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HEAT AND MASS TRANSFER IN MOIST SOIL, PART I.
FORMULATION AND TESTING

F. Moukalled and Y. Saleh
Department of Mechanical Engineering, American University of Beirut,
Riad EIl Solh, Beirut, Lebanon

An unsteady two-dimensional model of heat and mass transfer through soil is implemented
within a finite-volume-based numerical method. The model follows a phenomenological for-
mulation for the transfer processes with temperature and matric potential () as the depen-
dent variables. The finite-volume method being inherently conservative, the mass imbalance
problem reported in the literature when employing the \j-based formulation with other
numerical methods is prevented. A partial elimination algorithm is applied within the iter-
ative solution procedure to increase its implicitness and improve its robustness. The accu-
racy of the model is established by solving the following three test problems: temperature
distribution in dry soil; moisture distribution in isothermal soil; and coupled heat and water
vapor diffusion in soil. Results are presented in the form of temporal profiles of temperature
and moisture content and compared against analytical values. Excellent agreement is
obtained, with numerical profiles falling on top of theoretical values.

INTRODUCTION

Soil is considered a nonhomogeneous and nonisotropic porous material com-
posed of a mixture of liquid moisture, vapor, and air in the pores. The prediction of
moisture and temperature distribution in soil is useful in many applications, such as
agriculture, irrigation, heat and moisture transmission between a building and its
surrounding, and the detection of buried objects, to cite a few. This work was moti-
vated by the need to develop a numerical tool for the prediction of the surface ther-
mal signature of buried landmines in moist soil, which is the subject of a companion
article [1]. In this article the finite-volume-based numerical method that is used in [1]
for predicting the heat and moisture distribution in soil with a buried landmine is
developed and tested.

In analyzing coupled mass and heat transfer in a porous medium, investigators
have followed two macroscopic approaches. The first approach applies the
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NOMENCLATURE

coefficients in the discretized
equation for ¢

source term in the discretized
equation for ¢

volumetric heat capacity, J/m*K
specific heat capacity, J/kg K
vapor and total moisture thermal
capacitance terms, K

coefficient in general conservation
equation

matric, J /m4, and thermal, J /m3 K,
heat capacitance terms

matric vapor and total moisture
capacitance terms, m '

vector joining grid points P and F
molecular diffusivity of water vapor
in air, m*/s

vapor and total moisture thermal
diffusivities, m?/s K

matric vapor and total moisture
diffusivities, m/s

matric potential heat diffusivity,
W/m?

correction and interpolation factor;
also refers to e, w, n, or s face of
control volume P

refers to the E, W, N, or S neighbor
of grid point P

gravitational acceleration, m/s”
shape factors used in estimating soil
thermal conductivity

convective heat transfer coefficient,
W/m>K

latent heat of vaporization of water,
J/kg

hydraulic conductivity of soil, m/s
effective and dry soil thermal
conductivity, W/mK

unit vector in the S direction

main grid point

heat generation, W/m?

source term in general conservation
equation

gas constant for water vapor, J/kgK
surface vector

time, s

temperature, K

bulk liquid velocity, m/s

vertical distance, m

fitting parameter for moisture
retention curve, m !, or
underrelaxation factor

o3 o =R

QoA @

Subscripts

5~ e e

EEE N VRN

Vs
w

Superscripts
D

(n—1)

tortuosity factor or scaling factor
diffusion coefficient

unit vector in the direction of the
line joining grid points P and F
time step

soil porosity

volumetric moisture content,
m®/m?

