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Fully implicit method for coupling multiblock meshes with 
nonmatching interface grids 
M. Darwish, W. Geahchan, and F. Moukalled 

Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon  

ABSTRACT 
A newly developed efficient and fully implicit method for multiblock mesh 
coupling that preserves the convergence characteristics of single-block 
meshing is presented. The technique is developed in the context of an 
unstructured pressure-based collocated finite-volume method, is applicable 
to both segregated and coupled flow solvers, and is ideal for code 
parallelization. The discretization at interfaces is performed in a separate 
step to stitch the regions sub-matrices into a global matrix. By solving the 
global matrix, the solution achieved to the multiregion problem is exactly 
the one that would result from a single-mesh discretization. The method is 
tested by solving three laminar flow problems. Solutions are obtained by 
meshing the domain as one block or by subdividing it into a number of 
blocks with non-matching grids at interfaces. Results show the very tight 
coupling at interfaces with a convergence rate that is independent of the 
number of blocks used. 
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Introduction 

The efficiency of the numerical solution of the equations governing fluid flow is highly dependent on 
the quality and density of the mesh constructed to appropriately describe the geometry of interest and 
to resolve the physics involved. Too coarse mesh could lead the numerical solution to miss important 
features of the flow; while too dense mesh may cause the computational cost to become a hindrance. 
In addition, a highly skewed mesh causes numerical instabilities and negatively affects the quality of 
the solution [1–3]. These issues are of primary concern in domains with complex geometry and 
boundary conditions. Several techniques have been developed to address these problems. Error 
estimation [4, 5] is one technique used to guide the refinement of a coarse mesh. Another approach 
for reducing grid density is to use hybrid grids with anisotropic elements near boundaries and more 
isotropic elements in the core of the geometry. 

When treating multiscale problems, i.e., problems where a large spectrum of time or length scales 
exist, finding an appropriate meshing strategy can become very difficult. In these problems, the grid 
spacing may be significantly different in different parts of the computational domain, often leading to 
unnecessary clustering of grid point through large parts of the domain [6, 7]. This is encountered 
when meshing complex geometries with large geometrical scales or when important flow features 
are present only in certain parts of the domain. In these cases, the resulting mesh system is either 
of poor quality or unnecessarily dense. Multiblock meshing, of interest in this paper, is one way to 
address this problem. In multiblock meshing, the domain is subdivided into blocks or regions that 
are meshed independently as appropriate. The regions are then reassembled and interconnected to 
recover the original computational domain. 
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Multiblock regions can be assembled in such a way that the meshes overlap; the grid is then 
denoted as overlapping grid with a special class of this type denoted Chimera grid [8–10]. For this 
case, the inter-region interfaces are areas and volumes for two- and three-dimensional geometries, 
respectively. The blocks can also be assembled such that they fill the whole domain without any 
overlap; the grid is then denoted as abutting (nonoverlapping) grid. The inter-region interfaces 
become edges and areas in two- and three-dimensional domains, respectively. This work is restricted 
to abutting/nonoverlapping multiregion meshes. 

One important issue in the treatment of multiregion meshes is resolving the information exchange 
at the inter-region interfaces, i.e., the interface coupling method. The interface coupling should 
ensure that (i) the solution obtained by decomposing the domain into several regions is exactly 
the one that would result from solving the problem as one block; (ii) the fluxes across the interfaces 
are fully conserved (i.e., the conserved flux variable leaving one region at an interface is equal to the 
flux entering the other region through the same interface); (iii) the accuracy of the discretization 
method is retained at the interfaces; (iv) the coupling technique is implemented efficiently with 
minimum overhead on memory and computational resources. 

Interface coupling can be implemented either as an explicit [11–15] or an implicit [16, 17] iterative 
process. An explicit procedure involves two stages. In the first stage, a solution is sought for the 
different regions independently with the inter-region interfaces treated as boundary patches. In 
the second stage, the interfaces are updated using the newest region solutions by performing data 
exchange between the connected regions. The swap of information across regions is achieved by 
extrapolating data to the interface using the penalty methods [18], splines interpolation [19, 20] or 
other extrapolation techniques [21]. Again ensuring flux conservation across the interfaces is 
crucial. A major drawback of explicit methods is the convergence rate deterioration that occurs as 
the number of regions increases. This means that explicit coupling methods do not satisfy the 
efficiency criteria. 

