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ABSTRACT ARTICLE HISTORY

A newly developed efficient and fully implicit method for multiblock mesh Received 9 January 2016
coupling that preserves the convergence characteristics of single-block Accepted 4 November 2016
meshing is presented. The technique is developed in the context of an

unstructured pressure-based collocated finite-volume method, is applicable

to both segregated and coupled flow solvers, and is ideal for code

parallelization. The discretization at interfaces is performed in a separate

step to stitch the regions sub-matrices into a global matrix. By solving the

global matrix, the solution achieved to the multiregion problem is exactly

the one that would result from a single-mesh discretization. The method is

tested by solving three laminar flow problems. Solutions are obtained by

meshing the domain as one block or by subdividing it into a number of

blocks with non-matching grids at interfaces. Results show the very tight

coupling at interfaces with a convergence rate that is independent of the

number of blocks used.

Introduction

The efficiency of the numerical solution of the equations governing fluid flow is highly dependent on
the quality and density of the mesh constructed to appropriately describe the geometry of interest and
to resolve the physics involved. Too coarse mesh could lead the numerical solution to miss important
features of the flow; while too dense mesh may cause the computational cost to become a hindrance.
In addition, a highly skewed mesh causes numerical instabilities and negatively affects the quality of
the solution [1-3]. These issues are of primary concern in domains with complex geometry and
boundary conditions. Several techniques have been developed to address these problems. Error
estimation [4, 5] is one technique used to guide the refinement of a coarse mesh. Another approach
for reducing grid density is to use hybrid grids with anisotropic elements near boundaries and more
isotropic elements in the core of the geometry.

When treating multiscale problems, i.e., problems where a large spectrum of time or length scales
exist, finding an appropriate meshing strategy can become very difficult. In these problems, the grid
spacing may be significantly different in different parts of the computational domain, often leading to
unnecessary clustering of grid point through large parts of the domain [6, 7]. This is encountered
when meshing complex geometries with large geometrical scales or when important flow features
are present only in certain parts of the domain. In these cases, the resulting mesh system is either
of poor quality or unnecessarily dense. Multiblock meshing, of interest in this paper, is one way to
address this problem. In multiblock meshing, the domain is subdivided into blocks or regions that
are meshed independently as appropriate. The regions are then reassembled and interconnected to
recover the original computational domain.

CONTACT F. Moukalled @ fmukalled@aub.edu.lb @ Department of Mechanical Engineering, American University of Beirut,
P. O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
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Nomenclature
at,adt, ... coefficients in the discretized equations \% volume of element
bg source term %n the discretized ¢ equa.tion Greek symbols
B source term in the momentum equation .
L . ¢ scalar variable
¢ main grid point [ dynamic viscosity
d tor joining the grid point dF
cF vector jolning the grid points Can r diffusion coefficient
der magnitude of dcr . .
. . p fluid density
D operator used in the pressure equation . .
P T deviatoric stress tensor
Dy, Dy components of the D operator
. v surface area of cell volume V

E component of the surface vector in the

direction of d¢p Subscripts
E magnitude of E C main grid point
F refers to neighbor of the C grid point f control volume face
g geometric interpolation factor F F grid point
I identity matrix nb values at the faces obtained by interpolation
]fc"“" convection flux between C and its neighbors
]fDiff diffusion flux NB neighbors of the C grid point
n mass flow rate at control volume face f Superscripts
P pre;sure P pressure
§ y surface vector u u-velocity component
S5, S Components of the surface vector Sat v v-velocity component

elem(?nt face f . o ! correction
u, v veloc1t).f components in x- and y-direction, * value at the previous iteration

respectively — interpolated value
v velocity vector

Multiblock regions can be assembled in such a way that the meshes overlap; the grid is then
denoted as overlapping grid with a special class of this type denoted Chimera grid [8-10]. For this
case, the inter-region interfaces are areas and volumes for two- and three-dimensional geometries,
respectively. The blocks can also be assembled such that they fill the whole domain without any
overlap; the grid is then denoted as abutting (nonoverlapping) grid. The inter-region interfaces
become edges and areas in two- and three-dimensional domains, respectively. This work is restricted
to abutting/nonoverlapping multiregion meshes.

