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Abstract

Simple thermodynamic modeling of heat engines as thermal gap systems provides useful insight on the
performance of power plants. When a temperature difference exists, a potential for power production
ensues, and optimization is naturally sought. When electric and/or thermoelectric effects are present, the
entropic behavior of such systems changes somewhat. An optimum power extraction temperature is found
to be related to the so-called CNCA optimum temperature. The opportunity to generate thermoelectric
power in a temperature gap is discussed in some detail in a fashion that renders it analogous to many
current thermodynamic optimization studies.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

For a given set of parametric constraints, the performance of a given system may be improved
(power maximized in a power plant...etc.) by suitably setting certain parameters. This has been
practiced in the disciplines known as finite time thermodynamics (FTT) [1] and entropy genera-
tion minimization (EGM) [2] or, more generally, exergy analysis (EA) [3]. There appears to be
some disagreement between adherents to the above first two procedures [4-7]. Nevertheless, the
aims of the two schools are similar and may best be described as thermodynamic optimization in
search of enhanced performance. The disagreement is attributed to two basic aspects. The first is
related to the nature of the interconnection between the “reversible internal” and the “irreversible
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external” components of the plant [4]. The other disagreement is on whether the rate of heat input
may vary freely during internal optimization of the plant [6]. These issues shall not be discussed in
this paper, and in any event, they are not of major concern since the systems studied here are
inherently irreversible.

A temperature gap system is basically an “insulation” that separates two bodies (reservoirs),
one of high temperature and the other of low temperature. Bejan [2] explained that a power plant
(or a refrigeration plant) that receives heat from the hot body and expels heat to the cold body
effectively functions as a thermal insulation. While the two thermal reservoirs do indeed exchange
heat, they do not make thermal contact, since the plant separates them. The fact that they are in
communication, although indirectly, presents an opportunity to generate power. In a regular gap
(insulation), the heat flux is constant as the temperature drops from the high reservoir value to the
low reservoir value. When a power plant is considered to be sandwiched between the reservoirs,
the heat fluxes into and out of the plant are no longer conserved due to the opportunity for
extraction of power.

The presence of an additional electric field influences the performance of a power producing
device that can be modeled as a gap (insulation) between two temperature limits. An interesting
occurrence is when the electric field owes its existence to the thermoelectric effect. The effect is
usually neglected, since it is rather small compared to other effects, such as heat conduction. On
the other hand, with semiconductors, the thermoeclectric effects may be significant. Thus, a
thermoelectric generator is unique in that the temperature gap and the “sandwiched” power plant
are one and the same.

Assuming that classical concepts arising from EA, such as the Guoy-Stodola theorem, apply to
such inherently irreversible systems, does provide some insight into the macroscopic thermody-
namic relations involving thermoelectric power extraction. The driving motivation for this work is
the attempt to ascertain the reasons for the relatively low efficiency of thermoelectric generators.
In this paper, the generation of entropy in a temperature gap is first considered. The effect of the
power extraction temperature and its location are then discussed. The inclusion of electric and
thermoelectric effects in the temperature gap system is the final consideration. Some conclusions
pertinent to thermoelectric power generation are presented with some questions remaining open
for further research.

2. Generation of entropy and power production

A temperature gap system (also called an insulation) is considered to be sandwiched between a
heat source at 7y and a heat sink at 77. The heat flow O proceeds undiminished across the system
length. Recalling the second law for a closed system (the gap), the entropy generation rate is

1 1N (-1’ k| (w1
=0 -, E)‘K[W]_T[ﬁ] W

where it has been assumed that the heat proceeds by an assumed linear conductive process, and
the “insulation” has a conductance K. In the last expression, it is assumed that the conductance
is that of a material with a thermal conductivity k, area 4 and length L.
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Applying a steady exergy balance leads to the Guoy-Stodola theorem on destruction of
availability [3]. The power produced is, thus, equal to the maximum available energy less the
destroyed availability (the destroyed exergy). This can be stated (referenced to the immediate
surroundings) as

W = an - TLSgen (2)

When Sgen, the rate of entropy generation between Ty and 71, is inserted (i.e. using Eq. (1)), the
power produced is zero, as is expected for a pure heat transport situation.

Thus, given a temperature gap (T — 7p), the maximum entropy generation rate is equivalent to
losing all available work potential (exergy). By reducing the entropy generation rate, some work
may be recovered. The theoretical upper bound on the recoverable power is when Sgen is zero, and
the Carnot limit is approached.

3. Optimal insulation/gap cooling location in a temperature gap

Following Bejan [2], an insulation system of length L, area 4 and thermal conductivity k op-
erating between a heat source at Ty and heat sink at 7j is considered. At some intermediate
temperature Tp,, and location x, heat is removed by the inclusion of a reversible engine that op-
erates between that temperature and the sink temperature. Fig. 1a shows the gap, and Fig. 1b
shows the reversible engine extracting heat from the gap at temperature 7;,.

