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Effect of Buoyancy Ratio
on Double-Diffusive Natural
Convection in a Porous Rhombic
Annulus

FADL MOUKALLED and MARWAN DARWISH
Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon

This paper reports on the effect of buoyancy ratio due to both heat and mass transfer on natural convection in a porous
enclosure between two isothermal concentric cylinders of rhombic cross sections. For negative values of the buoyancy ratio,
buoyancy forces due to heat and mass transfer are in opposite directions (opposing mode), while for positive values they are
in the same direction (aiding mode). Numerical results demonstrate that the flow strength increases as the absolute value of
the buoyancy ratio increases. In the opposing mode, the eye of the vortex flow is located in the lower half of the enclosure,
while in the aiding mode it is positioned in the upper part of the annulus. The average Nusselt and Sherwood number values
increase as the absolute value of the buoyancy ratio moves away from 1, with values obtained in the aiding mode being
higher than corresponding values achieved in the opposing mode. A comparison is also made between the computed average
Nusselt and Sherwood number values and similar ones obtained in a circular annulus having the same inner and outer
perimeters as the rhombic enclosure. Predictions indicate large percent difference in values, demonstrating that circular
geometries cannot be exploited to accurately predict heat and mass transfer in complex geometries.

INTRODUCTION

Natural convection flows in porous enclosures resulting from
the combined buoyancy effects of temperature and concentration
nonuniformity are still attracting attention due to their appear-
ance in a wide range of industrial applications such as migration
of moisture in fibrous insulation, the growth of crystals, food
processing, and solar energy systems, to cite a few [1–4]. In a
recent article, Moukalled and Darwish [5] analyzed the effects
of Rayleigh number, Darcy number, porosity, enclosure gap,
and Prandtl number on double-diffusive natural convection heat
transfer in a porous annulus between two horizontal pipes of
rhombic cross section. The intention of this paper is to extend
the work reported in [5] and to study the effect of the buoyancy
ratio (the buoyancy due to concentration gradient to that result-
ing from temperature gradient) on the hydrodynamic, thermal,
and mass transfer fields in the same geometry.

Address correspondence to Professor Fadl Moukalled, Department of Me-
chanical Engineering, American University of Beirut, PO Box 11-0236, Riad
El Solh, Beirut 1107 2020, Lebanon. E-mail: fmukalled@aub.edu.lb

Extensive work on double-diffusive natural convection in
square and rectangular enclosures appears in the literature.
Nithiarasu et al. [6] reported on double-diffusive natural con-
vection in a rectangular enclosure using a generalized porous
medium approach covering the entire range from Darcy flow to
free fluid flow. Borjini et al. [7] studied numerically the two-
dimensional hydromagnetic double-diffusive convection of a ra-
diatively participating fluid confined in a rectangular enclosure
with uniform temperatures and concentrations imposed along
the vertical walls, while the horizontal walls were assumed to
be adiabatic and impermeable. Nishimura et al. [8] analyzed
the mechanism of layer merging in a salt-stratified system by
solving numerically unsteady double-diffusive convection in a
rectangular enclosure using the Chebyshev collocation method.
Mansour et al. [9] studied numerically the Soret effect on fluid
flow and heat and mass transfer induced by double-diffusive
natural convection in a square porous enclosure, subjected to
cross gradients of temperature and concentration. Ghorayeb
et al. [10] reported on unsteady double-diffusive convection in
a square cavity with equal but opposing horizontal temperature
and concentration gradients. Their numerical results indicated
that steady-state convective flow is stable up to a threshold
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1372 F. MOUKALLED AND M. DARWISH

value of the thermal Grashof number, which depends on the
Lewis number. Wang et al. [11] analyzed experimentally, using
particle image velocimetry (PIV), double-diffusive convection
of a binary NH4Cl–H2O solution in a rectangular enclosure
during solidification. The double-diffusive flow was found to
be stronger at the beginning of solidification with the flow de-
caying as solidification proceeded. Costa [12] studied numer-
ically steady double-diffusive natural convection in a vertical
stack of square enclosures. Chen and Liou [13] investigated the
time-dependent double-diffusive convection of NaCl–H2O sta-
bly stratified salt fluid layer with lateral heating in an inclined
cavity. Li et al. [14] investigated numerically small-scale phe-
nomena in double-diffusive convection flows at high Rayleigh
number. Their quasi-steady predictions agreed well with exper-
imental data and indicated that the flow pattern is scattered with
abundant salt fingers and hook-like plumes. Tanny and Yakubov
[15] carried out an experimental study to investigate the mix-
ing process of a two-layer stratified fluid in a laterally heated
enclosure. Their results showed that when the flow adjacent to
the interface is unstable, it is characterized by intense vortices
and the mixing time is relatively short. On the other hand, when
the interfacial flow is stable, no vortices exist at the interface
and the mixing time is much longer. Tanny et al. [16] conducted
experiments to investigate the structure of a double-diffusive
interface separating two layers in a laterally heated enclosure.

Several studies dealing with double-diffusive natural con-
vection heat transfer in cylindrical enclosures have also been
reported. Lee et al. [17] investigated numerically, using a finite-
difference method, the flow and heat transfer characteristics of
a salt–water solution in a rotating annulus subjected to lateral
heating. Shi and Lu [18] simulated numerically using a finite-
element method the time evolution of double-diffusive convec-
tion in a vertical cylinder to identify the effect of the buoyancy
ratio on the evolution of the flow, temperature, and solute fields
in the cavity. Lee et al. [19] conducted an experimental inves-
tigation to study the double-diffusive convection phenomena of
a stably stratified salt–water solution due to lateral heating in a
stationary and rotating annulus. In the stationary annulus, four
distinct flow regimes were observed. In the rotating annulus,
only a fully formed layer flow regime was observed.