Nomenclature 

au
C; auu

C ; . . . coefficients in the discretized equations 
b/

C source term in the discretized ϕ equation 
B source term in the momentum equation 
C main grid point 
dCF vector joining the grid points C and F 
dCF magnitude of dCF 
D operator used in the pressure equation 
Du

f ;D
v
f components of the D operator 

E component of the surface vector in the  
direction of dCF 

E magnitude of E 
F refers to neighbor of the C grid point 
g geometric interpolation factor 
I identity matrix 
JConv

f convection flux 
JDiff
f diffusion flux 
_mf mass flow rate at control volume face f 

p pressure 
S surface vector 
Sx

f ; Sy
f Components of the surface vector Sat  

element face f 
u, v velocity components in x- and y-direction, 

respectively 
v velocity vector 

V volume of element 

Greek symbols 
ϕ scalar variable 
μ dynamic viscosity 
Γ diffusion coefficient 
ρ fluid density 
τ deviatoric stress tensor 
∂V surface area of cell volume V 

Subscripts 
C main grid point 
f control volume face 
F F grid point 
nb values at the faces obtained by interpolation 

between C and its neighbors 
NB neighbors of the C grid point 

Superscripts 
p pressure 
u u-velocity component 
v v-velocity component 
0 correction 
* value at the previous iteration 

interpolated value   
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An implicit interface coupling method should ensure that the discretization of the various regions 
can be performed independently, while maintaining a strong implicit interface coupling to yield 
ideally a convergence rate that is independent of the number of connected regions. 

The aim of this work is to present such an implicit coupling procedure that combines simplicity, 
conservativeness, and efficiency while retaining an optimal convergence rate that is similar to one- 
grid methods. The method is developed for arbitrary interface conditions on nonmatching grids 
within the context of a fully conservative, unstructured, pressure-based, segregated, and fully coupled 
finite volume flow solvers. 

In the remainder of this article, the segregated and coupled solvers are briefly reviewed. This is 
followed by a detailed description of the interface coupling procedure. Finally, the performance of 
the newly developed procedure is demonstrated by presenting results to a set of problems with 
solutions obtained by decomposing the physical domain into several blocks and comparing results 
with the solution obtained when treating the physical domain as one block. 

Discretization of the conservation equations in the finite volume method 

The continuity and momentum equations for incompressible steady-state flow can be written as 

r � qvð Þ ¼ 0 ð1Þ
r � qvvð Þ ¼ � rp � r � sþ B ð2Þ

In the finite volume method, the domain is subdivided into several elements as shown in 
Figure 1(a). The discretization process starts by integrating the conservation equations over every 
element in the domain, such as the one shown in Figure 1(b), to yield 

Z Z

V

r � ðqvÞ dV ¼ 0 ð3Þ

Z Z

V

r � qvvð Þ dV ¼ �
Z Z

V

r � pIð Þ dV �
Z Z

V

r � sð Þ dV þ
Z Z

V

B dV ð4Þ

where the stress tensor is given by 

s ¼ � m rv þrvT �
2
3
r � vð ÞI

� �

ð5Þ

Figure 1. (a) A physical domain subdivided into several nonoverlaping triangular elements and (b) an element C with its attributes.  
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Green’s theorem is used to transform the volume integrals of all fluxes and of the pressure gradient 
term into surface integrals, Eqs. (3) and (4) are transformed to 

I

qV

qv � dS ¼ 0 ð6Þ

I

qV

qvvð Þ � dS ¼ �
I

qV

pIð Þ � dS �
I

qV

s � dSþ
Z Z

V

B dV ð7Þ

By evaluating the surface integrals over the discrete surfaces of the element shown in Figure 1(b), 
the discrete forms of the above equations become 

X

f¼nb Cð Þ
qv � Sð Þf ¼ 0 ð8Þ

X

f¼nb Cð Þ
qvv þ sð Þf �Sf þ

X

f¼nb Cð Þ
pf I
� �

� Sf ¼ BCVC ð9Þ

In the momentum equation, the pressure at the control volume face f is linearly interpolated, using 
the values at the main grid points straddling the interface, as 

pf ¼ gf pC þ 1 � gf
� �

pF ð10Þ

The segregated finite volume flow solver 

In a segregated flow solver [22–29], the pressure term appearing in the momentum equation [Eq. (9)] 
is moved to the right-hand side of the equation and treated explicitly. In addition, terms involving 
the v-velocity component appearing in the x-momentum equation, and vice versa, are also added 
to the source term and treated explicitly. Performing this step, the algebraic equations for the 
u- and v-velocity components are obtained as 

au
CuC þ

X

F¼NB Cð Þ

au
FuF ¼ bu

C

av
CvC þ

X

F¼NB Cð Þ
av

FvF ¼ bv
C

ð11Þ

Rather than solving for pressure directly, pressure is computed by transforming the continuity 
equation into a pressure correction equation. The derivation starts by defining correction fields for 
the velocity and pressure variables such that 

u ¼ u� þ u0; v ¼ v� þ v0; p ¼ p� þ p0 ð12Þ

where * refers to values satisfying the momentum equations and ′ to corrections needed to satisfy the 
continuity equation. Then, adopting the Rhie–Chow interpolation technique [30] that allowed the 
formulation of pressure-based algorithms on collocated grids [31–35], the velocity components at 
a control volume face in the continuity equation are written as 