The entropy generation is “internal” to the gap system, and its rate is given by

C QL QH - QL QH
S en — - = T T 3
g TL + Tm TH ( )
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Fig. 1. (a) Schematic of temperature gap system with no power extraction and (b) temperature gap system with power
extraction at some intermediate temperature.
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Consider that
. kA . kA
=—(Tg — T d =—(Tmw — T 4
On="2(Tu—Tw) and Or= (T 1) )
are the heat flows towards and away from the extraction point, respectively.

Combining these relations, Sgcn emerges as a function of 7, and x. Minimizing this function by
taking GSgen /0T, and aSgen /Ox results in:

X _ L(TH—Tm)\/TL and T _ )C(TL—TH)TLTH +LTLTI_21 (5>
T (VT = V) (VTaTL + T) o X(Ty —TL) +LTL
If the above two equations are solved simultaneously for x, the result is x., = L/2, which indi-
cates that, indeed, midpoint “cooling” produces minimum entropy generation. If from the onset
(as in Bejan [2]), the geometric midpoint were selected, the result is found by putting x = L/2
in the second of Eq. (5), producing:

Tm,opt: VIuTL (6>

Eq. (5) are, however, more general in that they give the optimal heat extraction temperature at
any location along the system and additionally give the optimal position for any length and any
selected heat extraction location (7). That the above is analogous to maximum power needs
further consideration.

4. Power extraction from a temperature gap with external heat transfer irreversibilities

When a certain amount of power is extracted from a temperature gap (T — 7r), the maximum
heat input is no longer what was Q in Section 1. The available heat input is now Qy, which de-
pends on the power extraction temperatures within the gap.

The entropy generation in the gap of Fig. 1b is given by summing the entropy generation from
Ty to Ty and from 7, to 7y with no other contribution, assuming internal reversibility, and where
T; and T, are the hot and cold side temperatures of the power extraction compartment. Given that
Ou = K(Ty — Tp) is the heat entering the gap and O = K (T, — T;) is the heat exiting it, the power
produced according to the Guoy—Stodola theorem (steady exergy balance with 7; as reference) is

W:QHYIC_TL{QH<_TLH+%)+QL<_i+;L>} (7)

Inserting the relations for Oy and O, this can be optimized with respect to 7; and 75 to give

Tl,opt =/ IuTy and T20pt Ty.
The maximum obtainable power is found by inserting the above optimum temperatures into

Ty
max - e 8
~ou(1- /1) Q

or in terms of conductance and temperature only:
2

. T;
Winax = KTy (1 - —L> 9)

Ty

which is the well known so-called endoreversible CNCA result [8].
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It is noted that if Eq. (7) is expanded in terms of QH and QL, we obtain,

T . T
de QH( T]> _QL<1_72) (10)

Eq. (10) can be obtained by applying a steady exergy balance on the aggregate system sandwiched
between Ty and 7.

If now, the optimum values of 77 and 7, are inserted, what emerges is that the maximum power
is equivalent to a model that has a reversible engine operating between the optimum value of 7}
and 7y reversibly when supplied with a heat input of Qy. The maximum power is

Iy
de QH ( T]_,opt > (1 1)

This result can be interpreted as the observation that the heat flow Oy drives the maximum
availability (i.e. in the absence of entropy generation, Oy flows undiminished from 7, to Ty,
rather than from 7; to 7).

5. Power extraction evolution from a temperature gap with specified extraction temperature

A model that involves internal irreversibility is now sought. Using the model of the previous
section, 77 may be assumed equal to 75 and equal to some midpoint temperature 7;,. Inserting this
into Eq. (7) gives the power produced by a plant (viewed as a temperature gap) that is externally
reversible but internally irreversible. Now, if the resulting equation for power is differentiated with
respect to T, the result would indicate that the optimum temperature is Ty ope = /70T (Where T
is the average temperature in the gap). This result is equivalent to a model where an engine is
extracting an amount of power from a heat flow of Qy — Q1 rather than QO and is operating
reversibly between 7,, and 7;. As a result, it is seen that this model is neglecting a significant part
of the available energy (exergy) in the gap. '

The previous model can be improved by considering that the maximum available heat is not Oy
(which depends on 7},) but rather 0 (the undiminished heat flow from 7} to 7} in the absence of
any power extraction). The power is once again given by the steady sate Guoy-Stodola theorem
according to Eq. (7), but replacing Oy with Q. Considering that 0 is not dependent now on 7} or
T, the optimum is when 7; is equal to Ty and 7> is equal to 7;. This, obviously, produces the
Carnot limit, which is not being questioned here.

Now, considering that 7} = 7, = T, in a midpoint engine model, we obtain:

. . . 1 1 . 1 1
W:QUC—TL{QH<—T—H+T>+QL<—T—+TL>} (12)

Re-writing in a dimensionless form:

:(1+r—2rm)<1+r—2i> (13)

Tm
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Fig. 2. Power evolution in gap system as a function of the midpoint temperature ratio for a given overall temperature
ratio.

where 1., is the ratio of the midpoint temperature to the heat source temperature (7,/7y), and ©
is the ratio of the low temperature to the heat source temperature (73 /Ty).