degree of saturation

space vector

temperature gradient ratio
density, kg/m>

water surface tension, N/m, and
Stefan-Boltzmann constant,
W/m>K

empirical constant used in hydraulic
conductivity equation

general scalar variable

relative humidity

total soil matric potential for liquid
flow, m

matric liquid potential (pressure
head), m

volume of cell P

ambient air

refers to control-volume face
refers to grid point F

critical

liquid

refers to values at the faces obtained
by interpolation between P and its
neighbors

refers to neighbors of

grid point P

reference value

refers to the grid point P

residual or reference

saturated, surface

vapor

saturated vapor

water, wind

refers to diffusion contribution
refers to values from the previous
iteration

refers to transient contribution
refers to values from the previous
time step

refers to an interpolated value
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thermodynamics of irreversible processes to describe the interaction of the forces and
fluxes involved [2]. The second technique, adopted in this work, is based on
the phenomenological processes that occur in soil [3-5]. The phenomenological for-
mulation of transfer mechanisms in soil began with the work of Philip and de Vries
[3], who discussed liquid and vapor transfer in a porous medium under the effects of
temperature and moisture content gradients. They presented a heat conduction
equation that incorporated latent heat transfer by vapor diffusion. De Vries [4] later
generalized these equations by taking into account moisture and latent heat storage
in the vapor phase, heat of wetting, and sensible heat transfer by liquid movement.
Sophocleous [6] converted Philip and de Vries’ 6-based equations [3], 6 being the
volumetric moisture content, into a matric head (V)-based formulation. Milly [5]
showed that Sophocleous’s system of equations was incorrectly formulated, with
major theoretical errors in the equation for the liquid flux and in the expression
for the temperature dependence of matric potential, and reconverted the equations
of de Vries [4] to the y-based formulation. Recently, Deru [7] and Janssen [8] used
a similar model to study the influence of soil moisture transfer on building heat loss
via the ground over a diurnal cycle.

The advantage of the \-based formulation lies in its applicability to both
saturated and unsaturated soil conditions. However, as reported by several articles
[9-11], it suffers poor mass balance and low convergence rate, with a consequent
increase in computational effort, especially in very dry soil conditions. On the other
hand, 6-based models have demonstrated significantly improved performance when
applied to very dry soils, but fail in cases of layered and saturated soils [9]. Research-
ers have proposed various strategies to overcome these disadvantages. Celia et al.
[10] and Kirkland et al. [11] suggested a mixed form of the equations, which resulted
in a much improved mass balance.

All the methods used to study heat and moisture transfer in soil have been
implemented using either a finite-difference or a finite-element formulation. To the
authors’ knowledge, the finite-volume method has not been used for this purpose.
It is the intention of this work to implement the “{-based’ [5] conservation equa-
tions in the context of a finite-volume method. As the method is inherently conserva-
tive, mass imbalance problems are not expected to arise. This will be confirmed
through the test problems presented.

In the remainder of this article, the governing conservation equations and soil
physical properties are briefly presented. This is followed by a description of the dis-
cretization of these conservation equations in the context of the finite-volume
method, the partial elimination algorithm, and the overall solution procedure. After
that, the accuracy of the newly developed numerical procedure and the correctness of
its implementation are established by comparing numerical results generated for
three test problems against published theoretical values.

CONSERVATION EQUATIONS OF HEAT AND MOISTURE
TRANSFER IN SOIL

Almost all moisture transfer models use either the moisture content (6-based)
[3, 10] or matric potential (-based) formulation [5]. The matric potential (pressure
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head), \, is a parameter used to describe the soil water energy level, which is respon-
sible for water movement in a soil matrix ( is positive for a saturated soil and
negative for an unsaturated soil). To handle both saturated and layered soils, the
moisture and energy conservation equations are written, in this work, in terms of
matric potential () and temperature (7"), respectively. Assuming an incompressible,
homogeneous, nondeformable, and isotropic soil, these equations are expressed as
[7, 8, 12]

Cuug, + Crym =V - (DyyV¥) + V- (DryVT) + 5= (1
6T a "
Crra—FCwa—\l;:V'(D¢TV‘J’>+V'(]‘VT)+‘1 (2)

where

_ 9py | [ (n=01)g _ 08,
Cow =7, K RT o)

vs -9 L) 20 _
Cry =7 <<np) ~ o7 > + &)y Cyr = Pl Cy
! (3)
Dyy = f(0)Dav0s 3 g% + K k = k* + pihy Dy