uf ¼ uf � Du
f rpf � rpf
� �

vf ¼ vf � Dv
f rpf � rpf
� � ð13Þ
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with correction values given by 

u0f ¼ u0f � Du
f rp0f � rp0f
� �

v0f ¼ v0f � Dv
f rp0f � rp0f
� � ð14Þ

Substituting in the continuity equation and adopting the Semi-Implicit Method for Pressure 
Linked Equations (SIMPLE) algorithm approximation [22–24, 27, 28, 31–35], the pressure correction 
equation is obtained as 

ap0
C p0C þ

X

F¼NB Cð Þ
ap0

F p0F ¼ bp0
C ð15Þ

The term bp0
C in the pressure correction equation is given by 

bp0
C ¼ �

X

f¼nb Cð Þ

_mf ð16Þ

where _mf represents the mass flow rate at a cell face. 
In the SIMPLE algorithm, solutions are obtained by solving sequentially the u, v, and p′ equations. 

Corrections to the velocity and pressure fields are applied after solving the p′ equation. This sequence 
of events is repeated until a converged solution, satisfying both momentum and continuity equations, 
is reached. 

The coupled finite volume flow solver 

In a fully implicit velocity–pressure coupled approach [36–40], the continuity and momentum 
equations are solved simultaneously to obtain pressure and velocity fields that satisfy both 
momentum conservation and mass conservation. Rather than a pressure correction equation, a 
pressure equation is derived from the continuity equation. The discretization of the momentum 
and continuity equations in the coupled approach differs from the segregated approach in few details. 

In the coupled approach, the algebraic forms of the u- and v-momentum equations are obtained by 
combining Eqs. (9) and (10). For example, the algebraic equation for the u-velocity component is 
obtained as 

auu
C uC þ auv

C vC þ aup
C pC þ

X

F¼NB Cð Þ
auu

F uF þ
X

F¼NB Cð Þ
auv

F vF þ
X

F¼NB Cð Þ
aup

F pF ¼ bu
C ð17Þ

where 

aup
F ¼ 1 � gf

� �
Sx

f

aup
C ¼

X

f¼nb Cð Þ
gf Sx

f
ð18Þ

In Eq. (17), the underlined pressure term is due to the pressure gradient which is now discretized 
implicitly, while the double underlined term for the v-velocity component arises only at the boundary 
as a result of the treatment of the shear stress. 

Similarly for the v-velocity component, the following equation is obtained: 

avv
C vC þ avu

C uC þ avp
C pC þ

X

F¼NB Cð Þ

avv
F vF þ

X

F¼NB Cð Þ

avu
F uF þ

X

F¼NB Cð Þ

avp
F pF ¼ bv

C ð19Þ

In the continuity equation, the velocity at a control volume face is also interpolated with the 
Rhie–Chow interpolation method. Using the vector form of Eq. (13), the continuity equation is 
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transformed to 
X

f¼nb Cð Þ

qf vf � Df rpf � rpf
� �� �

� Sf ¼ 0 ð20Þ

which upon expansion becomes 
X

f¼nb Cð Þ
qf � Dfrpf
� �

� Sf þ
X

f¼nb Cð Þ
qf vf � Sf ¼

X

f¼nb Cð Þ
qf � Dfrpf
� �

� Sf ð21Þ

Noting that 

vf ¼ gf vC þ 1 � gf
� �

vF ð22Þ

the algebraic form of the pressure equation can be written as 

app
C pC þ apu

C uC þ apv
C vC þ

X

F¼NB Cð Þ
app

F pF þ
X

F¼NB Cð Þ
apu

F uF þ
X

F¼NB Cð Þ
apv

F vF ¼ bp
C ð23Þ

where the coefficients in the underlined terms are given by 

apu
F ¼ 1 � gf

� �
Sx

f apv
F ¼ 1 � gf

� �
Sy

f

apu
C ¼

X

f¼nb Cð Þ
gf Sx

f apv
C ¼

X

f¼nb Cð Þ
gf Sy

f
ð24Þ

In matrix form, the above set of algebraic continuity and momentum equations can be 
represented as 

auu
C auv

C aup
C

avu
C avv

C avp
C

apu
C apv

C app
C

2

4

3

5
uC
vC
pC

2

4

3

5þ
X

F¼NB Cð Þ

auu
F auv

F aup
F

avu
F avv

F avp
F

apu
F apv

F app
F

2

4

3

5
uF
vF
pF

2

4

3

5 ¼

bu
C

bv
C

bp
C

2

4

3

5 ð25Þ

A system of equations similar to Eq. (25) is obtained for each element in the computational 
domain and assembled into one system of equations. The system of equations is then iteratively 
solved until the set of equations converges to the final solution. 

