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IMPROVEMENTS TO INCOMPRESSIBLE FLOW
CALCULATION ON A NONSTAGGERED
CURYVILINEAR GRID

S. Acharya and F. H. Moukalled

Mechanical Engineering Department, Louisiana State University, Baton Rouge,
Louisiana 70803

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm of Rhie and
Chow [6] for flow problems on nonstaggered curvilinear grids is extended, and a
SIMPLE-revised (SIMPLER) algorithm is formulated on nonstaggered curvilinear grids.
In addition, a new algorithm, SIMPLE-modified (SIMPLEM), is formulated. The perfor-
mance of these three algonithms is examined through two test problems (driven flow in a
cavity and flow in a sudden expansion). The integral form of the continuity equation is
shown to be not satisfied in the SIMPLE formulation. In the SIMPLER formulation, the
residuals of the momentum equation do not decrease to acceptably low values. The SIM-
PLEM algorithm shows reasonably good convergence behavior and is superior to both the
SIMPLE and SIMPLER algorithms, On the basis of these comparisons, the SIMPLEM
algorithm is recommended for use in nonstaggered curvilinear meshes.

INTRODUCTION

In solving incompressible flow equations, a staggered grid (Fig. la) is generally
used in finite difference methods to eliminate the possibility of predicting checkerboard
pressure and velocity fields [1, 2]. Such unrealistic fields are linked 1o the fact that the
first derivative of pressure appears in the momentum equation, but pressure does not
have an explicit equation for itself even though its values are implicitly specified by the
continuity constraint. When pressure and velocities are stored at the same grid point
(nonstaggered grid, Fig. 1b) and when central differences are used to express the first-
order derivatives of pressure in the momentum equation and velocity in the continuity
equation, pressure and velocity differences between alternate grid points result in the
system of equations. Therefore the momentum equations detect no difference between a
uniform and a checkerboard pressure field, whereas the continuity equation is satisfied
by both uniform and checkerboard velocity fields. These checkerboard pressure and
velocity fields are eliminated if a staggered grid arrangement such as that shown in Fig.
la is used. In such a grid system, pressure and velocity differences between adjacent
(rather than altermate) grid points are involved in the system of equations, and hence
checkerboard pressure and velocity fields are inadmissible.

The primary disadvantage of the staggered grid arrangement is the greater geomet-
rical, and therefore, mathematical complexity associated with three sets of grids (one for
the x-component of velocity, one for the y-component of velocity, and one for pressure
and other scalar variables). These complexities are particularly overwhelming in curvi-
linear coordinate systems. It is therefore desirable to calculate the pressure and velocity
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NOMENCLATURE

a A coefficients in the discretized equation ¢ transformed coordinate
b, B coefficients of the pressure gradient p density

term in the £ direction ¢ dependent variable
¢ C coefficients of the pressure gradient r diffusion coefficient

term in the 5 direction At control volume spacing in {-direction
<p specific heat at constant pressure Ay control volume spacing in y-direction
G contravariant velocity component
G contravariant term corresponding to u  Subscripts !
7 ?z::);ian e, n, s, w east, north, south, and.west f:ontn_')l
& thermal conductivity volume faces surrounding grid point P
L characteristic length E, N, 8, )
Re Reynolds number w eas.t, north, soufh, anfi wes,l grid
58 source terms pm'nts syrrou'ndmg grid point P
u, U x-component of velocity P main grid ;.xnnt
v, ¥V y-component of velocity 1 corre;pondmg to the x-momentum
v, u temporary velocity variables equation _
x, X cartesian coordinate direction 2 corre§pondmg to the y-momentum
»nY cartesian coordinate direction equation
o metr?c quantity (xf, + y,z,) Superscripts
B metric quantity (x5 + Jn:‘5 + ey
Y metric quantity (x§ + y§) * previous iteration value
8 central difference operator ' correction value
6% grid point spacing in é-direction 1 corresponding to the x-momentumn
] grid point spacing in #-direction equation
n transformed coordinate 2 corresponding to the y-momentum
» viscosity equation

