. (7) 
after solving the momentum equations (step 6 in the SIMPLEM algorithm) creates the 
same problem noticed in SIMPLER. 

If the grid is orthogonal the terms due to nonorthogonality in Eel. (39) cancel, so 
that there is no need to find the cross-derivatives. For nonorthogonal situations, how- 
ever, interpolation is needed for these derivatives. This explains the slow convergence of 
the maximum imbalance of mass shown in Fig. 9. Convergence in this case is to the 
order of the interpolation, even though the conservation for such cases is at least two 
orders of magnitude better than the values obtained by SIMPLE and SIMPLER. 

The residuals for the case of constant density flow are shown in Fig. 13. In this 
situation, the convergence behavior is better compared to variable density flow (Fig. 
12). It is speculated that for variable density flows the conservation of mass will improve 
if (pG) at the interface is directly interpolated instead of interpolating p and G sepa- 
rately, as is done here. 

CONCLUSIONS 

A new algorithm for the solution of two-dimensional elliptic flc~ws in curvilinear 
coordinates by means of an equal-order pressure-velocity coupling scheme has been 
presented. This algorithm, called SIMPLEM, is shown to be superior to SIMPLE and 
SIMPLER algorithms in nonstaggered curvilinear meshes. Oscillatior~ was totally sup- 
pressed by a simple yet effective scheme. 
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