dpys 0 vT _
Dry =f(0) D <p1de — 2+ et e) wr Dur=pilgDy

The meanings of the variables in Eqs. (1)—(3) are as given in the Nomenclature.
Equations (1) and (2) show that the \ [Eq. (1)] and T [Eq. (2)] equations are similar
except for the last term on their right-hand sides. The terms on the left-hand sides
correspond to the stored mass and energy due to the temporal change in matric
potential and temperature. The first two terms on the right-hand sides account for
mass transfer [Eq. (1)] and heat transfer [Eq. (2)], respectively, due to moisture
and temperature gradients. The last term in the first equation represents mass trans-
ferred by gravitational effects, while that in the second equation represents heat
generation per unit volume. Moreover, f(0;) is a correction factor calculated using
the expression given in Appendix I.

Equations (1)—(3) reveal the strong coupling between heat and moisture trans-
fer in soil, the highly nonlinear nature of this coupling, and the extensive number of
unknowns involved that depend heavily on the physical properties of soil. Therefore,
an understanding of the various terms concerned in these equations is essential for a
proper numerical implementation. In addition, estimating the thermal and hydraulic
properties of soil, which are strong functions of the moisture content, is considered
one of the most difficult stages in the modeling of heat and moisture transfer in soils.
The correlations used for evaluating the soil water retention, hydraulic conductivity,
thermal conductivity, and specific heat are briefly reviewed next.
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PHYSICAL PROPERTIES OF SOIL

Moisture Retention

The moisture content is related to the matric potential () through the follow-
ing analytical expression developed by Van Genuchten [13]:

0-—0,
es_er

—[ ) m=1 @

where O is the degree of saturation, 0 is water content at saturation, and o and n are
empirical parameters that are assigned the values of 3.337 and 1.355, respectively, in
this work [13]. Moreover, the residual water content 6, is a fitting parameter included
to achieve a better match in the low-moisture-content range. To account for the
effect of temperature when calculating 0 using Eq. (4), the value of s obtained from
Eq. (1) is multiplied by the ratio of the surface tensions (o) at a reference tempera-
ture and the temperature of interest. This results in

o(T)
o(T})

V(T,0,) = U(T,,0) o=01171-1.516%10"*T (5)

Hydraulic Conductivity

The ease with which a fluid is transported through a porous medium depends
on its hydraulic conductivity. Based on Richard’s law [9], which is a modified version
of Darcy’s law, the flow of water through unsaturated soil can be written as

u = KV® (6)

where 1, is the bulk liquid velocity, @ is the total matric potential of the soil defined
as the sum of matric and gravitational potential and is taken positive upwards
(® = ¥ + z), and K is the hydraulic conductivity, which is a function of soil proper-
ties, moisture content, and temperature that is given by

K(e, T) = KYKT(T)®T[1 _ (1 _ @l/m)mf (7)

This equation is similar to van Genuchten’s [13] model but with minor modifications
to account for the effect of temperature, with T being an empirical constant and the
exponent m as defined in Eq. (4). Moreover, K is the hydraulic conductivity at
saturation and Kr is a correction-factor function of temperature (7') and water
dynamic viscosity (p,;) given by

_ (7o)

Kr(T) w(T)

=1.12%10747? —4.12% 10727 + 3.46 (8)

Thermal Conductivity

The heat flow through a soil matrix is controlled by the effective thermal
conductivity k [Eq. (2)] of the system, which is mainly affected by moisture content.
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An increase in the moisture content results in higher thermal conductivity. In
addition, soil thermal conductivity is influenced by temperature, size, geometry,
packing, and type of grains. As shown in Eq. (3), k involves two heat transfer
mechanisms that are not strictly additive, but rather interactive [4], and therefore
are brought into one term. Several models for computing k& have been proposed,
and the one adopted in this work is due to Janssen [8], which is a combination of
the de Vries [14] and Campbell et al. [15] models. In this model, the effective thermal
conductivity is calculated by

k= Zle E_vieik[

9
S0 &6 ®)

In the above equation, i = 1 stands for water, 2 for trapped gases in the pores, 3 for
quartz, 4 for organic material, and 5 for other minerals. The ratio of thermal gradi-
ents of component i and the medium (&;) is calculated from

gi—i[w (:};—1)5',}1—1—;[1—% (lfr;—l)(l—2g,-)r (10)