compenents at the same location but in such a way that unrealistic fields are not pre-
dicted. Such methods have been presented by Abdallah [3], Hsu [4], Reggio and Ca-
marero [5], and Rhie and Chow [6]. In [3] the pressure poisson equation is obtained by
adding the derivatives of the momentum equations. The momentum equations are solved
by an explicit formulation. Unrealistic fields are avoided by ensuring that the boundary
conditions exactly satisfy compatibility conditions. In [4], [5], [6], and the present paper,
the pressure equation is obtained by combining the continuity and momentum equations
as in the semi-implicit method for pressure-linked equations (SIMPLE) method [2] or
the SIMPLE-revised (SIMPLER) method [9]. Hsu [4] developed special interpolation
expressions from the momentum equations for the mass fluxes leaving the faces of a
control volume surrounding a grid point. These expressions, which contain pressure
differences between adjacent nodes, are used in the continuity equation to obtain the
equation for pressure, and 2 SIMPLER type algorithm is used in the calculations. Reggio
and Camarero [S] used an overlapping nonstaggered grid with forward and backward
differencing for mass and pressure gradients, respectively, and the SIMPLE algorithm
was used in the calculations. Rhie and Chow [6] added a correction term to the mass
fluxes along the control volume faces. This correction term is proportional to the differ-
ence between a pressure gradient calculated by a centered 2-6 (26-£ or 26-n) difference
scheme and a pressure gradient calculated on a 1-6 difference scheme. Thus the correc-
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Fig. 1 (a) Staggered grid arrangement for two-dimensional situations. (b) Nonstaggered grid
arrangement for two-dimensional situations.

tion term immediately detects and suppresses the development of checkerboard pressure
fields. Only the SIMPLE algorithm was used in their calculations, and the method was
applied to flow over an airfoil. No results were presented, however, regarding the
convergence characteristics of the momentum and continuity equations or the degree to
which conservation was satisfied.

Similar efforts in equally representing the pressure and velocity fields (called
equal-order interpolation) have been undertaken in the finite element literature. Exam-
ples of such efforts have been reported by Schneider, Raithby, and Yovanovich [7] and
by Sani et al. [8].

This paper has two objectives. The first is to extend the method of Rhie and Chow
[6] (which used the SIMPLE algorithm) to the SIMPLER algorithm and to evaluate the
convergence characteristics of the two methods and the degree to which conservation
over each control volume is satisfied. The second is to present a new algorithm,
SIMPLE-modified (SIMPLEM), which is shown to be considerably superior to the SIM-
PLE and SIMPLER algorithms on nonstaggered curvilinear grids. The unique features
of this algorithm are its simplicity, its good convergence characteristics, and its ability to
suppress checkerboard pressure and velocity fields.
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GOVERNING EQUATIONS

In cartesian coordinates, the momentum and mass conservation equations can be
written as

9 9 -9 (rd¢), 0 (po
35 ©H8) + 5 ove) = o (r ax> 5 (r By) +5 )

where ¢ is 1 for the mass conservation equation, u for the conservation of x-momentum,
and » for the conservation of y-momentum. The diffusion coefficient is denoted by T,

and § is the source term. If curvilinear coordinates £ and » are introduced, Eq. (1) can
be transformed according to the general transformation £ = £ (x, ¥) and 4 = (x, ) and

can be rewritten as
8 (L 9 _ 53¢
a5 ["G'¢ (,) ( “%% P an)]

a4 (T 9 _ 536\ _
+3v[p02¢ (J)(yan Baé)] 57 @

where o, 8, v, and the jacobian J are given by

- (Y a_y)z
« (37:) +(3n @

dxdx , dydy @
at ay at an
- (oY a_y)z
v (a.E) ¥ (as ©)
o Ixdy _ dxady
At dn  On ot ©)

Gi=ua—y—v§—£ )
an an
dax ay
G =v—-—u— 8
2 VaE “as 8

The differential terms in parentheses on the left side of Eq. (2) represent the total fluxes
across lines of constant £ and %, respectively.