A number of studies on double-diffusive natural convection
in porous enclosures have also appeared in the literature. Ku-
mar et al. [20] conducted a numerical study, using the Galerkin
finite-element method, on combined heat and mass transfer by
natural convection in a porous enclosure. Saghir and Islam [21]
performed a numerical study, using a finite-element formulation
for a wide range of permeability contrasts, of double-diffusive
phenomena in porous media. Malashetty and Basavaraja [22]
used the perturbation method to study the effect of time-periodic
boundary temperatures on the onset of double-diffusive convec-
tion in a fluid-saturated anisotropic porous medium. Chamkha
[23] reported on unsteady, laminar double-diffusive convec-
tive flow of a binary gas mixture in a rectangular enclosure
filled with a uniform porous medium subject to a temperature-
dependent heat source or sink. Capone et al. [24] explored

double-diffusive convection in an anisotropic porous layer with
a constant throughflow. Karimi-Fard et al. [25] studied numer-
ically, using the finite-volume method, the effect of Darcy and
Lewis number on double-diffusive natural convection in a square
cavity filled with a porous medium. Their study revealed that
the inertial and boundary effects have a profound influence on
the double-diffusive convection. Bennacer et al. [26] presented
a study on double-diffusive natural convection in a square cavity
filled with porous media heated and cooled along vertical walls
by uniform heat fluxes when a solutal flux is imposed vertically.
Bera and Khalili [27] studied double-diffusive natural convec-
tion in an anisotropic porous cavity with the principal directions
of the permeability tensor taken oblique to the gravity vector,
with those of thermal and solutal diffusivity coinciding with
horizontal and vertical coordinate axes. Beji et al. [28] carried
out a numerical investigation to study the combined effects of
thermal and solutal buoyancy forces on the flow, heat, and mass
transfer in a vertical annular porous layer subjected to constant
temperature and concentration boundary conditions. Costa [29,
30] predicted numerically double-diffusive natural convection in
parallelogrammic enclosures filled with fluid-saturated porous
media. Results showed the strong potential of this configuration
for heat and mass transfer applications.

Recently, Moukalled and Darwish [5, 31] reported on the
natural convection heat transfer in a porous annulus between
two horizontal pipes of rhombic cross section [31] and then an-
alyzed the effects of Rayleigh number, Darcy number, porosity,
enclosure gap, and Prandtl number on double-diffusive natural
convection heat transfer in the same enclosure [5]. As buoyancy
ratio is the primary factor that defines the flow structure, it is
the intention of this paper to extend the work reported in [5] and
to study the effect of the buoyancy ratio on the hydrodynamic,
thermal, and mass transfer fields in the same geometry. Another
objective of the paper is to compare the predicted rates of heat
and mass transfer with similar ones obtained in a circular an-
nulus of the same inner and outer perimeters as the rhombic
enclosure.

PHYSICAL MODEL AND GOVERNING EQUATIONS

The physical situation under consideration is shown schemat-
ically in Figure 1a. Numerical solutions for double-diffusive
natural convection in the right side of the rhombic annulus are
obtained for the case when the inner enclosure walls are main-
tained at the uniform hot temperature and high concentration
Th and Sh, respectively, and the outer walls are maintained at
the uniform cold temperature and low concentration Tc and Sc,
respectively. In the configuration studied, the length of the main
diagonal of the inner pipe is Di, while that of the outer pipe is
Do. The enclosure is assumed to be filled with a porous ma-
terial of porosity ε. The flow established in the cavity, caused
by buoyancy forces resulting from temperature and concentra-
tion gradients, is assumed to be steady, incompressible, and
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Figure 1 (a) Computational domain showing a grid network and (b) a typical
control volume.

two-dimensional. The problem is solved assuming local ther-
mal equilibrium between the fluid and the porous matrix, while
retaining the non-Darcian terms in the conservation equations
[32–34].

Employing the Boussinesq approximation given by

ρ = ρ∞ [1 − βT (T − T∞) − βS (S − S∞)] (1)

where

βT = −1

ρ

(
∂ρ

∂T

)
p,S

and βS = −1

ρ

(
∂ρ

∂S

)
p,T

(2)

and defining the following dimensionless variables

X = x

Do
, Y = y

Do
, U = u√

gβT (Th − Tc) Do
,

V = v√
gβT (Th − Tc) Do

, Pr = μcp

k
, (3)

P = p + ρgy

ρgβT (Th − Tc) Do
, θ = T − Tc

Th − Tc
,

RaT = ρgβT (Th − Tc) D3
o

μα
, σ = S − Sc

Sh − Sc
, (4)

RaS = ρgβS (Sh − Sc) D3
o

μα
, Le = α

D
, Da = K

D2
o

,

F = 1.75√
150ε3

, K = ε3d2
p

150 (1 − ε)2 , N = RaS

RaT
(5)

the nondimensional volume-averaged equations [35] governing
conservation of mass, momentum, energy, and concentration are

respectively written as

∂U

∂ X
+ ∂V

∂Y
= 0. (6)

1
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(
U
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U
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∂ X
+ V
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RaT Pr

(
∂2θ

∂ X2
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∂Y 2

)
(9)

U
∂σ

∂ X
+ V

∂σ

∂Y
= 1

Le
√

RaT Pr

(
∂2σ

∂ X2
+ ∂2σ

∂Y 2

)
(10)

The meanings of the various dimensionless numbers are
given in the Nomenclature list at the end of this paper. In spe-
cific, the parameter N appearing in Eq. (8) is the buoyancy
ratio, which is the subject of the current study. It is the ratio be-
tween the solute and thermal buoyancy forces and can be either
positive or negative, depending on the sign of the concentra-
tion volumetric expansion coefficient βS. For positive values of
N, the temperature and concentration buoyancy effects are com-
bined (aiding mode), while for negative values they are opposite
(opposing mode).