Here g; is a shape factor that is equal to 0.144 for quartz and other minerals and 0.5
for organic materials. In addition, the thermal conductivity of the continuous
medium (k,,) changes smoothly from that of air at dry condition to that of water
at saturation according to

. . o\ T\
km = ka +fw(kw - ka) fw = |:1 + (9_k> :l q9=4o <%>

11
k, = 0.02417 + 7.596  10°(T — 273.15) (11)
ky = 0.5694 + 1.847 5 1072 (T — 273.15) — 7.394x10~%(T — 273.15)*
where 0, is the moisture content value at which water starts to be the continuous
fluid, and ¢ indicates the rapidity of this transition. Janssen [8] developed the follow-

ing empirical relations for the parameters 0; and ¢,, with the sand fraction Sa as
main variable:

0, =021-0.16Sa ¢,=4—Sa (12)

Moreover, for the calculation of the shape factor of gas-filled pores, g, needed
in the evaluation of &,, an empirical relation is developed as [8]

g> = 0.0675 + 0.074 Sa (13)

Furthermore, the thermal conductivity of the gas-filled pores, k», is estimated
as the sum of the thermal conductivity of air, k,, and that of the vapor, k,, with the
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thermal conductivity of trapped vapor, following Philip and de Vries [3], assumed
proportional to the relative humidity ¢ and given by

k2 = ka + kv kv = kv,sat(P ¢® =exp (R‘J:gT> k\m,sat = hnga a;,)]‘-/,s (14)
where hy, is the latent heat of vaporization, D, is the vapor diffusion coefficient in
air, and p,, is the saturated vapor density calculated using the expressions given in
Appendix II [16].

Finally, for nearly dry soil, the thermal conductivity is calculated using the de
Vries [14] equation with 6; = 0, 8; = n (porosity), &, = 1, and the result is multiplied
by 1.25.

Specific Heat

The volumetric heat capacity (C) is calculated, neglecting the heat capacity of
gases, as a weighted average of the specific heat capacities Cp of the soil constituents
and is given by

n
C= ewpw CPw + Z eipiCPi (15)
i

FINITE-VOLUME FORMULATION

Because of their complexity and nonlinearity, the equations governing coupled
heat and mass transfer in soil cannot be solved analytically except in very special
situations. Therefore, a numerical approach is a natural alternative. The finite-
volume method [17] is used in this work. The formulation starts by noticing the
similarity of Egs. (1) and (2). If the variables in these equations are denoted by (b(l)
and (1>(2), then Eq. (1) may be represented as

C¢(1) a((gil)) n Cd)(lz) a((giz)) _v. (Fcb(l)vd)(l)) 1V. (rd)(mvd)(z)) n Q¢(1) (16)
where the expressions for C*", c¢", T oV 1" and 0°" can be deduced from the
modeled equation. Equation (2) may be obtained from Eq. (16) by simply interchan-
ging the superscripts (1) and (2). This general transport equation [Eq. (16)] is discre-
tized using the finite-volume method [17]. In this approach, the solution domain is
divided into a number of control volumes, each associated with a main grid point
P (Figure 1a). The discretization process is a two-step procedure. In step 1, the gen-
eral equation is integrated over a control volume (Figure la) to obtain a discretized
description of the conservation law. In step 2, an interpolation profile is used to
reduce the integrated equation to an algebraic equation by expressing the variation
in the dependent variable and its derivatives in terms of the grid-point values [18].
Then, the set of algebraic equations is solved iteratively using the tri-diagonal matrix
algorithm (TDMA) [17].



474 F. MOUKALLED AND Y. SALEH

®

Figure 1. (a) Control volume. (b) Typical control-volume faces and geometric nomenclature.