[n obtaining the discrete approximation of Eq. (2) on a nonstaggered curvilinear
grid, the governing differential equation is integrated over the control volume surround-
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ing a grid point P (see Fig. 1b for example), and profile approximations are made in
each coordinate direction. This results in the following system of equations.
X-momentum:

1 1 ap ap\
aplp = Y, @u, + 5 + (b, = + ¢ = 9
n=EW,N,S ot a"i, P
Y-momentum:
2 2 ap ap‘
apvp = 3 @V, + 5+ (b,— + cz—) (10)
A=EWN,S 23 /e
Continuity:
(0G,87), = (0G,4An), + (pG,AL), — (pG,4E), = 0 (11)

where u, denotes the velocity at the point P; u, denotes the velocity at its four neigh-
bors, E, W, N, and S; and a} and a,, are the corresponding coefficients whose expres-
sions depend on the nature of the profile approximations made. In the present work the
power-law profile approximation recommended by Patankar [9] is chosen. The term s, is
the x-momentum source term, and b, and ¢, are given by the following expressions:

b, = —(%) AtAr o = (%) Af An (12)

A similar nomenclature applies to the y-momentum equation [Eq. (10)]. Equations (9)
and (10) can be re-expressed simply as

ap ap'
Up = A},u,, + S, + (B,— + C,—) (13)
dp ap
Vo= Y Av, + S+ (B,— + Cz—) (14)
A=E.WN.S a5 on/p
where
1
al=% 5.8 pg-bocgoa (15)
ap ap ap (’JP
and
2 s b
A= §5=2 B=2 =2 (16)

1~
N
&
°
]
]
[~
bl
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SIMPLE AND SIMPLER ALGORITHMS
ON NONSTAGGERED CURVILINEAR GRIDS

SIMPLE Algorithm

The pressure-correction equation is used in the SIMPLE algorithm to update both
velocity and pressure, The pressure correction p’ is a correction to the currently avail-
able estimate for pressure (p*), so that the correct pressure field p = p* + p’ when
substituted into the momentum equation produces a continuity-satisfying velocity field.
If w* is the velocity field based on p*, then Eq. (13) can be written as

ap* ap*
up = % A;u:+s,+(3,;;E+C,L)P an

n=E,W.N.S dy

Subtracting Eq. (17) from Eq. (13) and arbitrarily dropping the £ A}(u, — u¥) term
results in the velocity-correction equation

ap’ ap’
u, = u¥ + (B,ng— +C, ;‘%)P (18)

A similar equation can be written for v,:

a ! !
vp = vE + (32;;&_ + c,"’a%) (19)
P

The corresponding carrection equations for G, and G, can be obtained by substi-
tuting Eqs. (18) and (19) into Eqs. (7) and (8). This resuits in

G,=Gr+(B,a—y—B,a—x)£+(c,a—y—cza—’f)i”i 20
an /) ok dn an/ an
and
ax ay \ ap’ ( dx ay> ap'
G=Gt+({C=-C= +|B= -8B %) 21
b 2 ( Zae IaE) a"i ZaE las 32 ( )

If the grid is orthogonal, the last terms in Eqs. (20) and (21) are negligible,
Neglecting these terms, G, and G, can be written as

ap’

G, =G + B— 22

I B at (22)
ap’

G, =G+ C— (23)
an

where
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dy ax
B = B, - B C = C —_— - C 24
™ rm ag i 62 (29)

These approximate relations for G, and G, [Egs. (22) and (23)] can be used to
derive new correction equations for # and v as follows:

N (OHCORCRCY T
(@) @) o

The pressure-correction equation is obtained by substituting G, and G, from Egs.
(22) and (23) inte the continuity equation [Eq. (11)]. Its final form is given by

appr = Y, ap, th @7

n=EWNS

where

- —(B), (“—;’) 28)

- - Aq
(0B)., ( . ) 29)
= = (o0 (’2—5) (30)

n
- -(pcos(’;i) @1

1)
ap = ag + ay + ay + ag (32)
b = @GtAn), — (Gran), + WGFAL), — (WGFAL), 33)