One important issue in the treatment of multiregion meshes is resolving the information exchange
at the inter-region interfaces, i.e., the interface coupling method. The interface coupling should
ensure that (i) the solution obtained by decomposing the domain into several regions is exactly
the one that would result from solving the problem as one block; (ii) the fluxes across the interfaces
are fully conserved (i.e., the conserved flux variable leaving one region at an interface is equal to the
flux entering the other region through the same interface); (iii) the accuracy of the discretization
method is retained at the interfaces; (iv) the coupling technique is implemented efficiently with
minimum overhead on memory and computational resources.

Interface coupling can be implemented either as an explicit [11-15] or an implicit [16, 17] iterative
process. An explicit procedure involves two stages. In the first stage, a solution is sought for the
different regions independently with the inter-region interfaces treated as boundary patches. In
the second stage, the interfaces are updated using the newest region solutions by performing data
exchange between the connected regions. The swap of information across regions is achieved by
extrapolating data to the interface using the penalty methods [18], splines interpolation [19, 20] or
other extrapolation techniques [21]. Again ensuring flux conservation across the interfaces is
crucial. A major drawback of explicit methods is the convergence rate deterioration that occurs as
the number of regions increases. This means that explicit coupling methods do not satisfy the
efficiency criteria.
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An implicit interface coupling method should ensure that the discretization of the various regions
can be performed independently, while maintaining a strong implicit interface coupling to yield
ideally a convergence rate that is independent of the number of connected regions.

The aim of this work is to present such an implicit coupling procedure that combines simplicity,
conservativeness, and efficiency while retaining an optimal convergence rate that is similar to one-
grid methods. The method is developed for arbitrary interface conditions on nonmatching grids
within the context of a fully conservative, unstructured, pressure-based, segregated, and fully coupled
finite volume flow solvers.

In the remainder of this article, the segregated and coupled solvers are briefly reviewed. This is
followed by a detailed description of the interface coupling procedure. Finally, the performance of
the newly developed procedure is demonstrated by presenting results to a set of problems with
solutions obtained by decomposing the physical domain into several blocks and comparing results
with the solution obtained when treating the physical domain as one block.

Discretization of the conservation equations in the finite volume method

The continuity and momentum equations for incompressible steady-state flow can be written as

V- (pv) =0 (1)
V-(pw)=-Vp-V-1+B (2)

In the finite volume method, the domain is subdivided into several elements as shown in
Figure 1(a). The discretization process starts by integrating the conservation equations over every
element in the domain, such as the one shown in Figure 1(b), to yield

//V-(pv)deO (3)
v
//V-(pvv)de—//(V-p])dV—//(V~T)dV+//BdV (4)

where the stress tensor is given by

= —u(VVJrVVT—i(V ~v)I) (5)

(a) ()

Figure 1. (a) A physical domain subdivided into several nonoverlaping triangular elements and (b) an element C with its attributes.
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Green’s theorem is used to transform the volume integrals of all fluxes and of the pressure gradient
term into surface integrals, Eqs. (3) and (4) are transformed to

j{pvdS:O (6)

ov

74(pw)-ds:—j{@1)-ds—7§r-ds+//sdv )
oV 14

ov ov

By evaluating the surface integrals over the discrete surfaces of the element shown in Figure 1(b),
the discrete forms of the above equations become

S (pv-8), =0 (8)
F=nb(C)

D (pwHT)pS+ > (pd) S =BcVe 9)
f=nb(C) F=nb(C)

In the momentum equation, the pressure at the control volume face fis linearly interpolated, using
the values at the main grid points straddling the interface, as

pr = gpc + (1 - g)pr (10)

The segregated finite volume flow solver

In a segregated flow solver [22-29], the pressure term appearing in the momentum equation [Eq. (9)]
is moved to the right-hand side of the equation and treated explicitly. In addition, terms involving
the v-velocity component appearing in the x-momentum equation, and vice versa, are also added
to the source term and treated explicitly. Performing this step, the algebraic equations for the
u- and v-velocity components are obtained as

u u u
aguc + g apup = b¢
F=NB(C)

v v vV
agve + g apvr = b{.
F=NB(C)

(11)

Rather than solving for pressure directly, pressure is computed by transforming the continuity
equation into a pressure correction equation. The derivation starts by defining correction fields for
the velocity and pressure variables such that

u=u"+u,v=v"+vV,p=p"+p (12)

where * refers to values satisfying the momentum equations and ' to corrections needed to satisfy the
continuity equation. Then, adopting the Rhie-Chow interpolation technique [30] that allowed the
formulation of pressure-based algorithms on collocated grids [31-35], the velocity components at
a control volume face in the continuity equation are written as

us =7 — Df (Vps — Vpy)

A A (13)
v =¥ — D} (Vpy — Vpy)



NUMERICAL HEAT TRANSFER, PART B . 113

with correction values given by

(14)

Substituting in the continuity equation and adopting the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) algorithm approximation [22-24, 27, 28, 31-35], the pressure correction
equation is obtained as

dpe+ . diph=1b (15)

F=NB(C)

The term b. in the pressure correction equation is given by

Z }’I’lf (16)

f=nb(C)

where i1y represents the mass flow rate at a cell face.