Fig. 2 shows a plot of the non-dimensional power versus 1, for different temperature ratios
(7L /Twn). The figure immediately reveals that power can be extracted from a gap (7 to 71) when
the midpoint temperature (in this model) is within a specified range. This range is from the
arithmetic mean temperature (no power—simply heat conduction) to the harmonic mean tem-
perature (entropy generation at a maximum). Within this narrow range, an optimum exists at
v/ TLTz. Beyond this range, to extract power, either cooling (left) or heating must be occurring.
The curves shift to the right and become narrower as the temperature ratio increases.

In fact, the setup presented may be viewed as equivalent to a model of power plants proposed
by Bejan in Ref. [2]. The simplest form is a given heat input (Q) supplying two parallel paths:
a “bypass heat leak™ part which is not passive but produces some power, and, in parallel, a
“Carnot” compartment. The heat (Qy) is routed to the heat leak, while (Q — Qy) enters the
Carnot compartment. Clearly then, the total power must be the sum of the contribution of the two
parallel parts of the system:

= (@~ 0w~ On -0 (1) (14)
where Oy is the heat rejected from the bypass heat leak and 7}, is the temperature at which the
bypass part extracts power. It will be shown soon that this does indeed produce the same optimum
midpoint temperature as above. Eq. (14) can be expanded and found to reproduce Eq. (12). This
verifies that the models are consistent and also conform to the Guoy-Stodola theory on exergy
destruction. Thus, it could be stated that “for an internally irreversible plant (due to the heat
transfer, which is inherent), the useful power that may be produced is equal to the total unre-
coverable availability of the thermal gap minus the internally generated exergy destruction”.
What is being discussed here is that the bypass heat leak from 7y to 7 is itself “leaky”
and feeds to the Carnot engine. Bejan [2] modeled a more complex system that has a continuously
“leaky heat leak,” which produces power between every local leak from the bypass heat
leak and the heat sink. Nuwayhid et al. [9] considered a simplified model that considers the
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bypass heat leak to “leak’ heat to the Carnot engine at only one location (the midpoint in this
case). This model was found to give somewhat higher power, but was certainly bound by the
Carnot limit. It will be used later, although some caution has to be practiced when using the
results.

6. Entropy generation in an insulation in the presence of an electric current

In addition to heat conduction in the simple thermal gap system, Joule heating is now included
in the analysis to study what are the possible effects ensuing. As a starting point, it is instructive to
assume that the total Joule heat in the “insulation” is apportioned equally above and below the
geometric midpoint, which is at a temperature 7,,. While the entropy generation rate (Sgen) is still
given by Eq. (3), the heat transfers must include the added Joule heating effect. Assuming equi-
partition of the total Joule heat, the heat input and output rates become:
kA 1 Je pL

and QL:—(Tm_TL>+§ 1 (15)

kA _112ﬁ
L/2

o = ——= (T — T

On=1 /2( i) =307

where p is the electrical resistivity of the gap material.
The entropy generation rate is, thus, given by

. T, T. Ty Tn RE/1 1 2
Sen =2K 24—+ 42 44— ————
& <TL+Tm+Tm+TH >+ 2 <TL+TH T

where R = pL/A is the total electrical resistance, and K = k4 /L is the total thermal conductance
of the insulation.
Differentiating with respect to 7, leads to

o2 1 | Tyl (Tu—TL)  I°R
Toopt = | Tl |1 —P5— 77—~ ) =/ TulL — = 1
o \/ ! L< 2kA? (T + TL)) \/ e (Tu+T) K(Tu—T) (o)

It is observed that in the absence of an electric field, the usual relation is found. It is also seen that
the optimum temperature of power extraction is reduced as more current flows and this can be
analyzed as a function of the ratio of Joule-to-conduction heat.

The above equation can also be written in dimensionless form:

fop — \/(1 _%> (17)

where 1, = Tn/Ty; © = T /Tu; B = pI?L? /kA* Ty
Since 1., is a fraction such that © < 7, < I, hence f<2(1 — 12), and the maximum allowed
current parameter is thus:

Brnax = 2(1 = 7) (18)
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Fig. 3. Entropy generation number versus overall temperature ratio for different electric current parameter.

Hence, the minimum entropy generation rate is

. Tu+ To I’R 2I°R
enopt = —8K _— — 2K\ [Ty | 4 — ————~ 19
Sgen opt + < T T ) + < 5 + \/ H L< K(Tn + 1) (19)

or in the dimensionless form:

B— 167+ Br+4(1+1) T( _ﬁ)

I+t

Sgen opt _
K 2t

An entropy generation number Ng may be defined as the ratio of entropy generation with an
electric current present to that when no electric current exists.