In Eq. (33), b is the local imbalance of mass and the subscripts e, w, n, and s refer
to the interfaces of a control volume (see Fig. 1). In the SIMPLE algorithm, once the
pressure-correction field is obtained, pressure is updated by adding p’ to p* and veloci-
ties are updated by using Eqs. (25) and (26). When updating « and v, a second-order
centered 2-8 (26-£ or 26-u} difference scheme is used for the pressure-correction gradi-
ents at the grid nodes. The contravariant components G, and G, are needed at the
interfaces and are updated by using a 1-4 difference scheme for the pressure-correction
gradients at the control volume faces. Oscillations in the pressure ficld are thus detected
by G, and G,, which are always used in the momentum equations. This practice alone is
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however, insufficient to suppress spurious oscillations completely. This is because, after
the momentum equations are solved to obtain « and v, the contravariant velocities G,
and G, are calculated at the nodes by using Egs. (7) and (8) and linear interpolation is
used to calculate the interface values. These interface contravariant values (G, and G,)
are used in calculating the source term of the p’ equation, but because they are obtained
by linear interpolation and because a 25-£ (or 23-%) scheme for Vp is used in the momen-
tum equation, spurious oscillations may not be easily destroyed. In view of this, Rhie
and Chow [6] added the following correction term to G* in the source term of the
pressure-correction equation to eliminate oscillations in the predicted solutions.

(G, = G+ + B [—“’E —Pe) _ (E)] (4
5% T

where the overbar indicates that the results are obtained by linear interpolation between
grid nodes. This practice, although successful in suppressing oscillations, suffers from
the problem of satisfying continuity and is discussed later.

The SIMPLE algorithm consists of the following steps.

—

. Start with guessed fields u*, v*, and p*.

2. Calculate the coefficients of the momentum equations using a 26-£ or 26-7
scheme for Vp, and solve the momentum equations to obtain a new velocity
field.

3. Calculate new G, and G, values at the grid nodes using the new values of the
velocity components. Interpolate to find G, and G, at the control volume faces.

4. Calculate the correction terms to be added to G, and G, in the pressure-
correction equation (continuity equation) only.

5. Calculate the coefficients of the pressure-correction equation, and solve to ob-
tain the pressure-correction field.

6. Use the pressure-correction field to update p, &, v, G,, and G,. The contra-
variant velocities G, and G, are updated directly at the control volume faces by
using a centered 1-6 difference scheme.

7. Return to step 2 and repeat until a converged solution is obtained.

SIMPLER Algorithm

In this paper, a SIMPLER algorithm is developed for nonstaggered curvilinear
grids. The rationale for developing this algorithm is based on the demonstrated superior-
ity of the SIMPLER algorithm over the SIMPLE algorithm on staggered grids. A similar
superiority is therefore expected on nonstaggered grids.

In SIMPLER, pressure is updated through an equation for pressure and velocity is
updated through the pressure-correction equation. The pressure equation is derived by
writing the momentum equations in the following form:
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op ap
—u+BE4+0%E 35
u u 13E 13 (35)
ap ap
v=v + B, =+ C,= 36
v 2 at 2 an (36)
where
u = 2 Alu, + S, 37
n=EWN.S
v Y A, + S5, (38)
n=E,W,N,§

With the above definitions of # and v, expressions are obtained for G, and G, as
follows:

dy ox ap> ( dy ax) (Bp)
G =6 + (8% -852 o/ S c¥Y _ o2 i 4 39
: ! ( l3‘11 2311) (85 '371 2317 on 39

- x _~ 9\ (op ox _p )\ {dp
C: G’+<Czas C'as)(an)+(B’as B'as)(as> “0)

where
dy dax
G =uX - p= 4]
) u an v an (41)
ax ay
G,=v=—-—u—= 42
2 4 at u Py 42)

Introducing these values of G, and G, into the continuity equation, the final form
of the pressure equation is obtained as

@pPp = Y, ap, t b (43)

n=-E,WN,S
where ag, ay, ay, as, and a, are given by Egs. (28) through (32) and
b = (pG,4n), — (0G,An). + (0G,4Af), — (0G,AL), + by, (44)