In the SIMPLE algorithm, solutions are obtained by solving sequentially the u, v, and p’ equations.
Corrections to the velocity and pressure fields are applied after solving the p" equation. This sequence
of events is repeated until a converged solution, satisfying both momentum and continuity equations,
is reached.

The coupled finite volume flow solver

In a fully implicit velocity-pressure coupled approach [36-40], the continuity and momentum
equations are solved simultaneously to obtain pressure and velocity fields that satisfy both
momentum conservation and mass conservation. Rather than a pressure correction equation, a
pressure equation is derived from the continuity equation. The discretization of the momentum
and continuity equations in the coupled approach differs from the segregated approach in few details.

In the coupled approach, the algebraic forms of the u- and v-momentum equations are obtained by
combining Eqs. (9) and (10). For example, the algebraic equation for the u-velocity component is
obtained as

a%uc + afve + alpc + Z afur + Z af've + Z af pr = bl (17)

F=NB(C) F=NB(C) F=NB(C)

where

af = (1-g)Sf
ac = Z ngf (18)

f=nb(C)

In Eq. (17), the underlined pressure term is due to the pressure gradient which is now discretized
implicitly, while the double underlined term for the v-velocity component arises only at the boundary
as a result of the treatment of the shear stress.

Similarly for the v-velocity component, the following equation is obtained:

alve +aguc +alpc+ Y apve+ Z ajup+ aFPF: (19)

F=NB(C) F=NB(C F=NB(C

In the continuity equation, the velocity at a control volume face is also interpolated with the
Rhie-Chow interpolation method. Using the vector form of Eq. (13), the continuity equation is
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transformed to

> o[ =Dy (Vor — Viy)] -8 =0 (20)
o)

which upon expansion becomes

D oo (-DiVpr) S+ D e -Sr= Y p(-DiVpy) - S (21)
f=nb(C) f=nb(C) f=nb(C)
Noting that
Vi = gve + (1 — gf)vF (22)

the algebraic form of the pressure equation can be written as

a%ppc—l—acuc—i— Yve + Z Ppr + Z o up + Z aFvF— (23)

F=NB(C F=NB(C F=NB(C

where the coefficients in the underlined terms are given by
ap'=(1-g)S ap = (1-g)S;
u x v 24
=2 &5 a=2 g5 2y
f=nb(C f=nb(C)

In matrix form, the above set of algebraic continuity and momentum equations can be
represented as

a%u a%v “P Uc alu:u a;v “P Ugp b1(4:

alt  af avcp ve | + Z apt  ay VP v | = | bt (25)
u v u v

adrad? d?f || pc F=NB(C) | ab’ af, ‘;P Dr bZ

A system of equations similar to Eq. (25) is obtained for each element in the computational
domain and assembled into one system of equations. The system of equations is then iteratively
solved until the set of equations converges to the final solution.

Implicit multiblock algorithm

The newly developed implicit multiblock algorithm is presented in this section and discussed by
referring to the physical domain schematically depicted in Figure 2(a). As shown, the domain is
decomposed into three blocks (blocks 1, 2, and 3) with each block meshed independently. As shown,
blocks 1 and 3 and blocks 1 and 2 are interlinked at the interblock interfaces A and B, respectively.
The discretization and solution of such system proceed in two stages: (i) an initialization phase that is
performed at each time step to account for the case of moving blocks and (ii) a discretization stage
that is performed during the coefficient loop iteration. In the initialization stage, all necessary
topological data describing the connectivity at the interblock interfaces [e.g, A and B in
Figure 2(a)] are derived including interblock face to element connections and contribution areas.
The end result of this initialization step is the derivation of the interblock element connectivity
[Figure 2(b)]. The topological data are then used during the interblock discretization stage, which
starts after the discretization of the various blocks. In this stage, the block algebraic equations are
stitched together into one algebraic system of equations [Figure 2(c)]. This is performed repeatedly
for all equations forming the modeled physical system. The details of the operations performed in
these two stages are presented below.
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Region 2

Interface @

faces

(©) (©

Figure 2. (a) A multiregion physical domain composed of regions 1, 2, and 3 that are independently meshed with interfaces
between the different regions denoted by A and B, (b) topological data derived at the end of the initialization stage, and (c) stitching
of algebraic equations into one system of equations accomplished at the end of the discretization stage.