(20)

B—16t+ Br+4(1 +1) r( %>

T 1+t

Ny = Sgenopt _
Sgenopt...l:O —167 + 8\/%(1 + T)

Fig. 3 shows Ny versus 7 for several values of § within the acceptable range 0 < f < 2(1 — 7?)
(which assures that 7, remains in the appropriate range defined above). When no electric current
is present Ny = 1. There exists a temperature above which the entropy generation will be less than
for the case with no electric current (for a given value of f§). In general, as f§ increases, the entropy
generation decreases within the appropriate range for v (which also diminishes).

Considering an endoreversible power generation model with finite rate heat transfer from a
heat source, the hot side of the device (including electric current flow) may be selected as given by
Eq. (16) for maximum output. The condition reverts to the usual CNCA [8] condition in the
absence of the electric field (/ = 0) and shows a somewhat lower optimum temperature.

(1)

7. Inclusion of thermoelectric effects

In the previous section, the effect of an electric current was shown. The existence of an electric
current can be attributed to the presence of a temperature gradient. This brings to light the
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thermoelectric effect. To start with, let us simplify the situation by assuming a single material ““the
insulation” with the usual heat conduction occurring but with the added allowance for the
thermoelectric effect. The entropy generation rate in this insulation (plant, thermoleg. . .etc.) is
still given by Eq. (1), but the local heat flow is now as follows [10]:

. dr
O(x) = odT(x) — kA . (22)

where one dimensional geometry has been assumed (and is more or less justified), the Thomson
effect is neglected (by using average Seebeck values) and « is the Seebeck coefficient. The equation
assumes the hot side (7) is at location x = 0 and the sink side (71) is at x = L. The equation shows
the ordinary conductive mechanism in addition to the Peltier transport of heat by the charge
system (electrons or holes depending on the type of material). The Peltier heat flow is seen to
always oppose the conduction flow.

It is clear that the temperature profile in the insulation is required. The presence of Joule
heating due to the electric currents’ passage makes the profile non-linear. The steady state energy
equation is solved with properties taken constant and the Thomson heat neglected:

d’r pl?
kA— = ——
dx? A (23)
For the problem involved, the solution is
x pl?
T(x)=Ty — 7 (Tu—T.) — Wx(x —L) (24)
The gradient of the temperature is
dr (TH — TL> p12
—=— - x—L
dx L e (25)
Substituting into the equation for Q(x) gives the local heat flow:
. Tyu—T) 1 I
O(x) = alT(x) + kA Tu-1) 1 p—(2x—L) (26)

L 274

In the absence of thermoelectric effects, the heat flow proceeds unimpeded from 73 to 7, and the
entropy generation rate is given by Eq. (1). On the other hand, if thermoelectric effects are in-
cluded, Eq. (1) is no longer valid since Q(x) is location dependent as given by Eq. (26).
The entropy generation rate (in one dimension) is given by [2]:

: 1dQ 1 .dr

Sgen_?a_ﬁQa (27)
Using Egs. (24)—(26) in Eq. (27), the local entropy generation rate (W/m K) is now:
AJPA* + APkA p[LTy + (x — L)AT] + I*p*L* (L + 2x* — 2Lx)

(2kA2[LTy — xAT] + PpLx(L — x))’

No attempt has been made to simplify this any further. Fig. 4 shows the entropy generation rate
along the leg length for different temperature differences. The maximum entropy generation is
clearly on the cold side, while the curvature slowly increases as the driving temperature difference

Seen(x) = kA (28)
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Fig. 4. (a) Temperature profile along thermoleg. (b) Local entropy generation rate along thermoleg (for given geom-
etry, material properties and electric current).

increases. The trivial conclusion that decreasing the heat sink temperature reduces entropy gen-
eration is apparent.

The total entropy generation in the “insulation” (e.g. a single thermoleg) is found by inte-
grating Eq. (28) from x = 0 to x = L. This yields:

kA (Tu —T.)* pI2 L (Tu+Tp)

Seenleg = — ———— +— — 29
el L T 2 4 Tuly (29)
This result can also be obtained by evaluating:
: On  Ou
enleg — — 5 T 30
Sg Jleg TH + TL ( )

where Oy and Q; are heat flows evaluated from Eq. (26) at x = 0 and at x = L, respectively, and it
is noted that the presence of thermoelectricity causes the heat flow rates to be location dependent
(as given by Eq. (26)) and therefore, different in the upper and lower parts of the leg. Eq. (30) can
be obtained by imposing a simple entropy balance on the leg [11]. Clearly from Eq. (29), in the
absence of an electric field, the entropy generation rate is simply that for a “‘conductive’ insu-
lation system.