In Eq. (44), b,, is the contribution due to nonorthogonality. It is expressed as
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Fig. 2 Recirculating flow in a square cavity.
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To avoid checkerboard fields, a correction term as in Eq. (34) is added to the
interface contravariant components appearing in the source term of the pressure-
correction equation. The specific steps in the SIMPLER algorithm are as follows.

i

-

]
t v=100 m/s
X

L a7
— /
0,

Fig. 3 Recirculating flow due to sudden expansion in a pipe.
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& G A. (integral Form of
' Continuity)
O u, v Momentum Equation Residuals
e Residuals of the Pressure
Correction Equation with
lO'l Correction Terms

RESIDUALS

| | L |
20 60 i00 140
ITER

Fig. 4 Maximum residuals of conservation equations for flow in a square cavity on a
15 x 15 orthogonal mesh obtained with SIMPLE (Re = 100). ITER along the horizontal
axis denotes number of iterations.

Start with guessed fields u* and v*.

. Calculate the coefficients of the momentum equations and then u and v. Use
these values to find G, and G, at the grid nodes. Interpolate linearly to find G,
and G, at the control voiume faces.

3. Calculate the coefficients of the pressure equation, and solve the pressure

equation to obtain a new pressure field.

4. Use this new pressure field to calculate the pressure gradients in the momen-

tum equations using a 28-£ or 26-5 centered difference scheme.

5. Solve the momentum equations to obtain a new velocity field.

6. Use this field to obtain new G, and G, values at the grid nodes. By linear

interpolation, obtain G, and G, at the control volume faces.

7. Calculate the correction terms that will be added to G, and G, in the source
term of the pressure-correction equation.

. Solve the pressure-correction equation to obtain a pressure-correction field.

9. Use this field to update u, v, G|, and G,. Do not update the pressure. Update

G, and G, directly at the interfaces using a 16-£ or 16-n centered difference
scheme for Vp',

10. Return to step 2 and repeat until convergence is obtained.

B

o0
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PROPOSED SIMPLEM ALGORITHM
ON NONSTAGGERED CURVILINEAR GRIDS

The SIMPLEM algorithm was developed because of the unsatisfactory perfor-
mances by the SIMPLE and the SIMPLER algorithms and is based on experience gath-
ered from test problems run with these algorithms. In the SIMPLEM algorithm, a pres-
sure equation is used to update the pressure field and also the velocity field such that
they satisfy continuity in each step.

The SIMPLEM algorithm consists of the following steps.

1.
2.

Start with guessed fields u* and v*.

Calculate the coefficients of the momentum equations and then solve for & and
v. Use these values to find G, and G, at the grid nodes. Interpolate linearly to
find G, and G, at the control volume faces.

Calculate the coefficients of the pressure equation, and solve it to obtain a new
pressure field.

. Use this new pressure field to calculate the pressure gradients in the momentum

equation using a 26-§ or 26-n centered difference scheme,

Update G, and G, [Eqs. {39) and (40)] at the interfaces using the new pressure
field and a 18-£ or 18-5 centered difference scheme for Vp.

On the basis of the new G, and G, values, recalculate the coefficients and solve
the momentum equations to obtain a new velocity field (v and v values).

RESIDUALS

10" |-

1 ! | l
20 60 100 140
ITER
Fig. 5 Maximum residuals of conservation equations for flow in a square

cavity on a 15 X 15 nonorthogonal mesh obtained with SIMPLE (Re =
100). See Fig. 4 for explanation of symbols.

Y
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\ © Residuals of Pressure
Correction Equation with Correction Terms

A u, v Momentum Equotion Residuals

F ® Residuals of the Pressure
Equation

RESIDUALS

I ! | | -
20 60 100 140
ITER

Fig. 6 Maximum residuals of conservation equations for flow in a square cavity ona 15 X 15

orthogonat mesh obtained with SIMPLER (Re = 100).

7. Use these 4 and v values as a new guess. Return to step 2 and repeat until a

converged solution is obtained.

TEST PROBLEMS AND RESULTS

The three algorithms were used to solve two test problems to determine the con-

vergence characteristics and the degree to which conservation is satisfied.