To perform step 1, Eq. (16) is integrated over the control volume shown
in Figure la with the flux components transformed into surface integrals. This
procedure yields

1 2
/ <C¢<1> aqa)i ) N C¢<12) a(ja)i )> 4o 7{ (Fd’de)(l) N F“’(]z)Vd)(Z)) dS — / Q¢<1> 40
Q S Q

(17)

where Q is the volume of cell P. Replacing the surface integral over the control vol-
ume by a discrete summation of the flux terms over the sides of the control volume,
Eq. (17) becomes

(1 2
o1 00 612 00
(C o PQP + | C o PQP

_ Z (Fd’de)(l) + Fd,(mv(b(z)) S = }thP (18)
f=nb(P) /
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In step 2, Eq. (18) is transformed into an algebraic equation through the use of
an interpolation profile, or an estimate of how ¢ varies between nodes. The approxi-
mation scheme produces an expression for the face value which is dependent on the
nodal ¢ values in the vicinity of the face. For compactness, the superscripts (1) and
(2) will be dropped in the derivations that follow. For the unsteady term, the use of a
Euler-implicit formulation results in

a _ (8]

where At represents the time step and the superscript ° denotes old values obtained
at time (¢ — A¢). The diffusion flux is discretized along each surface of the control
volume using the method described by Zwart et al. [19], according to which it is
decomposed into

(~T*V0), -8, = (~T4V); -nsSy = ~T[(V8), - (38), + (VO), - (o — (53),)]S/
(20)

where (W)f is the average of the adjacent cell gradients, ny and 8, (Figure 1b)
are the contravariant (surface vector) and covariant (curvilinear coordinate) unit
vectors, respectively, and vy is a scaling factor. This factor is chosen such that it
is equal to 1 on orthogonal meshes in order for the method to collapse to classi-
cal stencils. With this constraint, the expression for y on structured meshes is
given by

1 Srd
ny - of O
Defining the space vector k; as
K = [y — (v8),1Sy = w7 + 1] (22)
the expression for (—Fd’Vd))f - Sy becomes
(-T4V0), -8, = TP |(Va), - (8), LU+ (Vo) (i )| (2
T T s s, d o TRy

In this form, the term (V¢), - (8), represents the gradient in the direction of the
coordinate line joining P and F (see Figure 1b). Therefore, the above equation
can be rewritten as

Sy -8y
Sy -dy

(-T0g), -8, = T [<¢F B A S R K;j>] (24)

The interpolated gradient at the interface (V_d))f is calculated as

(Vo) =11 (Vo) p + (1 = fr) (Vo) (25)
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and the gradient at the main grid point F (F= P, E, W, N, or S) is obtained
from

1 1 1
(Vo) = ﬁ/gw) a0 :ﬁfi bdS=5 > &S (26)

JS=nb(F)

The final form of the diffusive flux along face f (f=e, w, n, or s) is
given by
(57)° +(57)”

(~TOV), Sy =T} (o — d)P)W

17 { [f (V)p+(1- ﬁ-)(w);} KF+ [ﬁ-(V¢>¥+ (1 —ﬁ)(%)fv] K_?}

(27)

The underlined part of the diffusion flux is called the cross-diffusion contri-
bution. It vanishes when the grid is orthogonal, and is small compared to nor-
mal diffusion for a nearly orthogonal grid. In such circumstances, explicit
treatment of the cross-diffusion term does not significantly influence the rate
of convergence of the overall solution procedure and simplifies the matrix of
coefficients.

The integral value of the source term over the control volume P (Figure la) is
obtained by assuming the estimate of the source at the control-volume center to
represent the mean value over the whole control volume. Hence, one can write

/ 0% dQ = 0%Q, (28)
Q

To increase the robustness of the numerical method, the source term is linearized
according to [17]

¢ n—1
(@) = (@) +(@hbr =0 + () (@r-88) @)
where ( lei) p should always be a negative quantity. The diffusion term involving o?
appearing in the d)(l) equation is treated explicitly, and its discretization is analogous
to that of the ordinary diffusion flux.