Implicit multiblock algorithm 

The newly developed implicit multiblock algorithm is presented in this section and discussed by 
referring to the physical domain schematically depicted in Figure 2(a). As shown, the domain is 
decomposed into three blocks (blocks 1, 2, and 3) with each block meshed independently. As shown, 
blocks 1 and 3 and blocks 1 and 2 are interlinked at the interblock interfaces A and B, respectively. 
The discretization and solution of such system proceed in two stages: (i) an initialization phase that is 
performed at each time step to account for the case of moving blocks and (ii) a discretization stage 
that is performed during the coefficient loop iteration. In the initialization stage, all necessary 
topological data describing the connectivity at the interblock interfaces [e.g., A and B in 
Figure 2(a)] are derived including interblock face to element connections and contribution areas. 
The end result of this initialization step is the derivation of the interblock element connectivity 
[Figure 2(b)]. The topological data are then used during the interblock discretization stage, which 
starts after the discretization of the various blocks. In this stage, the block algebraic equations are 
stitched together into one algebraic system of equations [Figure 2(c)]. This is performed repeatedly 
for all equations forming the modeled physical system. The details of the operations performed in 
these two stages are presented below. 
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Stage 1: Multiblock connectivity initialization 

In the initialization stage, the interblock topological relations of the interface elements and faces of the 
connected regions are defined. This is to say that information on how the inter-region elements are 
connected and what is the strength of this connection, i.e., its relative area are computed. This step is 
performed at the start of each time step to allow for the moving of blocks (not considered in this 
work). The interface boundaries of the connected regions are first identified and the union of the 
interface regions is assigned a number of pixels [Figure 3(a)]. By defining the minimum number 
of pixels per face as a control parameter, the calculation of total number of pixels becomes straight-
forward. One pixel column is assigned at the interface for each of the two connected regions, with 
each pixel being associated with its parent element number [Figure 3(a)]. Using the two sets of pixel 
arrays, the topological and geometrical information of the interface faces can now be determined, 
based on the pair of elements associated with each position [Figure 3(b)]. 

A set of interface faces is then constructed using the pixel arrays described above. Each interface 
face extends over a length covered by identical pairs of numbered pixels [Figure 3(b)]. A pair of pixels 
is presented in the form (a, b) where “a” refers to the number associated with the pixel on the left 
pixel column while “b” refers to the number associated with the corresponding pixel on the right pixel 
column. For example, interface face 1 [Figure 3(b)] extends over a length covered by the pairs of 

Figure 2. (a) A multiregion physical domain composed of regions 1, 2, and 3 that are independently meshed with interfaces 
between the different regions denoted by A and B, (b) topological data derived at the end of the initialization stage, and (c) stitching 
of algebraic equations into one system of equations accomplished at the end of the discretization stage.  

NUMERICAL HEAT TRANSFER, PART B 115 



pixels (8, � 1), interface face 2 extends over a length covered by the pairs of pixels (8, 19), and so on. 
An element face may be represented by one or more interface faces and may be connected to one or 
more cell faces from the opposite region. As shown in Figure 4(a), each interface face is also a part of 
one boundary face in each of the two regions. Topological information associated with these interface 
faces [Figure 4(b)] include: the local element indices to which the face links in each of the two regions, 
the area of the face (computed from the number of pixels forming the face), the face ratio of the 
interface face to the region boundary face, which will determine the contribution of the interface flux 
to the region boundary face. This is in addition to other secondary geometrical information that can 
be readily computed. 

During discretization, a loop over the interface faces is performed to assemble the flux terms. 
These interface faces are used instead of the actual region boundary faces. The results are akin to 
having assembled one virtual mesh, with the obtained coefficients directly assembled into the global 
matrix of coefficients. 

Figure 4. (a) Relation between interface faces and region boundary faces and (b) topological information associated with interface 
faces.  

Figure 3. (a) Subdividing interface boundaries into pixels and (b) associating each pixel with its parent element number.  
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Stage 2: Interblock discretization 

In the multiregion domain, the discretization of all flux terms is performed by looping, in all regions, 
over all interior and boundary faces that do not lie on an interblock patch and then by looping overall 
elements in the regions to calculate source and transient terms. This discretization stage yields a set 
of coefficients that are assembled together to form a local matrix of coefficients for each region 
[Figure 5(a)]. Then the local coefficient matrices are mapped into a global matrix through a simple 
reindexing scheme of the region elements as will be explained later. 

After discretizing fluxes at interior and boundary faces, the flux terms at the interblock interface 
faces are discretized. The coefficients resulting from this discretization basically stitches or couples the 
various geometrically connected regions and are assembled into the global matrix of coefficients. As 
depicted in Figure 5(b), these coefficients fill the nondiagonal parts of the global matrix. During this 
discretization phase, the actual block interfaces are suppressed and the discretization is performed by 
looping overall interface faces. The discretization proceeds as in the case of internal faces, except that 
the interface faces connect elements from different regions and the terms are assembled directly into 
the global matrix. 