The boundary conditions used are

U = ∂V

∂ X
= ∂θ

∂ X
= ∂σ

∂ X
= 0 along symmetry lines (11)

U = V = 0, θ = σ = 1 at inner walls (12)

U = V = θ = σ = 0 at outer walls (13)

The results for the flow field are displayed via streamlines
calculated using the following definition of the steam function:

1

ε2
U = ∂ψ

∂Y
and

1

ε2
V = − ∂ψ

∂ X
(14)

Moreover, heat and mass transfer results are reported in terms
of local Nusselt (Nu) and Sherwood (Sh) number values calcu-
lated as

Nui = − Di

Do
∇θi · n Nuo = −∇θo · n

Shi = − Di

Do
∇Si · n Sho = −∇So · n (15)
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and by means of average Nusselt (Nu) and Sherwood
(Sh)number estimates computed using

Nu = Nui/o = 1

Ai/o

∫
i/o

Nui/ods

Sh = Shi/o = 1

Ai/o

∫
i/o

Shi/ods (16)

SOLUTION PROCEDURE

The problem is solved numerically using a finite-volume
method. In this approach, the domain is subdivided into a num-
ber of control volumes (Figure 1a) with grid points placed at
their geometric centers. The conservation equations [Eqs. (6) to
(10)] are integrated over each control volume and transformed
into algebraic equations. The diffusion flux is discretized using
the method described in Zwart et al. [36], while the convective
flux at the control volume faces is evaluated using the pseudo-
third-order SMART scheme [37], applied within the context of
the NVSF methodology [38]. Moreover, a second-order scheme
is used to calculate the value of the source term over a control
volume (Figure 1b). The resulting system of algebraic equations
is then solved by a block-Thomas algorithm [39]. A pressure-
based method is used and the pressure field is computed by
defining a pressure correction field p′ (= p − p∗ , where p∗ is
the solution from the previous iteration) and deriving a pressure
correction equation as in the SIMPLE procedure of Patankar
[39–41]. Finally, a collocated grid is adopted and checkerboard
pressure and velocity fields are suppressed through the use of
the momentum weighted interpolation method (MWIM) [42].

Numerical Accuracy and Validation

All grid-independent results reported in this paper are gener-
ated using a nonuniform grid (Figure 1a) with a size of 160 ×
128 control volumes. The grid size was selected after comparing
the solutions obtained using several grid systems of increasing
density [5]. The comparison of solutions for some of the cases
with similar ones obtained on a grid with a size of 240 × 240
control volumes revealed that the maximum differences in the
average Nusselt and Sherwood number values were less than
0.0156%. Conservation of the various physical quantities was
satisfied to within 10−8 for each control volume.

The correctness of the solution procedure already described
is established by comparing results obtained from the present
model with corresponding results reported in the literature for
double-diffusive natural convection in a square [25] and a par-
allelogrammic enclosure [29]. For the square enclosure, com-
puted average Nusselt and Sherwood number values (N = 0,
Le = 10, and RaT = 100 and 200) are compared in Table 1 with
values reported by several workers [25, 43, 44]. The percent dif-
ferences between the predicted average Nusselt and Sherwood
number values and values reported in reference 43 are 0.19%

Figure 2 Comparison of predicted average Nusselt and Sherwood number in
a parallelogrammic enclosure with similar ones reported by Costa [29].

and –0.973% at RaT = 100 and 0.12% and –1.62% at RaT =
200, respectively. For the parallelogrammic enclosure problem,
the computed average Nusselt and Sherwood number values (for
N = 2, Le = 0.8, and RaT = 25) are compared in Figure 2 with
similar ones reported by Costa [29]. As explained in reference 5,
reported and predicted Nu and Sh values are in good agreement,
with the maximum difference being lower than 3%, confirming
the correctness of the developed solution procedure.

RESULTS AND DISCUSSION

The geometric parameters affecting the natural convection
heat transfer in this study are the enclosure gap (Eg = 1 –
Di/Do), which is assigned three different values (Eg = 0.875,
0.75, and 0.5), and the rhombus angle (�), which is fixed at 30◦.
On the other hand, the thermophysical parameters in the prob-
lem are the porosity (ε), the thermal Rayleigh number (RaT),
the Prandtl number (Pr), the Darcy number (Da), the buoyancy
ratio (N = RaS/RaT), and the Lewis number (Le). Air and water
are considered to be the working fluids and, as such, the Prandtl
number is assigned the two values of 0.7 and 5 while the Lewis
number is fixed at 10. Moreover, three different values of ther-
mal Rayleigh number (RaT = 105, 106, and 107), two different
values of Darcy number (Da = 10−3 and 10−5), three differ-
ent values of porosity (ε = 0.3, 0.6, and 0.9), and six different
values of buoyancy ratio (N = –100, –10, –1, 1, 10, and 100)
are considered. The diffusion of trimethybenzene (treated as a
solute) in air at a pressure of 3.2 atm and a temperature of 25◦C
results in a situation for which the value of Lewis number is 10.
Moreover, the diffusion of hydrogen in water may be considered
a good representation of the case for which water is the solvent
(i.e., Pr = 5).