The first problem, driven flow in a square cavity (Fig. 2), is one of the standard
problems used in the literature [4, 10, 11] to test the solution methodology for fluid-flow

problems.
By introducing the following dimensionless variables

(46)

where u, is the velocity of the moving boundary and L is the length of the square cavity,

the governing equations for this problem can be written as

V-U=0

wp vy
axX Re

Uu-vw-= -

47)

(48)
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2
P V¥

U -vy= -
Y Re

49)

The Reynolds number, defined by pw,L/u, is the only variable parameter in this prob-
lem. The results presented are for Reynolds number of 100. The boundary conditions for
this problem are zero velocities along all boundaries except at the moving wall, where U
issetto 1.

The second problem is sudden expansion in a pipe (Fig. 3). This problem is chosen
because of the strong pressure gradients in the domain that can give rise to spurious
oscillations if the solution scheme is not appropriately formulated. The governing equa-
tions for this problem can be written as

V- (ou) =0 (50)

pu - Vu = =92 4 vy 1)
ax

ou - Vv = 28 4 vty (52)
ay

RESIDUALS

I ! ! !
20 60 100 140
ITER

Fig. 7 Maximum residuals of conservation equations for flow in a square
cavity on a 15 x 15 nonorthogonal mesh obtained with SIMPLER (Re =
100). See Fig. 6 for explanation of symbols.
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1 a 3G,;A; when Updating G;
' from Momentum Equation

~ ® IG;A; without Updating G,
' from Momentum Equation
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10 [~ Equations for Both Cases
0
-
<I -
o
=
7 -
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077 -
| | | l -
2o 60 100 140
ITER

Fig. 8 Maximum residuals of conservation equations for flow in a square
cavity on a 15 X 15 orthogonal mesh obtained with SIMPLEM (Re = 100).

pi - VT = (f) vir (53)

where p is the viscosity of the fluid used, & is the thermal conductivity, and ¢, is the
specific heat. At the inlet, a uniform v-velocity of 100 m/s at room temperature is
assumed. Air is taken to be the working fluid, and g, k, c,, and p for constant density
flows are evaluated at the inlet room temperature. Results are also obtained for variable
density flows, for which the equation of state is used to calculate the density. Along the
outflow boundary a high-Peclet number unidirectional flow is assumed, and the outflow
velocity is modified to satisfy overall continuity.

The first problem is solved for both orthogonal and nonorthogonal coordinates.
The solution for the second problem is obtained only on an orthogonal grid.

Of primary interest are the maximum residuals of the equations solved and the
convergence rate of these residuals. The maximum residual is 2 commonly used norm to
check the convergence rate of a numeric scheme and is adopted here in preference to
other alternative norms, such as the root-mean-square value of the residuals or the sum
of the magnitude of the residuals.

In Figs. 4, 5, and 10 the maximum residuals of the momentum, continuity [Eq.
(11)], and pressure-correction equations [Eq. (27)] obtained by using SIMPLE are pre-
sented. All results predict the same behavior. The residuals of the momentum equations
and the pressure-correction equation (including the correction terms) are driven to zero.
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The residuals of the continuity equation reach a certain level of convergence, however,
and stop decreasing further with iterations.

The residuals of the momentum, pressure, and pressure-correction equations when
using SIMPLER are presented in Figs, 6, 7, and 11, From these figures, it is clear that
all residuals, with the exception of the residuals of the pressure equation, stabilize after
reaching a certain level of convergence.

Figures 8, 9, 12, and 13 show the residuals of the various quantities obtained by
using the new algorithm SIMPLEM. In all figures, the maximum residuals of u, v, p,
and Eq. (11) (the continuity equaticn) are presented by means of two different practices.
The first practice is to update the contravariant velocity components needed at the inter-
faces after solving the momentum equation (i.e., after step € in the SIMPLEM algo-
rithm). In the second practice, outlined earlier, these components are not updated from
momentum and therefere are always based on the selution of the pressure equation. All
results show the same trend, with maximum conservation obtained for the case when the
flow is incompressible and the grid is orthogonal. The residuals of Eq. (11) are com-
puted to study the effect of interpolation on continuity. Furthermore, Eq. (11) is the
integral form of the continuity equation, whereas the pressure equation represents the
discretized form of continuity.