Stage 1: Multiblock connectivity initialization

In the initialization stage, the interblock topological relations of the interface elements and faces of the
connected regions are defined. This is to say that information on how the inter-region elements are
connected and what is the strength of this connection, i.e., its relative area are computed. This step is
performed at the start of each time step to allow for the moving of blocks (not considered in this
work). The interface boundaries of the connected regions are first identified and the union of the
interface regions is assigned a number of pixels [Figure 3(a)]. By defining the minimum number
of pixels per face as a control parameter, the calculation of total number of pixels becomes straight-
forward. One pixel column is assigned at the interface for each of the two connected regions, with
each pixel being associated with its parent element number [Figure 3(a)]. Using the two sets of pixel
arrays, the topological and geometrical information of the interface faces can now be determined,
based on the pair of elements associated with each position [Figure 3(b)].

A set of interface faces is then constructed using the pixel arrays described above. Each interface
face extends over a length covered by identical pairs of numbered pixels [Figure 3(b)]. A pair of pixels
is presented in the form (a, b) where “a” refers to the number associated with the pixel on the left
pixel column while “b” refers to the number associated with the corresponding pixel on the right pixel
column. For example, interface face 1 [Figure 3(b)] extends over a length covered by the pairs of
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Intpix Matrix

"y

o Pixel

© Node 1 Pixel

o Node 2 Pixel

T

-

| |
EEEEREL

©000000800000800000880088000 8

S 000000068000086000000000008000

7 Intpix Matrix
Q—\ /
Region 1 Rifersnce Faiit Region 2 Region 1 Interface faces  Region 2
(@) )

Figure 3. (a) Subdividing interface boundaries into pixels and (b) associating each pixel with its parent element number.

pixels (8, —1), interface face 2 extends over a length covered by the pairs of pixels (8, 19), and so on.
An element face may be represented by one or more interface faces and may be connected to one or
more cell faces from the opposite region. As shown in Figure 4(a), each interface face is also a part of
one boundary face in each of the two regions. Topological information associated with these interface
faces [Figure 4(b)] include: the local element indices to which the face links in each of the two regions,
the area of the face (computed from the number of pixels forming the face), the face ratio of the
interface face to the region boundary face, which will determine the contribution of the interface flux
to the region boundary face. This is in addition to other secondary geometrical information that can
be readily computed.

During discretization, a loop over the interface faces is performed to assemble the flux terms.
These interface faces are used instead of the actual region boundary faces. The results are akin to
having assembled one virtual mesh, with the obtained coefficients directly assembled into the global
matrix of coefficients.

Region 2 ;
faces Region 2
Region 1
faces * |/
‘ ;
s %
¢
12 i
8 % !
m L Interface Interface
faces faces
(@ ®)

Figure 4. (a) Relation between interface faces and region boundary faces and (b) topological information associated with interface
faces.
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Stage 2: Interblock discretization

In the multiregion domain, the discretization of all flux terms is performed by looping, in all regions,
over all interior and boundary faces that do not lie on an interblock patch and then by looping overall
elements in the regions to calculate source and transient terms. This discretization stage yields a set
of coefficients that are assembled together to form a local matrix of coefficients for each region
[Figure 5(a)]. Then the local coefficient matrices are mapped into a global matrix through a simple
reindexing scheme of the region elements as will be explained later.

After discretizing fluxes at interior and boundary faces, the flux terms at the interblock interface
faces are discretized. The coefficients resulting from this discretization basically stitches or couples the
various geometrically connected regions and are assembled into the global matrix of coefficients. As
depicted in Figure 5(b), these coefficients fill the nondiagonal parts of the global matrix. During this
discretization phase, the actual block interfaces are suppressed and the discretization is performed by
looping overall interface faces. The discretization proceeds as in the case of internal faces, except that
the interface faces connect elements from different regions and the terms are assembled directly into
the global matrix.

The calculation of the mass, convection, and diffusion fluxes along interface faces is presented next
by discretizing flux values along element face f, shown in Figure 6(a), that connects element C of
region 1 to elements F;, F,, and F; of region 2 [Figure 6(b)].