The discretized equation [Eq. (18)] is transformed into an algebraic equation at
the main grid point P by substituting the fluxes at all faces of the control volume by
their equivalent expressions. Then, performing some algebraic manipulations on the
resultant equation, the following algebraic relation, linking the value of the depen-
dent variable at the control-volume center to the neighboring values, is obtained:

m (1 12) (3 m (1 )
dp by +ap 0F = Y b op) +b} (30a)
F=NB(P)
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where

(1 M\ m\ P (1) (12) o\ @\P
i = )e(a) (o) er = (b))

\2
#-eryr GRG0

F=NB(P)

(1) @en\P (12) (S}f)2+(S}’>2 @\ D @\ D
af; :(a?; ):F¢ -~ (ai ) = Z (a?{) (305)

S Sydy + Sdy

F=NB(P)
(aﬁ(l))t _ (Cd’it)PQP (ajg@)’: (C (:t)PQP
$1 5 (T (o) ()00 (o)

+fzb: 1"¢”{[ ( );“*(1 _ff')(vd)(l))nl{}‘
e - (e) )5}
+ Z F‘b( {{ ( );—F(l —ﬁ»)(Vd)(Z))H o

f=nb(P
[ (w02 -0 (w0 ]

where the superscripts ¢ and D indicate coefficients obtained from the discretization
of the transient term and of the diffusion fluxes, respectively, and the superscript °
designates a value from the previous time step. Using Eq. (30), the algebraic forms
of Egs. (1) and (2) are given by

app+ap’ Tp = Z Vg + by
F=NB(P)

apTp+ap"Vp= > apTr+bp
F=NB(P)

(31)

The terms with cross coefficients (i.e., aﬁTT p and a}}“\pp) are evaluated
explicitly, because the adopted procedure is iterative. This practice increases the
value of the source term and slows down the rate of convergence. The procedure
can be rendered more implicit by decoupling the two sets of equations, by eliminat-
ing, for example, the variable 7p from the \» equation, and vice versa, as is done in a
two-phase flow through the partial elimination algorithm (PEA) [20]. This is
achieved in a straightforward algebraic manner and results in a modification to
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the values of the coefficients. The equations resulting after this partial elimination
are written as

s YT TV 7

MW— 3 awFer;g_aLT N Gl Tr+ b}
ap F=NB(P) ap F=NB(P) (32)
vor _ T TV TV
ardp ~ dp ap’ 5,: Lol > afTr+bp - apw > apViy + by
dp F=NB(P) dp \ F=NB(P)

This partial elimination makes the equations more implicit (7'p is absent from the \sp
equation and vice versa) and enhances the robustness of the iterative procedure.
Letting ¢ denotes either y or 7, the above system of equations can again be
expressed as

Apbp = Z APdr + B} (33)

F=NB(P)

Since the procedure is iterative in nature, the equations are usually underre-
laxed [17, 18]. Denoting the underrelaxation factor by a, Eq. (33) becomes

¢
(A >¢p— > Abor+ s, U g (34)

F=NB(P

where the superscript (n — 1) refers to values taken from the previous iteration. This
equation can again be rewritten as

Apdp =Y A Por +Bj (35)

F=NB(P

For every variable ¢, an algebraic equation similar to Eq. (35) is obtained at
the geometric center of each control volume in the computational domain, and the
collection of these equations forms a system that is solved using a line-by-line
Thomas algorithm [17] to arrive at the solution. Since the coefficients are highly non-
linear and interdependent, an iterative approach is adopted and is summarized as
follows:

1. Start with an initial guess for 7 and \ at the current time.

2. Use available values of 7 and \/ to calculate the physical properties of soil needed
in the equations.

3. Calculate the coefficients of the T equation.

4. Calculate the coefficients of the | equation.

5. Perform partial elimination to calculate the new coefficients for the y and T
equations, underrelax the equations, and solve them.