The residuals of the pressure and momentum equations are always driven to zero.
For some of the cases, however, the maximum imbalance of mass [Eq. (11)] converges
to a certain extent and stops decreasing further after a number of iterations. This behav-
ior is noticed in a skewed grid or in variable-density flow as shown in Figs. 9 and 12,
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Fig. 9 Maximum residuals of conservation equations for flow in a square

cavity on a 15 x 15 nonorthogonal mesh obtained with SIMPLEM (Re =
100). See Fig. 8 for explanation of symbols.




IMPROVEMENTS TO INCOMPRESSIBLE FLOW CALCULATION 147

RESIDUALS

] L | | -
40 120 200 280
ITER

Fig. 10 Maximum residuals of conservation equations for recirculating
flow in a sudden expansion obtained with a 14 x 14 orthogonal mesh and
SIMPLE (variable density flow). See Fig. 4 for explanation of symbols.

respectively. In all figures, the practice of updating the contravariant velocity compo-
nents after solving the momentum equations slows convergence considerably.

DISCUSSION OF RESULTS

In SIMPLE, the integral form of the continuity equation [Eq. (11)] was not satis-
fied (Figs. 4, 5, and 10). This is attributed to the correction terms added to the interface
contravariant velocities appearing in the source term of the pressure-correction equation.
These approximations are introduced after, not before, deriving the pressure-correction
equation. Therefore the source term & in the pressure-correction equation [Eq. (33)],
which represents the local deviation from continuity, is altered by the inclusion of the
correction terms and hence is no longer exactly equal to the local mass conservation
imbalance. As a result, the pressure-correction equation that is solved is not the dis-
cretized continuity equation but rather an approximate form of the continuity equation,
with the approximation being of the order of the correction term (which, in some cases,
is quite large). This conclusion is confirmed by obtaining results, when possible (i.e.,
when checkerboard pressure fields can be avoided), for the same problems without
adding these correction terms, in which case the residuals of the continuity and pressure-
correction equations are identical and both converge to zero. It is possible to obtain
oscillation-free results for the driven cavity flow problem conly. Oscillation occurred in
the sudden expansion problem, where pressure gradients play a dominant role. There-
fore, the addition of these terms is necessary to suppress oscillation effectively. Because
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pressure and velocity components are updated from the same pressure-correction equa-
tion, convergence of their equations is expected. The results in Figs. 4, 5, and 10
confirm this expectation.

In SIMPLER, a different behavior is noted. Results obtained with the correction
terms added to the contravariant velocities in the source term of the pressure-correction
equation (Figs. 6, 7, and 11) indicate that the only quantity that converges is pressure.
To explain this behavior, it is helpful to recall Egqs. (20) and (39). Both equations are
used at different stages of the procedure to evaluate the contravariant velocity compo-
nents needed at the control volume faces. Equation (39) is used in the pressure equation;
therefore the contravariant velocities based on the pressure field always satisfy continu-
ity as long as these contravariant velocities are calculated from Eq. (39). The G values in
this equation are obtained by linear interpolation from the nodal values, which are
cbtained from the momentum equations. On the other hand, Eq. (20) is used after
solving the pressure-correction equation to find G, and G, at the interfaces.

From the above description, different equations are used at two different stages to
find the same contravariant velocity components. Further, in view of the correction
terms the discretized continuity equation for the pressure-correction equation is different

)
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Fig. 11 Maximum residuals of conservation equations for recirculating flow in

a sudden expansion obtained with a 14 X 14 orthogonal mesh and SIMPLER
(variable density flow). See Fig. 6 for explanation of symbols.
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Fig. 12 Maximum residuals of conservation equations for recirculating flow in a

sudden expansion obtained with a 14 X 14 orthogonal mesh and SIMPLEM (vari-
able density flow).

from the discretized continuity equation for the pressure. These discrepancies cause the
nonconservative behavior, and as a consequence the converged velocity field from the
momentum equation is not identical to the velocity field updated from the pressure-
correction equation.