Block #3

’;:f: ‘=

Block #1

® [IZI

@)

©)

Figure 5. (a) Assembly of coefficients arising from the discretization of interior and boundary faces that do not belong to an
interblock patch into local and global matrices (hollow circles are for interblock connections) and (b) assembly of coefficients arising
from the discretization of interface faces into the global matrix.
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Region 2 Region 2

Region |

Suppressed
faces in
Region 2

Interface -4---""7
faces
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Figure 6. Discretization of fluxes along interface faces with (a) suppressed faces in region 2 and (b) notation used in deriving the

algebraic relations.
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Figure 7. (a) Physical domain for the driven flow in a skew cavity problem; nonmatching grids at interfaces between blocks using
(b) quadrilateral, (c) triangular, and (d) hybrid elements.




NUMERICAL HEAT TRANSFER, PART B 119

Discretization of the mass flux
The mass flux at the control volume face, fs, which is needed to estimate the convective flux, is
calculated as

mfs = mfs—M + mfs—SJ + mfs—la = pf5,34vfs—34 ) Sf5—34 + pf5,51vfs—51 : Sf5—51 + pf5,13vf5—13 : st—la

control volume face Interface faces

(26)
with face values computed using the Rhie-Chow formula.

For the continuity equation, the expressions for the mass fluxes differ depending on whether
implementation is for the segregated or the coupled solver. For the segregated solver, 1y, is expressed as

Ly . .y . . .
mg =My, + M & + Mg + (mﬁ,34 + L. + mfsfla)
= Pfiu [V,f5734 - Df5734 (VP';%734 - vp}s,ﬂ)} 'Sf5—34 + Pf s |:V,f5751 - Df5751 (vP]/le - vp_;‘s,ﬂ)} (27)

. st—sl + pf5,13 |:V/fs—13 - Dfs—ls (Vp}5,13 - VP}5,13):| : st—ls

+ pf5—34v}k5—34 ’ Sf5734 + pf5—51v;5751 : Sf5*51 + pf5—13v,));5713 ’ Sf5713

10° 10°
10" ——&—— Continuity 10" ——&—— Continuity
— —A— — x-Momentum [ — —A— — x-Momentum
10-2 —--—g—--— y-Momentum 10-2 —--—g—--— y-Momentum
« @
= <
= =]
2 =
Z Z
L Q
24 (=4
—~ A
~
v"“v\-iA B A
-V\V~
ol T | 10-7|:1||14||1||1\ |
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Iterations Iterations
(@ )
10° 10°
10" ——&—— Continuity 10" ——&—— Continuity
— —A— — x-Momentum — —A— — x-Momentum
10? —--—y—--— y-Momentum 10~2 —--—g—--— y-Momentum
4 L)
E E
= S
Z 7
L L
&~ &~
e
S
PP I R U B .-~ | pecd IR WA RRII R .- VO
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(©) (@)
Figure 8. Reduction of residuals with iterations for the flow in a skew cavity using quadrilateral elements and the segregated flow

solver with the domain subdivided into (a) one block, (b) two blocks, (c) four blocks, and (d) eight blocks.
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Adopting the SIMPLE formulation, Eq. (27) is simplified to
s e -/ -/ s - % - %
mg = mf5734 + me] + mf5—13 + (mf5—34 + mf5751 + mf5713>
= _pf5,34Df5—34VPJI‘5,34 ’ Sf5—34 - pf5,51Df5—51 VP}S,SI ’ Sf5—51 - pfs,lngS—ls vp}s,u ! Sf:s—u (28)
+ pf5—34vf*5—34 : Sf5*34 + pf5—51v;5—51 : SfS*Sl + pfs—lavjzfla : SJ(:FIB'

In general, for an element i of region 1 connected to n elements of region 2, this equation is given by

n n
= = 2P DL VB i DRV S (29)
= =

For the coupled solver, its expression becomes

mfs = pf5,34vf5734 : Sf5734 + pf5,51vf5751 : SfS—Sl + pf5,13vf5713 : Sf5713
= pf5734 |:va—34 - Df5734 (fo5,34 - Vpﬁj—34):| : stfu + pf5751 l:va—Sl - DfS—S] (vpfsfsl - foS—S] )} : SfS—S]
+Phs [vf5—13 —Dp (fos—ls - foB*l&)] “Si
(30)
Again the general expression of Eq. (30), for an element i of region 1 connected to #n elements of
region 2, is given by

iy :j_ilpﬁ,. 57~ 5 (Ver, - V)]s, 61

Equations (29) and (31) are used in the derivation of the pressure correction equation and the
pressure equation in the segregated and coupled solver, respectively.