Results are presented in the form of streamlines, isotherms,
isoconcentrations, mid-height velocity, temperature, and con-

heat transfer engineering vol. 36 no. 16 2015
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Table 1 Comparison of current average Nusselt and Sherwood number results in a square enclosure (Le = 10, N = 0) with similar ones reported by
Karimi-Fard et al. [25], Goyeau et al. [43], and Trevisan and Bejan [44]

RaT = 100 RaT = 200

Present work Ref. [25] Ref. [43] Ref. [44] Present work Ref. [25] Ref. [43] Ref. [44]

Nu 3.104 3.11 3.11 3.27 4.954 4.97 4.96 5.61
Sh 13.379 13.43 13.25 15.61 20.182 20.32 19.86 23.23

centration profiles, and local and average Nusselt and Sherwood
number values. However, prior to discussing results, the issues
of flow symmetry and flow steadiness are first addressed.

Flow Symmetry

In the mathematical model, natural convection does not al-
ways maintain the symmetry of the flow even in a symmetri-
cal configuration. Therefore, to be able to apply the symmetry
mathematically and perform computations in only half of the
domain, symmetry of the flow for the configuration consid-
ered should be established. For that purpose, computations for
RaT = 105, 106, and 107 are performed over an entire rhombic
annulus using the parameters in the study that are expected to
result in the strongest flow (i.e., Eg = 0.875, ε = 0.9, Pr = 5, Le
= 10, N = 100, Da = 10−3). Generated solutions are displayed
in Figures 3a–3i. As can be seen, for all Rayleigh number values,
streamlines (Figures 3a–3c), isotherms (Figures 3d–3f), and iso-
concentrations (Figures 3g–3i), are fully symmetric, justifying
obtaining solutions in only half of the domain while applying
the symmetry boundary condition.

Flow Steadiness

Steady-state solutions are of interest in this study and are
obtained using an iterative approach. Since some of the RaT

and N values are too large, a confirmation that a steady solution
exists is required. For that purpose, the same cases considered to
establish flow symmetry are solved here, over only half the do-
main, but via a time-marching approach. The intention is not to
obtain accurate predictions in time, but rather to check whether
a steady-state solution for each case exists. Computations are
performed, and results demonstrating the variations of the av-
erage Nusselt and Sherwood numbers along the cold and hot
walls of the rhombic enclosure as a function of time for the
three cases considered are plotted in Figures 4a–4d. Figures 4a
and 4b display the average Nusselt number values along the cold
and hot walls of the annulus, respectively, while Figures 4c and
4d report the variations of the Sherwood number. Computations
are extended over a long period of time and, as seen, the values
of all quantities and for all RaT considered vary over a certain
period of time, reaching a certain level and remaining constant
afterward, confirming that steady-state solutions exist.

Figure 3 Streamlines, isotherms, and isoconcentrations for different values of
Rayleigh number (Ra) obtained over the entire rhombic annulus (Eg = 0.875,
ε = 0.9, Pr = 5, Le = 10, N = 100, Da = 10−3).

heat transfer engineering vol. 36 no. 16 2015
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Figure 4 Variations with time of average Nusselt (a,b) and Sherwood (c,d)
numbers along the cold (a,c) and hot (b,d) walls of a rhombic annulus as steady
state is reached for different values of Rayleigh number (Eg = 0.875, ε = 0.9,
Pr = 5, Le = 10, N = 100, Da = 10−3).

Figure 5 Streamlines for different values of the buoyancy ratio (N) (Eg =
0.875, ε = 0.6, Ra = 106, Pr = 0.7).

Figure 6 Streamlines for different values of the buoyancy ratio (N) (Eg =
0.75, ε = 0.6, Ra = 106, Pr = 0.7).

Streamlines, Isotherms, and Isoconcentrations

The effects of the buoyancy ratio on the flow, tempera-
ture, and concentration fields are revealed by the streamlines,
isotherms, and isoconcentrations depicted in Figures 5 through
10 in an enclosure with ε = 0.6, RaT = 106, and Pr = 0.7. Fig-
ures 5, 7, and 9 are for an annulus with a value of Eg = 0.875,
while Figures 6, 8, and 10 are for a value of Eg = 0.75. In all
figures, plots for the various values of the buoyancy ratio are
presented for the two values of Da considered in this study (i.e.,
Da = 10−5 and 10−3). Streamlines are displayed in Figures 5
and 6, isotherms in Figures 7 and 8, and isoconcentrations in
Figures 9 and 10.

Before discussing results, it should be clarified that the
streamlines for N = –1 can be very different depending on
the numerical code and the minimum residuals considered, as
the fluid is essentially stagnant for this value of buoyancy ra-
tio. Their inclusion as part of the results is for completeness of
presentation.