What is learned from this discussion is that, for all quantities to converge, only cne
of the two discretized continuity equations should be used. This means that one of either
Eq. (20) or Eq. (39) should be used to update the contravariant velocity components at
the interfaces. One of them [Eq. (20)] is used in SIMPLE (after the p’ equation), and the
convergence problem arises because of the correction terms that are required to suppress
oscillations. SIMPLEM uses the pressure equation without the correction terms but in
such a way as to suppress oscillation. A simple idea is found te be effective in accom-
plishing this objective. This idea is to solve the pressure equation only and to update the
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contravariant velocity components needed at the control volume faces by using a cen-
tered 18-¢ or 16-y pressure difference scheme in the same equation for the contravariant
_ velocities that is used to derive the pressure equation [Eqgs. (39) and (40)). Therefore any
oscillation that arises can be felt, and immediately suppressed, by the interface contrava-
riant velocities, which are always used in calculating the coefficients of the momentum
equation. With the new treatment, the only connection between the contravariant and the
cartesian velocity components are the G values that are calculated from w and v. A 28-¢
or 28-y difference scheme for the pressure gradients and the G, and G, values updated in
step 5 of the SIMPLEM algorithm by means of a 18- scheme for Vp are used to calculate
the coefficients of the momentum equation. The corresponding G, and G, values in the
SIMPLE and SIMPLER algorithms are those that are updated by means of a 14- scheme
for Vp' after the solution of the pressure-correction equation. Therefore, using pressure
gradients that are based on a 15-£ or 18-% difference scheme for the G values in Egs. (39)
and (40) to obtain (or to update) the contravariant velocity components can be seen as a
correction procedure similar to the one used by Rhie and Chow [6] but without the
introduction of any extra terms. The additional work done is in the recalculation of the
coefficients of the momentum equation after updating the interface velocities to make
sure that the velocities used in the coefficients and the pressure field satisfy the same
continuity equation. The work involved in this step is actually comparable to calculating
the correction terms in SIMPLE and to solving the pressure-correction equation in SIM-
PLER. The difference in computer time between SIMPLE and SIMPLEM is about 8%
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Fig. 13 Maximum residuals of conservation equations for recirculating flow in a

sudden expansion obtained with a 14 x 14 orthogonal mesh and SIMPLEM (con-
stant density flow). See Fig. 12 for explanation of symbols.
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(SIMPLEM needs more time}. The solutions obtained with this practice show no sign of
oscillation.

The results shown in Figs. 8, 9, 12, and 13 indicate the advantages of this treat-
ment, by which the residuals of #, v, and p are always driven to zero. From these
figures it is clear that the contravariant components should always be based on continuity
(i.e., the pressure equation), and any attempt to update these components from Eq. (7)
after solving the momentum equations (step 6§ in the SIMPLEM algorithm) creates the
same problem noticed in SIMPLER.

If the grid is orthogonal the terms due to nonorthogonality in Eq. {39) cancel, so
that there is no need to find the cross-derivatives. For nonorthogonal situations, how-
ever, interpolation is needed for these derivatives. This explains the slow convergence of
the maximum imbalance of mass shown in Fig. 9. Convergence in this case is to the
order of the interpolation, even though the conservation for such cases is at least two
orders of magnitude better than the values obtained by SIMPLE and SIMPLER.

The residuals for the case of constant density flow are shown in Fig. 13. In this
situation, the convergence behavior is better compared to variable density flow (Fig.
12). It is speculated that for variable density flows the conservation of mass will improve
if (pG) at the interface is directly interpolated instead of interpolating p and G sepa-
rately, as is done here.

CONCLUSIONS

A new algorithm for the solution of two-dimensional elliptic flows in curvilinear
coordinates by means of an equal-order pressure-velocity coupling scheme has been
presented. This algorithm, called SIMPLEM, is shown to be superior to SIMPLE and
SIMPLER algorithms in nonstaggered curvilinear meshes. Oscillation was totally sup-
pressed by a simple yet effective scheme.
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