The calculation of the mass, convection, and diffusion fluxes along interface faces is presented next 
by discretizing flux values along element face f, shown in Figure 6(a), that connects element C of 
region 1 to elements F1, F2, and F3 of region 2 [Figure 6(b)]. 

Figure 5. (a) Assembly of coefficients arising from the discretization of interior and boundary faces that do not belong to an 
interblock patch into local and global matrices (hollow circles are for interblock connections) and (b) assembly of coefficients arising 
from the discretization of interface faces into the global matrix.  
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Figure 6. Discretization of fluxes along interface faces with (a) suppressed faces in region 2 and (b) notation used in deriving the 
algebraic relations.  

Figure 7. (a) Physical domain for the driven flow in a skew cavity problem; nonmatching grids at interfaces between blocks using 
(b) quadrilateral, (c) triangular, and (d) hybrid elements.  
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Discretization of the mass flux 

The mass flux at the control volume face, f5, which is needed to estimate the convective flux, is 
calculated as 

_mf5
|{z}

control volume face

¼ _mf5� 34 þ _mf5� 51 þ _mf5� 13
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Interface faces

¼ qf5� 34
vf5� 34 � Sf5� 34 þ qf5� 51

vf5� 51 � Sf5� 51 þ qf5� 13
vf5� 13 � Sf5� 13

ð26Þ
with face values computed using the Rhie–Chow formula. 

For the continuity equation, the expressions for the mass fluxes differ depending on whether 
implementation is for the segregated or the coupled solver. For the segregated solver, _mf5 is expressed as 

_mf5 ¼ _m0f5� 34
þ _m0f5� 51

þ _m0f5� 13
þ _m�f5� 34

þ _m�f5� 51
þ _m�f5� 13

� �

¼ qf5� 34
v0f5� 34 � Df5� 34 rp0f5� 34

� rp0f5� 34

� �h i
� Sf5� 34 þqf5� 51

v0f5� 51 � Df5� 51 rp0f5� 51
� rp0f5� 51

� �h i

� Sf5� 51 þqf5� 13
v0f5� 13 � Df5� 13 rp0f5� 13

� rp0f5� 13

� �h i
� Sf5� 13

þqf5� 34
v�f5� 34

� Sf5� 34 þqf5� 51
v�f5� 51

� Sf5� 51 þqf5� 13
v�f5� 13

� Sf5� 13

ð27Þ

Figure 8. Reduction of residuals with iterations for the flow in a skew cavity using quadrilateral elements and the segregated flow 
solver with the domain subdivided into (a) one block, (b) two blocks, (c) four blocks, and (d) eight blocks.  
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Adopting the SIMPLE formulation, Eq. (27) is simplified to 

_mf5 ¼ _m0f5� 34
þ _m0f5� 51

þ _m0f5� 13
þ _m�f5� 34

þ _m�f5� 51
þ _m�f5� 13

� �

¼ � qf5� 34
Df5� 34rp0f5� 34

� Sf5� 34 � qf5� 51
Df5� 51rp0f5� 51

� Sf5� 51 � qf5� 13
Df5� 13rp0f5� 13

� Sf5� 13

þ qf5� 34
v�f5� 34

� Sf5� 34 þ qf5� 51
v�f5� 51

� Sf5� 51 þ qf5� 13
v�f5� 13

� Sf5� 13 :

ð28Þ

In general, for an element i of region 1 connected to n elements of region 2, this equation is given by 

_mfi ¼ �
Xn

j¼1
qfi� j

Dfi� jrp0fi� j
� Sfi� j þ

Xn

j¼1
qfi� j

v�fi� j
� Sfi� j ð29Þ

For the coupled solver, its expression becomes 

_mf5 ¼ qf5� 34
vf5� 34 � Sf5� 34 þ qf5� 51

vf5� 51 � Sf5� 51 þ qf5� 13
vf5� 13 � Sf5� 13

¼ qf5� 34
vf5� 34 � Df5� 34 rpf5� 34 � rpf5� 34

� �� �
� Sf5� 34 þ qf5� 51

vf5� 51 � Df5� 51 rpf5� 51 � rpf5� 51

� �� �
� Sf5� 51

þ qf5� 13
vf5� 13 � Df5� 13 rpf5� 13 � rpf5� 13

� �� �
� Sf5� 13

ð30Þ

Again the general expression of Eq. (30), for an element i of region 1 connected to n elements of 
region 2, is given by 

_mfi ¼
Xn

j¼1
qfi� j

vfi� j � Dfi� j rpfi� j � rpfi� j

� �h i
� Sfi� j ð31Þ

Equations (29) and (31) are used in the derivation of the pressure correction equation and the 
pressure equation in the segregated and coupled solver, respectively. 

Table 1. Comparison of the number of iterations required by the single-block and the multiblock meshing methods for the various 
problems solved using quadrilateral, triangular, and hybrid elements with the segregated and/or coupled solvers. 