Table 1. Comparison of the number of iterations required by the single-block and the multiblock meshing methods for the various
problems solved using quadrilateral, triangular, and hybrid elements with the segregated and/or coupled solvers.

Number of blocks Number of elements Number of iterations
Driven flow in a skew cavity (quadrilateral elements-segregated)

1B 40,000 2,375

2B 39,998 2,372

4B 39,996 2,379

8B 39,992 2,365
Driven flow in a skew cavity (triangular elements-coupled)

1B 104,796 23

2B 104,804 23

4B 104,614 23

8B 104,816 23
Driven flow in a skew cavity (hybrid elements-segregated)

4B 31,402 2,174
Backward facing step (quadrilateral elements-segregated)

1B 55,000 2,251

3B 55,000 2,244
Backward facing step (triangular elements-segregated)

1B 5,092 626

3B 5,026 632
Backward facing step (hybrid elements-segregated)

3B 37,090 1,318
Sudden expansion in a square cavity (quadrilateral elements-segregated)

1B 48,000 1,909

6B 47,978 1,920
Sudden expansion in a square cavity (triangular elements-segregated)

1B 26,970 2,304

6B 27,252 2,273

Sudden expansion in a square cavity (hybrid elements-segregated)
6B 41,312 1,850
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Discretization of the convection flux

Using the upwind scheme, the algebraic relation for the convection flux is written as

Conv o . .
]f5 =mMf ¢f5734 + my, ¢f5751 tmy ¢f5713
——
control volume face Interface faces

= Hmfs 3470H¢5 + H_mﬁ 3470H¢34 + Hmfs 5170H¢5
mfs SI’OHd)Sl + Hmfs 13’0”(])5 + H mfs 1370”4)13
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Figure 9. Comparison of (g, ¢, e, g) streamlines and (b, d, f, h) isobars for the lid-driven flow in a skew cavity problem generated
using quadrilateral/hybrid elements with the domain subdivided into (g, b) one, (¢, d) two, (e, f) four, and (g, h) eight blocks
(segregated solver).
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and the general expression of the convection flux when an element i of region 1 is connected to n
elements of region 2 is given by

n n
T =3 Ml ol o+ || =i 0[]0 (33)
=1 =1

Discretization of the diffusion flux

The diffusion flux is computed using
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Figure 10. Comparison of pressure, u-velocity, and v-velocity profiles along the horizontal centerline of the cavity generated using
quadrilateral/hybrid elements with the domain subdivided into one, two, four, and eight blocks (segregated solver).



NUMERICAL HEAT TRANSFER, PART B . 123

with the general expression given by

]}?lﬁ:i(% _¢ﬁ>

1

B, &
i > TV, (80, —Er) (35)
<

Non—orthogonal terms

where E,_ is in the direction of the line connecting the points i and j.

Since the discretization now involves elements from different blocks, local element numbering can
no longer be used. To this end, a global element index is defined to ensure that the assembly across
regions is congregated properly into the global matrix of coefficients. The global index is computed
following a simple mapping procedure. The procedure starts with indexing blocks (or regions) and
associating with each a number representing the sum of elements that are in all blocks (or regions)
of lower index. The global element index is obtained by adding to the local element index, the block
(or region) index. This ensures that the positions of the coefficients for each element are unique and
easily obtained from local block (or region) information. Mathematically the reindexing equation is
given by

Global index = local index + block index (36)
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Figure 11. Reduction of residuals with iterations for the flow in a skew cavity using triangular elements and the coupled flow
solver with the domain subdivided into (a) one block, (b) two blocks, (c) four blocks, and (d) eight blocks.
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Results and discussion

The performance of the multiblock coupling algorithm is evaluated by solving the following three
incompressible laminar flow problems: (i) lid-driven flow in a skew cavity, (ii) flow behind a back-
ward facing step, and (iii) sudden expansion in a rectangular cavity. Results to problems are