Streamlines depicted in Figures 5 and 6 indicate that the
dominant feature of the flow is a recirculating eddy rotating
generally counterclockwise for negative values of the buoy-
ancy ratio and clockwise for positives values of N. The eye of
the vortex is located in the lower part of the domain for negative
values of N and in the upper part of the enclosure for positive
values of N. The eye moves further downward and toward the

heat transfer engineering vol. 36 no. 16 2015
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Figure 7 Isotherms for different values of the buoyancy ratio (N) (Eg = 0.875,
ε = 0.6, Ra = 106, Pr = 0.7).

symmetry line as the downward buoyancy ratio increases (i.e.,
N < 0) and further upward and toward the symmetry line as
the upward buoyancy ratio increases (i.e., N > 0). For negative
values of N the concentration gradients give rise to a downward
buoyant force while the temperature gradients create an up-
ward buoyant force. The resultant of these two opposite forces
is the driving power that dictates the direction of rotation and
characteristics of the flow field. Moreover, results in Figures 5
and 6 indicate that the flow is stronger at higher value of Da
(Da = 10−3) due to a higher permeability of the porous medium
(Da = K/D2

o) and its strength increases as |N | moves away from
1, in either direction, due to higher buoyancy forces.

For Eg = 0.875 and Da = 10−5, the flow at N = –100
and –10 (Figures 5a and 5b) is confined to the lower portion
of the domain with a highly stratified region formed in the
upper part where the flow is practically stagnant. As N increases
to –1, the effects of the downward buoyancy forces created
by concentration gradients are counterbalanced by the upward
buoyancy forces arising from temperature gradients. As a result,
the flow within the enclosure is very weak (Figure 5c) and a
bubble rotating clockwise is formed close to the upper hot wall.
For positive values of N, buoyancy forces due to concentration
and temperature gradients are in the aiding mode, resulting in
the flow fields presented in Figures 5d through 5f. The flow
at N = 1 is nearly symmetrical with respect to the horizontal
centerline of the cavity. As N increases to 10 (Figure 5e) and

Figure 8 Isotherms for different values of the buoyancy ratio (N) (Eg = 0.75,
ε = 0.6, Ra = 106, Pr = 0.7).

then 100 (Figure 5f) the flow strength increases and stratification
in the lower part of the enclosure increases with the flow in the
lower part of the domain becoming very weak.

At higher Da (Da = 10−3) a stronger flow is obtained with
its overall structure similar to the one obtained for Da = 10−5.
The higher strength of the flow is demonstrated by the eye of
the recirculating eddy, which is seen to move further downward
and upward for negative and positive values of the buoyancy
ratio (compare Figures 5g–5i with Figures 5a–5f), respectively.
Difference from results obtained for Da = 10−5, the main re-
circulating eddy at a buoyancy ratio with a value of –1 rotates
clockwise (compare Figures 5c and 5i). In addition, streamlines
in Figure 5c reveal the formation of several smaller recirculating
eddies rotating counterclockwise. At N = –1, the upward and
downward buoyancy forces are of equal strength, which reduces
the buoyancy source term in the Y-momentum equation to sim-
ply (θ − σ). Therefore, the sign of the source term depends on
the local values of θ and σ. At locations where θ > σ, buoyancy
is in the aiding mode, and at locations where θ < σ, buoyancy
is in the opposing mode. Moreover, at higher values of Da the
non-Darcian effects increase. The combined influence of these
terms results in the flow field displayed in Figure 5i. The recir-
culating bubbles shown in Figures 5g and 5h can be explained
in a similar way.

Plots depicted in Figures 6a–6l are for an enclosure with an
Eg of value 0.75. As shown, generated flow fields are similar to
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Figure 9 Isoconcentrations for different values of the buoyancy ratio (N)
(Eg = 0.875, ε = 0.6, Ra = 106, Pr = 0.7).

those displayed in Figure 5 with the eye of the recirculating eddy,
for both values of Da considered, moving upward from the lower
half to the upper half of the enclosure as N increases from –100 to
100. At Da = 10−5 and N = –1 (Figure 6c), streamline values are
of order 10−10, indicating an almost stagnant fluid in the cavity.
By comparing streamlines in Figure 6 with corresponding ones
in Figure 5 it can be inferred that as Eg decreases, the proportion
of the hot to the cold surface area increases, and the stratification
effects in the upper half of the domain for negative values of
the buoyancy ratio and in the lower half for N > 0 decrease.
Moreover, the strength of the flow is slightly lower due to a
decrease in the available convective area and due to the greater
viscous effects of the added surface area.

Isotherms in the enclosures for which streamlines were re-
ported in Figures 5 and 6 are displayed in Figures 7 and 8, re-
spectively. In Figure 7 (Eg = 0.875) and at the lowest buoyancy
ratio considered (i.e., N = –100), isotherms are concentrated
in the lower part of the enclosure (Figures 7a and 7g) because
the net buoyancy force is acting downward. A high stratification
level characterizes the upper half of the domain. As the buoy-
ancy ratio increases while remaining negative (i.e., N = –10),
the concentration of isotherms remains biased toward the lower
half of the domain, with this preference being more apparent at
the higher value of Da (Da = 10−3, Figure 7h), where a lower
stratification level in the upper part of the domain is predicted.
At a buoyancy ratio with a value of –1, a uniform distribution

of isotherms is obtained at Da = 10−5, indicating a conduc-
tion/diffusion dominated heat and mass transfer problem. This
distribution of isotherms agrees with the predicted flow field
depicted in Figure 5c, which indicated an almost stagnant fluid
in the enclosure. At Da = 10−3, isotherms shown in Figure 7i
are spread over the domain while being slightly biased toward
the upper half for reasons explained earlier. For positive values
of the buoyancy ratio (Figures 7e–7f and 7j–7l), except for the
case when N = 1 and Da = 10−5, the hot fluid is located in the
upper part of the enclosure where isotherms are concentrated,
with the lower part of the domain being highly stratified. The
level of stratification is higher at higher values of N and/or Da.
For N = 1 and Da = 10−5, the flow is still weak for convection to
have noticeable effects, and isotherms are uniformly distributed
over the domain, indicating that conduction is still the dominant
heat transfer mechanism in the enclosure. The distributions of
isotherms presented in Figures 8a–8l for an enclosure gap (Eg)
with a value of 0.75 are similar to corresponding ones presented
in Figure 7, with the ones displayed in Figure 8 being less dense,
indicating weaker flows and consequently lower convection ef-
fects. As mentioned earlier, this decrease in convection is due
to the lower available flow area and higher viscous effects as a
result of the greater hot wall surface area.