While it is noted that what has been discussed considers only internal irreversibilities, an en-
tropy generation number (Ng) based on the internal entropy generation can be defined to be the
entropy generation in the presence of thermoelectricity to the entropy generation due to pure
conduction of heat:

’ —
p(L T
N :1+12—<—> S — 31

s k\4) (ry—1.)° (31)

where the average temperature is 7 = (Ty + 11.)/2.
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Eq. (31) shows that for a given material and a given electric current, entropy generation is least
when the temperature difference is largest or if the length-to-area ratio is smallest. On the other
hand, for a given geometry and temperature difference, entropy generation is small when the
electric resistivity-to-thermal conductivity ratio is small. Conductors have a low p/k ratio, while
insulators have a large p/k. Semiconductors are somewhere in between (e.g. Copper 4 x 1072,
Bi,Te; 9 x 107 Alumina 3 x 10" m? K/A?).

Obviously, entropy generation is less when there is no electric current. On the other hand, since
the electric current is being sought and is a result of the temperature gradient (Seebeck effect), a
zero current case is a trivially useless result. Optimization is, therefore, sought in order to max-
imize either efficiency or electric power.

Considering a full two-legged thermocouple provides more insight. In such a situation, one can
write for each leg (n and p type) an equation for the heat flow similar to Eq. (26) but with the heat
flow at a location x being defined as that in both legs:

(TH ; TL) +plz(2x—[4) (32)

Q(x) = 20T (x) 4 2kA
where it has been assumed that |o,| ~ ||, &y = ky and p, = p, and it is noted that o, is positive
while o, is negative. Additionally, the equation assumes the same geometry in both legs and a
similar temperature profile.

If Eq. (31) is evaluated both at x = 0 and at x = L and the resulting Oy and Q; subtracted, what
emerges is the anticipated result that the power is given by W = 2al(Ty — 1) — 2(pL/A)I?, that is,
the power is equal to the open circuit power less the total Joule heat losses. Optimization of power
with respect to current would give the maximum power to be

Wmax - E ? Z(TH - TL)2
In general, one could define a load ratio (m = R /R, where R = pL/A and R, is the external “load”
resistance) so that maximum power would be given as a function of m as
2
=2 A g, gy
(1+m)” p L
When m = 1, W, 1s produced.

It should be noted that the optimum current relation is of the same form for a single material as
for a couple, consecutively, since in I = «AT/(pL/A)(1 + m), the o and p refer to the couple in the
second case (i.€. deouple = 20 aANd poypie = 2p).

If entropy generation is considered by utilizing Eq. (30), the result is that the total entropy
generation rate in the two legs is simply that of Eq. (29) multiplied by a factor of 2. This leads to the
same entropy generation number for the whole couple as is given for a single leg by Eq. (30). This is
to be expected, since the two legs are assumed to have similar properties and temperature profiles.

Returning to Eq. (31) and replacing / using the above information gives:

Ne=1+ (33)

(14 m)’
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This says that the additional fractional entropy generated is unavoidably due to the obtained
electric output as described by the dimensionless figure of merit (ZT), where the figure of merit is
Z = o2/ pk for a single material. The next section expands on this.

8. Inclusion of heat dumping in entropy generation

The result of Eq. (29) does not produce the anticipated optimization with respect to current. To
remedy this, it has to be realized that Oy must be allowed to vary. The simplest equivalent model
is to consider an inexhaustible heat source (Q%) at Ty, supplying the device with a heat Oy, while
the remainder (Q* — Qy) is rejected (dumped). The entropy generation is now:

: 1 1 . [ AT D — €
Sgen: %‘I'%_F(Q QH)<_TH+TL>:Q*<THTL>_QHTLQL (34)

Inserting the appropriate heat flow at 7y and 71 from Eq. (26) gives:

. . AT AT 2pL 1
Soen = O — 20l —+ 1" 35
£ Q(THTL) TL+ A T, (33)
Replacing the current with the aid of the load ratio by its optimum value:
. . AT 2m o A AT?
Sgen,min - Q < > - 5 T (36)
Ty (1+m)”p L T

Minimum entropy generation (and therefore maximum power) will be produced when m = 1. This
can be verified by differentiation of Eq. (36) with respect to m. As a reminder it is noted that the
same previous observations are also valid.

A form of entropy generation number can be defined by dividing Eq. (36) by the entropy
generation in the case of the absence of thermoelectricity (but with heat dumping), which is
Sgen,noTE - (AT/THTL) This glves

2 2
O AT (1+m?pL O (1+m)
where f = (kAAT/L)/Q" is a form of dimensionless heat leak fraction that indicates how much of
the input energy is conducted through the device. For a given heat leak, the larger the dimen-
sionless figure of merit (ZTy), the less entropy is generated and the more power is produced. On
the other hand, since both Z and f'depend on k (inversely), it may be more appropriate in the case
of an inexhaustable energy supply (Q%) to study the power factor («*>/p). Thus, the greater the
power factor, the less entropy (more power) is generated for a given temperature difference and
source temperature. Obviously, semiconductors have the highest Z and therefore, will produce the
most power.