Figure 12. Comparison of (g, ¢, e, g) u-velocity and (b, d, f, h) v-velocity contours for the lid-driven flow in a skew cavity problem
generated using triangular elements with the domain subdivided into (a, b) one, (¢, d) two, (e, f) four, and (g, h) eight blocks
(coupled solver).
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computed using triangular, quadrilateral, and/or hybrid (i.e., a combination of triangular and
quadrilateral) elements. The neighboring blocks in a multiblock configuration are meshed with a
slight difference in the mesh density to ensure that grids are nonmatching at the interface, while
maintaining almost the same total number of elements as for the single-block mesh. Moreover, all
problems are solved with the segregated solver over a single block and multiblocks, with limited
computations reported for the coupled solver. When solving the same problem with different number
of blocks, the same initial guess is used. For all test cases, computations were stopped when
the maximum residual of all variables drops below a vanishing quantity that was set at 10>, Under
relaxation was required with the segregated solver. The under-relaxation factors were set at 0.7 and
0.3 for the momentum and continuity equation, respectively. The efficiency of the proposed
multiblock solver is demonstrated by comparing the number of iterations to convergence required
by each meshing technique.

Problem 1: Lid-driven flow in a skew cavity

The first problem is a well-known Computational Fluid Dynamics (CFD) test case that has been used
by several workers as a benchmark [41]. A schematic of the physical situation is depicted in Figure 7
(a) and represents a skew cavity with horizontal sides of length L and the distance between the lower
and upper horizontal sides L. The side walls of the cavity are skewed at an angle of 60° with respect to
the horizontal side. The nonmatching interface grids are displayed in Figure 7(b)-7(d) for quadrilat-
eral, triangular, and hybrid elements, respectively. The domain is subdivided into one, two, four, or
eight blocks and results are presented for a value of Reynolds number (Re = pUL/p, where U is the
velocity of the top horizontal wall and is set to 1) of 765. Results are generated using the segregated
solver with quadrilateral and hybrid elements and the coupled solver with triangular elements.

The convergence history plots showing the reduction in the maximum residuals of the momentum
and continuity equations with the segregated solver are displayed in Figure 8(a)-8(d) for the cases
when the domain is subdivided into one, two, four, and eight blocks, respectively. As shown, the
convergence behavior for all cases is similar with the total number of iterations to reach convergence,
displayed in Table 1, varying between 2,365 and 2,379. Given the slight variation in the number of
elements, this clearly shows that the convergence rate is unaffected by the number of blocks
into which the domain is subdivided. The solution independence of the number of blocks used is
demonstrated by the streamlines and isobars presented in Figure 9. Results for the cases when the
domain is subdivided into one [Figure 9(a) and 9(b)], two [Figure 9(c) and 9(d)], and eight
[Figure 9(g) and 9(h)] blocks are obtained using quadrilateral elements, while for the case when
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Figure 13. (a) Physical domain for the flow behind a backward facing step; nonmatching grids at the interface between two
blocks using (b) quadrilateral, (c) triangular, and (d) hybrid elements.
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Figure 14. Comparison of (a, b) streamlines, (¢, d) isobars, (e, f) u-velocity contours, and (g, h) v-velocity contours for the flow
behind a backward facing step generated by subdividing the domain into one (g, ¢ e g) and three (b, d, f, h) blocks.
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the domain is subdivided into four blocks [Figure 9(e) and 9(f)], results are obtained with hybrid
elements. As shown, streamlines and isobars are similar, indicating that solutions are independent
of the number of blocks and the type of elements used. This is further confirmed by the pressure,
u-velocity, and v-velocity profiles presented in Figure 10(a)-10(c), respectively. As shown, profiles
are on top of each other demonstrating the correctness of the newly developed treatment along
nonmatching grid interfaces.

The physical domain depicted in Figure 7(a) is again decomposed into one, two, four, and eight
blocks, meshed using triangular elements, and solutions for the flow field within the domain are
generated using the coupled flow solver.

The residual history plots displayed in Figure 11(a)-11(d) and few iterations needed for
convergence reported in Table 1 demonstrate that the rate of convergence is independent of few
connected regions (in all cases, 23 iterations are needed), which is a clear indication of a strong
implicit interface coupling and that the coupling technique is implemented efficiently with minimum
overhead on memory and computational resources. Moreover, the u-velocity and v-velocity contours
presented in Figure 12 indicate that the solution obtained by decomposing the domain into 2
[Figure 12(c) and 12(d)], 4 [Figure 12(e) and 12(f)], or 8 [Figure 12(g) and 12(h)] regions is
exactly the one resulting from solving the problem as one block [Figure 12(a) and 12(b)].
Furthermore, the continuity of contours at interfaces clearly indicates that fluxes across interfaces
are fully conserved.
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Figure 15. Comparison of (a) pressure, (b) x-velocity, and (c) y-velocity profiles along the horizontal centerline of the cavity gen-
erated with the domain subdivided into one and three blocks.
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Problem 2: Flow behind a backward facing step