The corresponding isoconcentration maps for the cases dis-
cussed above are displayed in Figures 9a–9l and 10a–10l. The
distribution of isoconcentration lines over the domain at differ-

Figure 10 Isoconcentrations for different values of the buoyancy ratio (N)
(Eg = 0.75, ε = 0.6, Ra = 106, Pr = 0.7).
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Figure 11 The effect of buoyancy ratio (N) on mid-height (a) X-velocity, (b)
Y-velocity, (c) dimensionless temperature, and (d) solute profiles (Ra = 106,
Eg = 0.75, ε = 0.6, Pr = 0.7).

ent values of N and Da is similar to corresponding isotherm maps
presented in Figures 7 and 8, with isoconcentrations being more
distorted. This higher distortion is due to the lower diffusion co-
efficient of the solute [Eq. (10)] in comparison with the diffusion
coefficient of temperature [Eq. (9)] as the value of Lewis num-
ber used in this study is fixed at 10. Due to this fact, convection
has a higher influence on solute distribution than on temperature
distribution. Furthermore, similar to isotherm maps (Figures 7
and 8), the distributions of isoconcentrations over the domain
at given values of Da and Eg are almost symmetric with respect
to the horizontal centerline of the rhombic annulus at opposite
values of N. This is especially true at high values of N (i.e., N =
±10 and N = ±100), where the effects of temperature gradients
become negligible in comparison with concentration gradients
(e.g., compare Figures 9g and 9l and Figures 10b and 10e).

Velocity, Temperature, and Concentration Profiles

The effects of the buoyancy ratio on the X-velocity com-
ponent, Y-velocity component, temperature, and concentration
profiles along the horizontal centerline of the domain are dis-
played in Figure 11 for an enclosure with Eg = 0.75, RaT =
106, Da = 10−3, ε = 0.6, and Pr = 0.7. Variation of the vari-
ous quantities are plotted in terms of a dimensionless distance
(�X/�Xmax) defined as

�X

�Xmax
= X − Xmin

Xmax − Xmin
(17)

Profiles displayed in Figures 11a and 11b indicate that the
U-velocity component is an order of magnitude lower than the
V-velocity component. This is expected, as buoyancy forces act
in the vertical direction and the U-values are mainly dictated
by the domain geometry. The boundary-layer behavior is clear
near the walls where both the U- and V-velocity components
peak. The peaks near the hot wall are much larger than those
in the vicinity of the cold wall due to the lower hot wall area.
Moreover, these peaks are higher at higher |N | values due to
higher buoyancy forces. Furthermore, the sign of the V-velocity
profile indicates the direction of the flow. For positive N values,
V profiles indicate an upward flow over the hot walls and a
downward flow along the cold walls of the enclosure and vice
versa. Profiles for ±N are nearly symmetric with respect to the
horizontal centerline of the annulus.

The corresponding temperature and concentration profiles
are presented in Figures 11c and 11d, respectively. The increase
in convection contribution to total heat transfer at higher values
of |N | (Figure 11c) is reflected by the nonlinear temperature
distribution along the horizontal centerline of the enclosure.
Similar conclusions can be drawn for variation in the concen-
tration profiles with convection effects being more pronounced
(Figure 11d) due to the high value of Lewis number (Le =
10). The sharp slopes in the concentration profiles clearly show
the boundary-layer behavior close to the enclosure walls, with
gradients being steeper at higher |N | values.

Figure 12 The effect of buoyancy ratio (N) on local Nusselt (a,b) and Sher-
wood (c,d) number distribution along the cold (a,c) and hot (b,d) walls of the
enclosure (Ra = 106, Eg = 0.75, ε = 0.6, Pr = 0.7).
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Table 2 Average Nusselt number values
(
Nu

)
for Pr = 0.7 (Le = 10)

ε = 0.3 Eg = 0.875 Eg = 0.75 Eg = 0.5

Ra 105 106 107 105 106 107 105 106 107

N, Da 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3

−100 1.60 2.19 2.50 3.52 4.85 6.31 2.44 3.24 3.56 5.22 6.46 9.50 5.07 5.74 6.02 7.58 8.93 11.98
−10 1.46 1.61 1.58 2.08 2.37 3.22 2.28 2.46 2.42 3.10 3.42 4.81 4.99 5.05 5.06 5.63 5.89 7.26
−1 1.45 1.45 1.45 1.71 1.50 2.78 2.28 2.28 2.28 2.49 2.34 4.23 4.99 4.99 4.99 5.02 5.02 6.13
1 1.45 1.50 1.47 2.18 1.93 3.82 2.28 2.31 2.29 2.99 2.76 5.58 4.99 5.00 5.00 5.20 5.23 7.59
10 1.46 1.68 1.62 2.37 2.70 4.07 2.28 2.52 2.46 3.52 3.77 5.94 4.99 5.07 5.08 5.92 6.20 8.41
100 1.60 2.21 2.54 3.61 5.34 7.15 2.44 3.32 3.60 5.33 6.89 9.73 5.07 5.77 6.05 7.80 9.19 12.26