6. Repeat steps 2-5 until a converged solution at the current time is obtained.

7. Move in time and repeat steps 1-6 until solutions over the entire desired time
period are found.
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RESULTS AND DISCUSSION

The numerical method presented above is used for predicting moisture and
temperature distributions in soil. To assure correctness and accuracy, verification
is performed by solving several test problems of increasing complexity and compar-
ing the results against available theoretical values. Because the equations of coupled
heat and mass transfer are nonlinear, analytical solutions for the entire set of equa-
tions are currently not available. As a result, different problems are used to test
different features of the numerical model.

First, a solution for dry soil is carried out to assure that the unsteady heat con-
duction equation is working properly. Second, the infiltration of liquid moisture in
soil is tested using the semianalytical solution of Philips [21]. Finally, the analytical
solution of Crank [22] is used to test the coupled diffusion of heat and water vapor in
dry soil, which also serves as a good test for the mass imbalance problem faced by
several workers [10, 11] using either the finite-difference or finite-element method.

Test 1: Temperature Distribution in Dry Soil

A soil column of depth 2m, density 2,000 kg/m3, thermal conductivity
2.511 W/mK, heat capacity 837.2J/kgK, and initial uniform temperature 293K is
used in this test. The surface temperature of the soil is raised at time z =0 to
310K and the numerical method developed is used to predict the temperature distri-
bution in the soil after 1, 4, 9, 16, and 25 h. The results obtained are compared to the
analytical solution of unsteady conduction in a semi-infinite wall [23], assuming that
heat flows in the vertical direction only. As shown in Figure 2, the numerical code
accurately reproduces the results of the analytical solution, with predictions being
in excellent agreement with analytical values. This is an indication of the correct
implementation of the unsteady and conduction terms in the energy equation.

Test 2: Moisture Distribution in Isothermal Soil

This is a benchmark quasi-analytical solution developed by Philip [21] to test
the isothermal infiltration of liquid moisture in soil. Neglecting the vapor and
thermal effects, the governing equation in one dimension is written as [21]

00\ oy @ oy 0K
()5 5 (x8) + & o
where the boundary conditions assigned for this problem are as follows:
Y (0,z) = —600cm Y(£,0) = 0cm (¢, —40cm) = —600 cm (37)

A Yolo light clay soil is used whose correlations have been fitted by
Haverkamp et al. [24]. The moisture retention curve and the relative hydraulic
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Figure 2. Comparison of analytical and numerical transient temperature profiles for heat conduction in a
semi-infinite column of dry soil.

conductivity are given by

274.2

01244+ ——=——  y<-lem
= 739 + [In(—V)]

0.495 y>—lcm (38)
K=K, 1246 K, =1.27"10cm/s

124.6 + (—)*

A column of height 0.4m is used to simulate the semi-infinite medium con-
sidered by Philip [21]. The distribution of moisture content versus depth is shown
in Figure 3 at the following times: 10°, 10%, 4 x 10*, and 10°s. The time step used
in the simulation is 1s during the first 10*s, and 10-50s afterwards.

A simple modification of this problem is done by assuming that water is
impounded at the surface, in which case (z,0cm) = 25cm. The current numerical
solution for this problem [generated using Eq. (2)], along with that developed by
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Figure 3. Infiltration of moisture into Yolo light clay with (@) zero and (b) 25-cm matric potential at the

surface predicted analytically and numerically.
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Philip [21], are shown in Figures 3a and 3b. Both figures show that the current
numerical solution accurately predicts the quasi-analytical solution of the problems.
This is an indication of the correct implementation of the unsteady, conduction, and
matric potential gradient terms in the moisture conservation equation.

Test 3: Coupled Heat and Water Vapor Diffusion

This situation, which is used to test the coupling between the heat and mass
conservation equations, represents an initially very dry soil column subjected to a
sudden increase in vapor density at one end; this is equivalent to a sudden increase
in matric potential, while the temperature is unchanged. The other end of the soil
column is assumed to be fully adiabatic and impermeable to heat and moisture flow.
The vapor, as a result, diffuses into the column, condenses, and releases heat, result-
ing in a temporary rise in soil temperature that will return to its original value as the
vapor diffuses out of the column. An analytical solution for this problem is possible
subject to the following simplifications:

The correction factors & and f{(0) are set to unity.