The physical domain for the problem is displayed in Figure 13(a) and represents the flow of a fluid
over a backward facing step. It is used here to show the performance of the coupling technique in
predicting the separation and reattachment points. The problem is solved for an expansion ratio
of 2. The length and height of the inlet section upstream of the step are W and W/2, respectively.
On the other hand, the length L of the section downstream of the step is 5W and its height is W.
The flow velocity at the inlet is set to 1. Schematics of the various nonmatching interface grid types
are displayed in Figure 13(b)-13(d) for quadrilateral, triangular, and hybrid elements, respectively.
Solutions for the problem are generated for the cases when the domain is either treated as one
block or subdivided into three blocks. The numbers of iterations required for convergence are pre-
sented in Table 1. For a given grid type, the convergence behavior (not presented for compactness)
and the number of iterations required to get a converged solution are independent of the number of
blocks used. For a grid composed of 55,000 quadrilateral elements, the number of iterations required
is 2,251 for one block and 2,244 for three blocks. These numbers are, respectively, 626 and 632 for a
grid composed of a little over 5,000 triangular elements. The one-block and three-block results
generated using the dense quadrilateral grid system are displayed in the form of streamlines, isobars,
u-velocity contours, and v-velocity contours in Figure 14(a)-14(h). As shown, one-block and
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Figure 16. (a) Physical domain for the flow due to sudden expansion in a square cavity; Nonmatching grids at the interfaces using
(b) quadrilateral, (c) triangular, and (d) hybrid elements.
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three-block results are identical with interface fluxes being conserved as demonstrated by the
continuity of the contour plots at interfaces. This is further revealed by the pressure, u-velocity,
and v-velocity profiles along the horizontal line y = W/2 (i.e., along mid-height of the domain after
the step, 1 < x < 6) presented in Figure 15(a)-15(c), respectively. As shown, results are on top of each
other confirming again the correctness of the suggested treatment at nonmatching grid interfaces.

Problem 3: Sudden expansion in a square cavity

The last problem considered in this paper deals with the sudden expansion of a steady, laminar, and
two-dimensional flow entering a square cavity of side L. The physical configuration is schematically
depicted in Figure 16(a). As shown, the inlet and outlet to the domain are rectangular sections of length

|
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g %
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Figure 17. Comparison of (a, b) streamlines, (¢, d) isobars, (e, f) u-velocity contours, and (g, h) v-velocity contours for the flow
behind a backward facing step generated by subdividing the domain into one (a, ¢, e, g) and six (b, d, f, h) blocks.
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Figure 18. Comparison of pressure, u-velocity, and v-velocity profiles along the horizontal centerline of the cavity generated using
quadrilateral/hybrid elements with the domain subdivided into one and six blocks.

L/2 and of width W = L/5. The quadrilateral, triangular, and hybrid nonmatching interface grid types
are displayed in Figure 16(b)-16(d), respectively. The u-velocity at inlet is set to 1. Solutions for the
problem are computed with grid generated either by considering the domain as one block or by
subdividing it into six blocks and independently generating grids that are nonmatching at interfaces.

As reported in Table 1, the numbers of iterations required for convergence are independent of the
number of blocks used. For a grid composed of 48,000 quadrilateral elements, the number of itera-
tions needed is 1,909 for one block and 1,920 for six blocks. These numbers are, respectively, 2,304
and 2,273 for a grid composed of nearly 27,000 triangular elements. Streamlines, isobars, u-velocity
contours, and v-velocity contours generated using triangular grids are displayed in Figure 17(a)-
17(h). Once more, the one-block and six-block results are identical with full conservation of fluxes
at interfaces as can be inferred from the continuity of the contour plots presented. Another confir-
mation of results is shown in Figure 18, where pressure [Figure 18(a)], u-velocity [Figure 18(b)],
and v-velocity [Figure 18(c)] profiles along the horizontal centerline of the square cavity generated
using one block and six blocks fall on top of each other.

Closing remarks

A fully implicit multiblock mesh coupling technique preserving the convergence characteristics of
single-block meshing was presented. The scheme was developed in the context of the finite volume
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method and was shown to be applicable to pressure-based segregated and coupled solvers. The test
problems demonstrated that the method results in a strong implicit interface coupling and is efficient
with its convergence rate independent of the number of connected regions, conserves interface fluxes,
and allows the discretization of the various regions to be performed independently.
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