Number of blocks Number of elements Number of iterations  

Driven flow in a skew cavity (quadrilateral elements-segregated)  
1B 40,000 2,375  
2B 39,998 2,372  
4B 39,996 2,379  
8B 39,992 2,365 

Driven flow in a skew cavity (triangular elements-coupled)  
1B 104,796 23  
2B 104,804 23  
4B 104,614 23  
8B 104,816 23 

Driven flow in a skew cavity (hybrid elements-segregated)  
4B 31,402 2,174 

Backward facing step (quadrilateral elements-segregated)  
1B 55,000 2,251  
3B 55,000 2,244 

Backward facing step (triangular elements-segregated)  
1B 5,092 626  
3B 5,026 632 

Backward facing step (hybrid elements-segregated)  
3B 37,090 1,318 

Sudden expansion in a square cavity (quadrilateral elements-segregated)  
1B 48,000 1,909  
6B 47,978 1,920 

Sudden expansion in a square cavity (triangular elements-segregated)  
1B 26,970 2,304  
6B 27,252 2,273 

Sudden expansion in a square cavity (hybrid elements-segregated)  
6B 41,312 1,850  
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Discretization of the convection flux 

Using the upwind scheme, the algebraic relation for the convection flux is written as 

JConv
f5
|ffl{zffl}

control volume face

¼ _mf5� 34/f5� 34
þ _mf5� 51/f5� 51

þ _mf5� 13/f5� 13
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Interface faces

¼ _mf5� 34 ; 0
�
�

�
�/5 þ � _mf5� 34 ; 0

�
�

�
�/34 þ _mf5� 51 ; 0

�
�

�
�/5þ

� _mf5� 51 ; 0
�
�

�
�/51 þ _mf5� 13 ; 0

�
�

�
�/5 þ � _mf5� 13 ; 0

�
�

�
�/13

ð32Þ

Figure 9. Comparison of (a, c, e, g) streamlines and (b, d, f, h) isobars for the lid-driven flow in a skew cavity problem generated 
using quadrilateral/hybrid elements with the domain subdivided into (a, b) one, (c, d) two, (e, f) four, and (g, h) eight blocks 
(segregated solver).  
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and the general expression of the convection flux when an element i of region 1 is connected to n 
elements of region 2 is given by 

JConv
fi
¼
Xn

j¼1
_mfi� j ; 0

�
�

�
�/i þ

Xn

j¼1
� _mfi� j ; 0
�
�

�
�/j ð33Þ

Discretization of the diffusion flux 

The diffusion flux is computed using 

JDiff
f5
|{z}

control volume face

¼ Cf5� 34r/f5� 34
� Sf5� 34 þ Cf5� 51r/f5� 51

� Sf5� 51 þ Cf5� 13r/f5� 13
� Sf5� 13

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interface faces

¼ /f34
� /f5

� � Ef5� 34

d5� 34
þ /f51

� /f5

� � Ef5� 51

d5� 51
þ /f13

� /f5

� � Ef5� 13

d5� 13

þ
Cf5� 34r/f5� 34

� Sf5� 34 � Ef5� 34

� �
þ Cf5� 51r/f5� 51

� Sf5� 51 � Ef5� 51

� �

þ Cf5� 13r/f5� 13
� Sf5� 13 � Ef5� 13

� �

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non� orthogonal terms

ð34Þ

Figure 10. Comparison of pressure, u-velocity, and v-velocity profiles along the horizontal centerline of the cavity generated using 
quadrilateral/hybrid elements with the domain subdivided into one, two, four, and eight blocks (segregated solver).  
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with the general expression given by 

JDiff
fi
¼
Xn

j¼1
/fj
� /fi

� � Efi� j

di� j
þ
Xn

j¼1
Cfi� jr/fi� j

� Sfi� j � Efi� j

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non� orthogonal terms

ð35Þ

where Efi� j is in the direction of the line connecting the points i and j. 
Since the discretization now involves elements from different blocks, local element numbering can 

no longer be used. To this end, a global element index is defined to ensure that the assembly across 
regions is congregated properly into the global matrix of coefficients. The global index is computed 
following a simple mapping procedure. The procedure starts with indexing blocks (or regions) and 
associating with each a number representing the sum of elements that are in all blocks (or regions) 
of lower index. The global element index is obtained by adding to the local element index, the block 
(or region) index. This ensures that the positions of the coefficients for each element are unique and 
easily obtained from local block (or region) information. Mathematically the reindexing equation is 
given by 

Global index ¼ local indexþ block index ð36Þ

Figure 11. Reduction of residuals with iterations for the flow in a skew cavity using triangular elements and the coupled flow 
solver with the domain subdivided into (a) one block, (b) two blocks, (c) four blocks, and (d) eight blocks.  
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Results and discussion 

The performance of the multiblock coupling algorithm is evaluated by solving the following three 
incompressible laminar flow problems: (i) lid-driven flow in a skew cavity, (ii) flow behind a back-
ward facing step, and (iii) sudden expansion in a rectangular cavity. Results to problems are 