The flow of liquid is negligible.

The sensible heat carried by the flow of water vapor is negligible.

Heat and mass transfer equations are linearized around the basic state, because the
changes in temperature and vapor density are small.

The values of all properties are assumed to be constant and equal to their initial
value.

With the above assumptions, the heat and mass transfer equations reduce to

oT 00, op,
CE - P/hfga =V { [k —Dyy(n —0)) aT} VT}

(39)
00, _

V- [Day(n — 0

ap,
_9) _
(m—10) o +(pr—py)

Crank [22] developed an analytical solution for this problem by converting
Egs. (39) into a pair of independent diffusion equations using a dependent-variable
transformation.

A 10-cm long Yolo light clay column initially maintained at a temperature of
293.15K and a matric potential of —2 x 10*m is employed to simulate the problem
numerically. For this value of \, the soil is very dry. Therefore, this situation repre-
sents an extreme case for testing the mass balance problem suffered by the -based
formulation [10] when implemented using a finite-element or a finite-difference
numerical method. The matric potential at the top boundary is suddenly increased
to —1.8 x 10*m. Setting the thermal conductivity and the heat capacity of the soil
to 1.5W/mK and 2 x 10° J/m* K, respectively, and neglecting the effect of hydraulic
conductivity, the change in vapor density and temperature are computed numerically
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Figure 4. Comparison of numerical and analytical transient profiles of (a) vapor density change and (b)
temperature rise in soil for the coupled heat and water vapor diffusion problem.
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by solving Egs. (1) and (2). Results are displayed in the form of change in vapor den-
sity and temperature profiles in Figures 4a and 4b, respectively, at the following
times: 500, 5,000, 2 x 10*, 2 x 10°, and 5 x 10°s. As depicted, numerical and analyti-
cal results are identical, indicating the correctness of the numerical implementation
of all terms involved in the coupled equations. More important, the results reveal
that even for a very dry soil, the J-based formulation does not suffer a conservation
(mass imbalance) problem when implemented in the context of a finite-volume
numerical method.

CLOSING REMARKS

A finite-volume method for predicting unsteady heat and moisture transfer in
soil was presented and tested. The heat and moisture equations were written with
temperature and matric potential as the dependent variables. To increase implicit-
ness and improve robustness, the iterative solution procedure was implemented
within a partial elimination algorithm. The accuracy of the model was verified by
solving three problems involving transfer of heat in a dry soil, transfer of moisture
in an isothermal soil, and coupled heat and water vapor diffusion in soil. Numerical
results were found to be in excellent agreement with analytical values.
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APPENDIX |

The correction factor f(6;) needed in Eq. (3) was introduced by Philip and
de Vries [3] to account for the liquid water islands that are present in the soil, which
act as a shortcut for vapor transfer, thus enlarging the cross section available
for vapor transport. Philip and de Vries [3] suggested the following equation to
compute f(60;):

f(0)=n for 6; < 6

0;(n —9;) (AL-1)

= —_ f
(Tl 91) + (T] — ek) or 0, > 0

in which the porosity 1 is assumed equal to the saturated volumetric moisture con-
tent 6, and 0y is the critical moisture content below which liquid is no longer the
continuous medium.
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APPENDIX 1l

Estimates for the latent heat of vaporization /y,, the vapor diffusion coefficient
in air D,, and the saturated vapor density p,, needed in Eq. (14) are computed using
the following expressions [17]:

T 1.88
— 6 —_ - = - 773 15
he = 2.445 % 10° = 2130(T —293.15) D, =2.17%10 (273.15>

<13.873T— 3529.9
Pys =€

-3
T 10584 ) * 10 T > 273.15

1,000
Pvs = 4615T

c1 = —5674.5359 ¢y = 0.51523058 c3 = —9.677843 % 1073

exp[%l—k e+ 3T+ e T? +esT + 6T + ¢ ln(T)} T <273.15

¢4 = 6.2215701 % 1073 cs =2.0747825 % 107° ¢ = —9.484024 % 10~ 13
¢7 = 41635019

(AIL-1)