It is worth noting that including heat dumping in the energy balance (PM method) does not
affect the result. This can be shown as follows:

W=0-0-0=0-0-(0-0n)=0m-0 (38)

Nstg=1-—
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9. Temperature profile manipulation in a thermoelectric leg
9.1. Entropy generation due to midpoint variation

A material gap of length L is considered to be located between a heat source at 7y and a heat
sink at 7p. The material gap is considered to be cooled to a temperature 7, at the geometric
midpoint (L/2) as suggested in Bejan [2] for a purely conductive gap (Fig. 1a). The inclusion of
thermoelectric effects means that the heat flow and the temperature profile are not uniform along
the length. The heat flow is described by Eq. (22). The temperature profiles above and below the
cooling point must now be reevaluated. Integrating Eq. (23) first from x = 0 to x = L/2 and then

from x = L/2 to x = L gives:
2

T(x) = Ty — Li/z(TH —T) — ﬁx(x —L/2) 0<x<L/2 )
Ty =1+ E= 1) - pr (x—L)(x—L/2) L/2<x<L
L2 " 2kA2 ST
The local (position dependent) heat fluxes in the two segments are now given by

O (x) = alT(x) —|—kAM—|—lp1—2 (2x—£> 0<x<L/2

L/2 27 4 2 (40)
: (Tn—T) 1 I 3L
QL()C):alT(x)+kAL7/2+§pz<2x—7> L/2<x<L

A check on the above can be provided by requiring that Qg (x)|,_, = Qo(x)|,_, where Qy is the heat
flux given by Eq. (26). The result would indicate that the equality holds when the midpoint
temperature is
— 1,p(L\" — 1_ AT
Tm_T—|—81k<A> —T+SZ(1+m)2 (41)
where the current has been replaced by invoking Ohms law and introducing the thermoelectric
figure of merit (Z) and the load ratio (m). Eq. (41) shows that the midpoint temperature is normally
higher than the average (linear) temperature, depending on the current and other parameters in the
second term on the right. This same equation can be obtained from Eq. (24) with x = L/2.
Now, knowing 7, d7/dX, Q(x) and dQ/dT, the local entropy generation rate is found from
Eq. (27). The following two equations give the entropy generation rate as a function of position
along the leg:

64K2A*ATR, + 1612 pkA>L? (Tyy + 23 ATy + I* p L (1 45+ 8(%)2)

Sgen,hot (X) = kA (42)

(4kA2L(Tyg — 25 ATym) + 2pL2% (1 = 22))°

L

162 kAL (25 — 1) ATy, — To) — 64RA*AT, + 19214 (5~ 125 + 8(3)°)

Sgen,cold (x) = kA 5 5
(4642 (25 = DATwt + ATi — Ta) + P01 (1= 35 4+2(3)°) )

(43)
where ATym = Ty — Ty and ATy = Ty — 11
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Fig. 5. Total entropy generation rate in thermoleg for a given thermoelectric figure of merit (optimum location is
indicated).

The preceding equations are somewhat lengthy, and Fig. 5 shows the entropy generation rate
along a thermoelectric leg of unit length for three values of the midpoint temperature.

Integrating over the two hot and cold segments and summing gives the total internal entropy
generation rate for the whole leg as

: %A (Ty Tn Tn T 1,pL{1 1 2
Spenint = — | —+24 24 L g) 4P 4 = 44
genint 7 <Tm+TH+TL+Tm >+4 A\m n T (44)

Differentiating with respect to 7., and setting to zero gives:

P (L o
Tm,opt: Ty 1+[% Z ﬁ (45)

which is identical to Eq. (16). This can be written in terms of the thermoelectric figure of merit (for
a load ratio of unity):

1 ZAT?
Tm,opt = \/THTL<1 +3_2 T ) (46)

This shows that the optimum internal temperature that minimizes the internal entropy generation
rate is very similar to the NCCA condition. When Z = 0 (no thermoelectric effect), the NCCA
condition is obtained. Now using Eq. (41) with m = 1, it is seen that:

T
Tm,opt = TuTy 7 (47>
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Thus, when the midpoint temperature is the mean temperature, the NCCA case is obtained.
However, with thermoelectricity present to a significant extent (by proper semiconductor material
selection), the midpoint temperature is greater than the mean temperature.

The optimum (minimum) entropy generation rate of the altered system in terms of the original
(prior to midpoint temperature alteration) is

72 — —
. A |TT,[VT 1o%4 , T TuTy
en,int,min = 4k — —+ 1 —— —(Ty — T — 1 48
Seenint L THTL{ T }+8pL(H L) THTL{ TTm+ (48)

where m = 1 has been used.
Approximating the optimum by the NCCA condition, the minimum internal entropy genera-
tion rate becomes:

Seen,int,min ~ %lng <T+TH7\/Z?—H> + 4k — { T}(}T 1} (49)
or
: - (1) T
Sgenmln = Sgenmin/kA/L ~ §ZTT +38 (ﬁ - 1) (50)

where it has been assumed that the NCCA optimum applies. In fact, as Z gets larger, the optimum
intermediate temperature gets increasingly different, and Eqgs. (49) and (50) become less accurate.
For current and near future materials, Z is apparently limited to be below 0.01 (the ceiling on ZT
is considered to be in the range 24 in the usual temperature range [12]). The optimum inter-
mediate temperature, as a result, is very close to the NCCA temperature and will be within 5-10%
of it.