ε = 0.6 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 1.62 2.57 2.79 4.45 5.96 8.24 2.46 3.69 3.90 6.43 7.76 12.18 5.09 6.25 6.32 8.82 10.23 14.68
−10 1.46 1.70 1.60 2.39 2.62 4.04 2.28 2.58 2.44 3.47 3.72 5.77 4.99 5.14 5.07 6.04 6.15 8.15
−1 1.45 1.46 1.45 1.91 1.50 3.34 2.28 2.28 2.28 2.72 2.35 5.30 4.99 4.99 4.99 5.09 5.03 7.36
1 1.45 1.55 1.47 2.62 2.02 4.70 2.28 2.36 2.29 3.59 2.86 6.86 4.99 5.01 5.00 5.52 5.29 9.45
10 1.46 1.82 1.65 2.96 3.14 5.53 2.29 2.70 2.49 4.13 4.25 7.47 4.99 5.17 5.10 6.56 6.56 9.94
100 1.63 2.70 2.93 4.88 6.63 9.47 2.47 3.81 4.02 6.58 8.36 12.51 5.09 6.30 6.36 8.98 10.61 14.92

ε = 0.9 Eg = 0.875 Eg = 0.75 Eg = 0.5

–100 1.63 2.84 2.93 5.09 6.63 10.85 2.48 3.99 4.06 7.26 8.56 14.00 5.09 6.57 6.47 9.63 11.04 16.45
−10 1.46 1.77 1.61 2.61 2.75 4.87 2.28 2.66 2.45 3.72 3.87 6.45 4.99 5.19 5.08 6.30 6.29 8.80
−1 1.45 1.47 1.45 2.09 1.51 3.95 2.28 2.29 2.28 2.89 2.35 6.06 4.99 4.99 4.99 5.13 5.03 8.38
1 1.45 1.59 1.47 2.89 2.05 5.26 2.28 2.40 2.29 3.99 2.91 7.67 4.99 5.02 5.00 5.81 5.32 10.72
10 1.46 1.91 1.66 3.22 3.20 6.34 2.29 2.82 2.51 4.47 4.36 8.53 4.99 5.27 5.11 6.92 6.74 11.03
100 1.64 2.89 3.10 5.63 7.44 11.04 2.48 4.17 4.21 7.47 9.29 14.41 5.10 6.57 6.57 9.82 11.51 16.81

Nusselt and Sherwood Numbers

The local Nusselt and Sherwood numbers along the inner
and outer walls of the porous rhombic annulus are calculated

using Eq. (15), while average values are computed via Eq. (16).
The local variations in these numbers are presented in Figure 12
with values plotted as a function of a dimensionless distance

Table 3 Average Nusselt number values
(
Nu

)
for Pr = 5.0 (Le = 10)

ε = 0.3 Eg = 0.875 Eg = 0.75 Eg = 0.5

Ra 105 106 107 105 106 107 105 106 107

N, Da 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3

−100 1.61 2.40 2.71 4.09 5.91 7.52 2.45 3.48 3.80 5.55 7.69 9.99 5.08 5.92 6.23 8.16 10.13 12.66
−10 1.46 1.63 1.59 2.23 2.54 3.63 2.28 2.49 2.43 3.27 3.62 5.17 4.99 5.06 5.06 5.73 6.06 7.53
−1 1.45 1.45 1.45 1.81 1.50 3.44 2.28 2.28 2.28 2.28 2.35 4.78 4.99 4.99 4.99 5.03 5.02 6.41
1 1.45 1.50 1.47 2.37 1.99 4.30 2.28 2.32 2.29 3.21 2.83 6.30 4.99 5.00 5.00 5.25 5.27 8.54
10 1.46 1.72 1.63 2.70 3.06 4.73 2.28 2.56 2.48 4.04 4.16 6.81 4.99 5.08 5.09 6.10 6.52 9.27
100 1.61 2.44 2.84 4.21 6.57 8.53 2.45 3.54 3.92 5.95 8.31 11.13 5.08 5.96 6.28 8.33 10.55 13.56

ε = 0.6 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 1.63 2.77 2.92 4.95 6.87 9.24 2.47 3.94 4.05 6.92 8.84 13.18 5.09 6.41 6.46 9.30 11.28 15.73
−10 1.46 1.73 1.61 2.52 2.72 4.36 2.28 2.60 2.45 3.64 3.84 6.08 4.99 5.14 5.08 8.15 6.26 8.43
−1 1.45 1.46 1.45 2.03 1.52 3.91 2.28 2.28 2.28 2.85 2.35 5.42 4.99 4.99 4.99 5.10 5.03 8.18
1 1.45 1.56 1.47 2.80 2.05 5.31 2.28 2.36 2.29 3.84 2.90 7.68 4.99 5.01 5.00 5.61 5.31 10.59
10 1.46 1.87 1.66 3.26 3.32 6.08 2.29 2.75 2.50 4.49 4.45 8.20 4.99 5.19 5.11 6.78 6.79 11.02
100 1.63 2.93 2.96 5.42 7.70 10.56 2.48 4.03 4.18 7.13 9.63 13.58 5.09 6.46 6.55 9.56 11.82 16.46