Figure 12. Comparison of (a, c, e, g) u-velocity and (b, d, f, h) v-velocity contours for the lid-driven flow in a skew cavity problem 
generated using triangular elements with the domain subdivided into (a, b) one, (c, d) two, (e, f) four, and (g, h) eight blocks 
(coupled solver).  
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computed using triangular, quadrilateral, and/or hybrid (i.e., a combination of triangular and 
quadrilateral) elements. The neighboring blocks in a multiblock configuration are meshed with a 
slight difference in the mesh density to ensure that grids are nonmatching at the interface, while 
maintaining almost the same total number of elements as for the single-block mesh. Moreover, all 
problems are solved with the segregated solver over a single block and multiblocks, with limited 
computations reported for the coupled solver. When solving the same problem with different number 
of blocks, the same initial guess is used. For all test cases, computations were stopped when 
the maximum residual of all variables drops below a vanishing quantity that was set at 10� 5. Under 
relaxation was required with the segregated solver. The under-relaxation factors were set at 0.7 and 
0.3 for the momentum and continuity equation, respectively. The efficiency of the proposed 
multiblock solver is demonstrated by comparing the number of iterations to convergence required 
by each meshing technique. 

Problem 1: Lid-driven flow in a skew cavity 

The first problem is a well-known Computational Fluid Dynamics (CFD) test case that has been used 
by several workers as a benchmark [41]. A schematic of the physical situation is depicted in Figure 7 
(a) and represents a skew cavity with horizontal sides of length L and the distance between the lower 
and upper horizontal sides L. The side walls of the cavity are skewed at an angle of 60° with respect to 
the horizontal side. The nonmatching interface grids are displayed in Figure 7(b)–7(d) for quadrilat-
eral, triangular, and hybrid elements, respectively. The domain is subdivided into one, two, four, or 
eight blocks and results are presented for a value of Reynolds number (Re ¼ ρUL/μ, where U is the 
velocity of the top horizontal wall and is set to 1) of 765. Results are generated using the segregated 
solver with quadrilateral and hybrid elements and the coupled solver with triangular elements. 

The convergence history plots showing the reduction in the maximum residuals of the momentum 
and continuity equations with the segregated solver are displayed in Figure 8(a)–8(d) for the cases 
when the domain is subdivided into one, two, four, and eight blocks, respectively. As shown, the 
convergence behavior for all cases is similar with the total number of iterations to reach convergence, 
displayed in Table 1, varying between 2,365 and 2,379. Given the slight variation in the number of 
elements, this clearly shows that the convergence rate is unaffected by the number of blocks 
into which the domain is subdivided. The solution independence of the number of blocks used is 
demonstrated by the streamlines and isobars presented in Figure 9. Results for the cases when the 
domain is subdivided into one [Figure 9(a) and 9(b)], two [Figure 9(c) and 9(d)], and eight 
[Figure 9(g) and 9(h)] blocks are obtained using quadrilateral elements, while for the case when 

Figure 13. (a) Physical domain for the flow behind a backward facing step; nonmatching grids at the interface between two 
blocks using (b) quadrilateral, (c) triangular, and (d) hybrid elements.  
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Figure 14. Comparison of (a, b) streamlines, (c, d) isobars, (e, f) u-velocity contours, and (g, h) v-velocity contours for the flow 
behind a backward facing step generated by subdividing the domain into one (a, c, e, g) and three (b, d, f, h) blocks.  
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the domain is subdivided into four blocks [Figure 9(e) and 9(f)], results are obtained with hybrid 
elements. As shown, streamlines and isobars are similar, indicating that solutions are independent 
of the number of blocks and the type of elements used. This is further confirmed by the pressure, 
u-velocity, and v-velocity profiles presented in Figure 10(a)–10(c), respectively. As shown, profiles 
are on top of each other demonstrating the correctness of the newly developed treatment along 
nonmatching grid interfaces. 

The physical domain depicted in Figure 7(a) is again decomposed into one, two, four, and eight 
blocks, meshed using triangular elements, and solutions for the flow field within the domain are 
generated using the coupled flow solver. 

The residual history plots displayed in Figure 11(a)–11(d) and few iterations needed for 
convergence reported in Table 1 demonstrate that the rate of convergence is independent of few 
connected regions (in all cases, 23 iterations are needed), which is a clear indication of a strong 
implicit interface coupling and that the coupling technique is implemented efficiently with minimum 
overhead on memory and computational resources. Moreover, the u-velocity and v-velocity contours 
presented in Figure 12 indicate that the solution obtained by decomposing the domain into 2 
[Figure 12(c) and 12(d)], 4 [Figure 12(e) and 12(f)], or 8 [Figure 12(g) and 12(h)] regions is 
exactly the one resulting from solving the problem as one block [Figure 12(a) and 12(b)]. 
Furthermore, the continuity of contours at interfaces clearly indicates that fluxes across interfaces 
are fully conserved. 