9.2. Power evolution in a temperature gap including thermoelectric effect

The basis is a temperature gap (insulation) of fixed geometry and properties. Allowing for
thermoelectric effects, the irreversibilities are clearly due to conduction and Joule heat, as given by
Egs. (29) and (30). The power generated in a gap with the aforementioned irreversibilities is found
by considering that the steady state Guoy—Stodola theorem applies (whether this is the case is
another question). For a gap with power recovery anticipated, the appropriate heat flows are Oy
and O, entering and leaving the gap respectively. Considering that no external irreversibilities
exist, entropy is generated only internally as Oy and Q,, crossing at Ty and Tj, respectively,
traverse the gap. Thus, the power is equal to the maximum available power minus the destroyed
availability due the irreversibilities present. This can be written as

- anH TL gen,0 (51)
Here, Sgen is simply the entropy generated within the material (for external irreversibilities Eq. (7)
may be referred to). Since Sgeno = —(QH /Tu) + (QL /Tp), the above equation can be clearly seen to

be the same as, W = QH — O\, which is obtainable from a simple energy balance.



662 R. Y. Nuwayhid, F. Moukalled | Energy Conversion and Management 44 (2003) 647-665

Now, if the midpoint temperature is allowed to vary somehow, the power in this case will be
equal to the original power (with the midpoint at its natural value) less the added destruction of
availability due to the alteration. Hence:

w = WCQH - TLSgen.m (52>

where Seenm 1S the entropy generated including midpoint temperature variation and Qy is eval-
uated using Eq. (26) at the hot side. Using Eq. (44) and eliminating the current, this is written as

144 I kA I
k2 A (B aT ) M (BT )RR g

This equation is to be compared with the well known equation for thermoelectric power at
matched load condition (for a single leg):

. 10?4

W=-""(Ty-T, 54

4 p L (Ti L) (54)

The power factor («?/p) is assumed known for a given material at the average temperature, and
the geometry (4/L) is fixed. Thus, the power generation can be found as a function of the mid-
point temperature. The original midpoint temperature is found from Eq. (28) as

Too=T+1r2 (L 2—T+IZAT2 (55)
8k 32

Fig. 6 shows the power output versus the midpoint temperature of a leg for a given temperature
gap of 300 K. The power demonstrates an optimization as the midpoint temperature is decreased
below its natural thermoelectric value (455 K) and below the mean temperature (450 K). As the
temperature difference grows, the power increases, as shown in Fig. 7. The benefit from midpoint
temperature decrease falls as the average temperature of the leg increases, as shown also in the last
figure.

In the previous calculations, realistic values of material and geometrical parameters have been
used. Thus, in the case of a AT of 300 K, a power per single leg of 0.42 W in the normal case (using

. S O
AN K
L NN

Power (W)
S o
AN

043 |

042 t! ‘ ‘ ‘ ‘ ‘
400 410 420 430 440 450
Midpoint Temperature (K)

Fig. 6. Power versus midpoint temperature in a thermoleg with given geometry, material properties and imposed
temperature difference.
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Fig. 7. Power versus midpoint temperature in a thermoleg for different temperature difference’s and average temper-
atures.

Eq. (54)) and over 0.47 W in the optimized case is realized. Considering that in a module, there are
usually multi-couples, the benefit can be significant.

9.3. Obtaining more power

When power is extracted, the heat flows in and out of the thermoleg are given by the two Eq.
(39) evaluated at x = 0 and x = L, respectively. The power obtainable is still given by Eq. (51),
except that the heat flows are now Qj; and Q; . Thus, the power is the difference: W' = Q}; — 0} .
This gives, for any load ratio, in terms of the average and midpoint temperature:

. 2m+1 o? A kA . —
W’:i——T—T +4—T.(T — T 56
e LT T AT T (56)
So that at matched load and by eliminating the average temperature using Eq. (41) in favor of the
original midpoint temperature, the maximum power is

‘ kA
W=y 24 = 1+ 4 1 - 7 o

Clearly, with the original midpoint temperature, the normal thermoelectric power equation is
obtained. For a midpoint temperature less than the original, more power is obtained. At a
midpoint temperature equal to the average of the thermal gap, 12.5% more power is extracted
(holding all else constant).

The previous results indicate that cooling the midpoint enhances the power production from a
thermoleg. The cooling is assumed to be obtained independently, and it is not questioned here
whether such a “waste-cooling” stream could be envisaged, say by thermal superconducting!

In order to ascertain if it may be possible to obtain a benefit from midpoint cooling, a net
available power (exergy) assessment must be made. Such an assessment is not quite straightfor-
ward, since the device being analyzed is inherently irreversible. An interesting question is the effect
of having different temperature profiles in each leg. One simple practical example is when one leg
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is “passive”, that is, it does not contribute to any significant extent to the Seebeck coefficient. In
such a case, the temperature profile in such a leg could be considered linear, being simply due to
pure heat conduction. The cooling of the thermoleg midpoint may be considered to be equivalent
to a two-stage cascade, although there are some differences.

9.4. Cascading

A simple two-stage thermoelectric cascade calculation will show that while the efficiency of the
cascade increases, the total power is less than twice the power obtainable from the a single stage
that utilized the full temperature difference available. In fact, power rises as the leg length is re-
duced (at least up to a certain minimum length in realistic cases that include contact resistances).

Consider a two-stage cascade of total length L with each stage having a length L/2. The cascade
is within a total temperature difference of AT = Ty — 7p. and each stage has the same cross-
sectional area and material properties. The total power is given by

. . . 1 o2 _
WT:VI/I+VI/2:§%{AT2+27}(Z}—2T)} (58)

where 77 is the intermediate (single) temperature of the common interface of the two stages.
Clearly, when T = T, the total power would be equivalent to that obtainable from a single stage
case with a length of L and subject to the same overall AT. If the intermediate temperature is
either less than or greater than the mean, more power can be obtained than in the previous case.
This is clearly due to the diminishing of the temperature difference in either the upper or lower
cascade. Hence if 7} = T}, the lower stage is simply a passive thermal superconductor and the
power is due to the top stage of half the length operating with the full original temperature dif-
ference.

A difference between a two-stage cascade and a midpoint-cooled case is that the latter is ac-
tually a single electrical stage with one internal current. Additionally, in a cascade, there are al-
ways contact resistances present. As a possible example of tailoring the temperature profile,
segmented thermoelements may be considered. In general, the internal temperature approach
followed in this paper is somewhat different and sheds more light on the ongoing desire to im-
prove thermoelectric performance.

10. Concluding remarks

The entropy generation rate and power production in a power producing system taken as a
temperature gap between two thermal reservoirs was studied first in order to clarify the ther-
modynamic modeling of such systems. The influence of the presence of an electric field was
considered. Thermoelectricity, as a case when an electric field is present as a result of the thermal
field, was considered. Among several results, it was shown that there exists a possibility to enhance
thermoelectric performance by tailoring the temperature profile. No attempt was made to suggest
practical means of achieving the shown results.



R. Y. Nuwayhid, F. Moukalled | Energy Conversion and Management 44 (2003) 647665 665

Acknowledgements

The authors wish to acknowledge the support of the American University of Beirut research
board manifested through grant number 179960-73617.

References

[1] Andersen B, Salamon P, Berry RS. Thermodynamics in finite time. Phys Today 1984;September:62-70.

[2] Bejan A. Entropy generation minimization. Boca Raton, FL: CRC Press; 1996.

[3] Bejan A, Moran M, Tsatsaronis G. Thermal design and optimization. New York: John Wiley & Sons; 1996.

[4] Sekulic DP. A fallacious argument in the finite time thermodynamics concept of endoreversibity. J Appl Phys
1998;83(9):4561-5.

[5] Gyftopoulos EP. Fundamentals of analyses and processes. Energy Conversion Manage 1997;38:1525-33.

[6] Bejan A. Models of power plants that generate minimum entropy while operating at maximum power. Am J Phys
1996;64:1054-9.

[7] Salamon P. A contrast between the physical and the engineering approaches to finite-time thermodynamic models
and optimization. In: Wu C et al., editors. Recent advances in finite-time thermodynamics. Commack, New York:
Nova Science Publishers; 1999. p. 541.

[8] Curzon FL, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am J Phys 1975;43:22-4.

[9] Nuwayhid RY, Moukalled F, Denton JC. General thermodynamic models of power plants as heat engines. J Non-
Equilib Thermodyn, submitted for publication.

[10] Goldsmid HJ. Conversion efficiency and figure-of-merit. In: Rowe DM, editor. Handbook of thermoelectrics. CRC
Press; 1995. p. 19.

[11] Nuwayhid RY, Moukalled F, Noueihed N. On entropy generation in thermoelectric devices. Energy Conversion
Manage 2000;41:891-914.

[12] Min G, Rowe DM. Thermoelectric figure-of-merit barrier at minimum lattice thermal conductivity. App Phys Lett
2000;77(6):860-2.



	Evolution of power and entropy in a temperature gap system with electric and thermoelectric influences
	Introduction
	Generation of entropy and power production
	Optimal insulation/gap cooling location in a temperature gap
	Power extraction from a temperature gap with external heat transfer irreversibilities
	Power extraction evolution from a temperature gap with specified extraction temperature
	Entropy generation in an insulation in the presence of an electric current
	Inclusion of thermoelectric effects
	Inclusion of heat dumping in entropy generation
	Temperature profile manipulation in a thermoelectric leg
	Entropy generation due to midpoint variation
	Power evolution in a temperature gap including thermoelectric effect
	Obtaining more power
	Cascading

	Concluding remarks
	Acknowledgements
	References