Figure 15. Comparison of (a) pressure, (b) x-velocity, and (c) y-velocity profiles along the horizontal centerline of the cavity gen-
erated with the domain subdivided into one and three blocks.  
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Problem 2: Flow behind a backward facing step 

The physical domain for the problem is displayed in Figure 13(a) and represents the flow of a fluid 
over a backward facing step. It is used here to show the performance of the coupling technique in 
predicting the separation and reattachment points. The problem is solved for an expansion ratio 
of 2. The length and height of the inlet section upstream of the step are W and W/2, respectively. 
On the other hand, the length L of the section downstream of the step is 5W and its height is W. 
The flow velocity at the inlet is set to 1. Schematics of the various nonmatching interface grid types 
are displayed in Figure 13(b)–13(d) for quadrilateral, triangular, and hybrid elements, respectively. 

Solutions for the problem are generated for the cases when the domain is either treated as one 
block or subdivided into three blocks. The numbers of iterations required for convergence are pre-
sented in Table 1. For a given grid type, the convergence behavior (not presented for compactness) 
and the number of iterations required to get a converged solution are independent of the number of 
blocks used. For a grid composed of 55,000 quadrilateral elements, the number of iterations required 
is 2,251 for one block and 2,244 for three blocks. These numbers are, respectively, 626 and 632 for a 
grid composed of a little over 5,000 triangular elements. The one-block and three-block results 
generated using the dense quadrilateral grid system are displayed in the form of streamlines, isobars, 
u-velocity contours, and v-velocity contours in Figure 14(a)–14(h). As shown, one-block and 

Figure 16. (a) Physical domain for the flow due to sudden expansion in a square cavity; Nonmatching grids at the interfaces using 
(b) quadrilateral, (c) triangular, and (d) hybrid elements.  
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three-block results are identical with interface fluxes being conserved as demonstrated by the 
continuity of the contour plots at interfaces. This is further revealed by the pressure, u-velocity, 
and v-velocity profiles along the horizontal line y ¼W/2 (i.e., along mid-height of the domain after 
the step, 1 < x < 6) presented in Figure 15(a)–15(c), respectively. As shown, results are on top of each 
other confirming again the correctness of the suggested treatment at nonmatching grid interfaces. 

Problem 3: Sudden expansion in a square cavity 

The last problem considered in this paper deals with the sudden expansion of a steady, laminar, and 
two-dimensional flow entering a square cavity of side L. The physical configuration is schematically 
depicted in Figure 16(a). As shown, the inlet and outlet to the domain are rectangular sections of length 

Figure 17. Comparison of (a, b) streamlines, (c, d) isobars, (e, f) u-velocity contours, and (g, h) v-velocity contours for the flow 
behind a backward facing step generated by subdividing the domain into one (a, c, e, g) and six (b, d, f, h) blocks.  
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L/2 and of width W ¼ L/5. The quadrilateral, triangular, and hybrid nonmatching interface grid types 
are displayed in Figure 16(b)–16(d), respectively. The u-velocity at inlet is set to 1. Solutions for the 
problem are computed with grid generated either by considering the domain as one block or by 
subdividing it into six blocks and independently generating grids that are nonmatching at interfaces. 

As reported in Table 1, the numbers of iterations required for convergence are independent of the 
number of blocks used. For a grid composed of 48,000 quadrilateral elements, the number of itera-
tions needed is 1,909 for one block and 1,920 for six blocks. These numbers are, respectively, 2,304 
and 2,273 for a grid composed of nearly 27,000 triangular elements. Streamlines, isobars, u-velocity 
contours, and v-velocity contours generated using triangular grids are displayed in Figure 17(a)– 
17(h). Once more, the one-block and six-block results are identical with full conservation of fluxes 
at interfaces as can be inferred from the continuity of the contour plots presented. Another confir-
mation of results is shown in Figure 18, where pressure [Figure 18(a)], u-velocity [Figure 18(b)], 
and v-velocity [Figure 18(c)] profiles along the horizontal centerline of the square cavity generated 
using one block and six blocks fall on top of each other. 

Closing remarks 

A fully implicit multiblock mesh coupling technique preserving the convergence characteristics of 
single-block meshing was presented. The scheme was developed in the context of the finite volume 

Figure 18. Comparison of pressure, u-velocity, and v-velocity profiles along the horizontal centerline of the cavity generated using 
quadrilateral/hybrid elements with the domain subdivided into one and six blocks.  

130 M. DARWISH ET AL. 



method and was shown to be applicable to pressure-based segregated and coupled solvers. The test 
problems demonstrated that the method results in a strong implicit interface coupling and is efficient 
with its convergence rate independent of the number of connected regions, conserves interface fluxes, 
and allows the discretization of the various regions to be performed independently. 
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