ε = 0.9 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 1.64 3.02 3.02 5.52 7.42 10.41 2.48 4.16 4.19 7.79 9.50 15.16 5.10 6.64 6.58 10.10 11.96 17.78
−10 1.46 1.79 1.61 2.74 2.82 4.86 2.28 2.68 2.46 3.84 3.97 6.81 4.99 5.20 5.08 6.34 6.37 9.05
−1 1.45 1.47 1.45 2.15 1.53 4.85 2.28 2.29 2.28 3.01 2.35 6.51 4.99 4.99 4.99 5.14 5.03 9.08
1 1.45 1.60 1.47 3.06 2.07 5.76 2.28 2.40 2.30 4.23 2.93 8.37 4.99 5.02 5.00 5.92 5.33 11.79
10 1.46 1.96 1.67 3.50 3.32 6.42 2.29 2.87 2.51 4.80 4.50 9.24 4.99 5.29 5.11 7.14 6.88 12.38
100 1.64 3.22 3.21 6.13 8.39 11.99 2.49 4.38 4.34 8.01 10.42 15.37 5.10 6.72 6.69 10.44 12.59 18.81
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Table 4 Average Sherwood number values (Sh) for Pr = 0.7 (Le = 10)

ε = 0.3 Eg = 0.875 Eg = 0.75 Eg = 0.5

Ra 105 106 107 105 106 107 105 106 107

N, Da 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3

−100 5.10 7.80 11.73 14.23 23.52 26.72 6.82 11.39 16.27 21.83 32.99 41.99 8.64 15.95 21.51 29.23 43.67 56.09
−10 1.73 4.16 4.87 7.50 11.31 13.66 2.52 5.97 6.51 10.96 15.67 21.12 5.08 7.82 8.28 15.36 20.59 28.74
−1 1.45 1.45 1.45 3.64 2.64 6.92 2.28 2.28 2.28 4.94 4.02 10.60 4.99 4.99 4.99 6.49 6.46 13.03
1 1.47 3.00 2.37 5.89 7.00 10.52 2.29 3.93 3.20 8.27 9.56 15.33 5.00 5.39 5.37 10.88 12.28 21.38
10 1.84 4.51 5.36 8.06 12.22 14.81 2.63 6.47 7.19 12.08 16.97 22.80 5.12 8.42 9.08 16.74 22.55 31.20
100 5.15 7.79 11.85 14.34 25.54 29.6 6.89 11.67 16.44 22.02 34.66 42.17 8.72 16.10 21.71 30.08 44.83 56.46

ε = 0.6 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 5.56 9.53 13.89 17.66 29.01 33.60 7.37 13.88 19.10 27.11 40.47 52.99 9.22 19.54 24.84 36.69 53.24 69.90
−10 1.76 4.95 5.30 9.17 13.38 16.96 2.55 7.14 7.02 13.37 18.37 26.00 5.09 9.68 8.80 18.68 23.72 35.04
−1 1.45 1.94 1.45 4.20 2.51 9.07 2.28 2.56 2.28 5.80 4.08 13.38 4.99 4.99 4.99 7.84 6.75 16.78
1 1.47 3.62 2.45 7.12 7.75 14.01 2.29 4.91 3.29 10.09 10.50 19.59 5.00 6.05 5.43 13.70 13.47 26.36
10 1.87 5.39 5.85 10.37 15.11 20.05 2.66 7.77 7.79 14.76 20.36 28.21 5.14 10.55 9.73 20.47 26.11 38.29
100 5.61 9.97 14.59 19.13 31.86 37.97 7.45 14.25 19.66 27.22 42.82 53.25 9.31 19.68 25.08 36.85 54.85 70.47

ε = 0.9 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 5.78 10.61 14.97 20.05 32.51 43.75 7.62 15.44 20.47 30.68 45.21 60.52 9.48 21.68 26.50 41.55 59.24 79.53
−10 1.77 5.49 5.51 10.22 14.51 20.93 2.56 7.84 7.25 14.87 19.80 29.43 5.10 10.81 9.03 20.84 25.40 39.67
−1 1.45 2.19 1.45 4.80 2.59 10.84 2.28 2.89 2.28 6.27 4.10 15.30 4.99 4.99 4.99 8.62 6.82 20.02
1 1.47 3.97 2.49 7.91 8.13 14.84 2.30 5.46 3.33 11.23 10.95 21.34 5.00 6.64 5.46 15.35 14.00 29.59
10 1.89 5.93 6.09 11.11 15.65 22.79 2.68 8.59 8.05 16.11 21.44 32.11 5.15 11.85 10.02 22.50 27.97 43.09
100 5.84 10.67 15.91 21.91 35.98 43.83 7.70 16.05 21.28 30.96 48.15 60.88 9.57 21.80 27.16 41.65 61.34 79.78

(�Y/�Ymax) defined as

�Y

�Ymax
= Y − Ymin

Ymax − Ymin
(18)

Local Nusselt number profiles along the cold and hot walls
are presented in Figures 12a and 12b, respectively, for an en-
closure with Eg = 0.75, RaT = 106, Da = 10−3, ε = 0.6, and Pr
= 0.7. For positive values of N, results indicate that the Nusselt
number peaks on the upper part of the cold wall. This peak is

Table 5 Average Sherwood number values (Sh) for Pr = 5.0 (Le = 10)

ε = 0.3 Eg = 0.875 Eg = 0.75 Eg = 0.5

Ra 105 106 107 105 106 107 105 106 107

N, Da 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3

−100 5.24 8.11 12.69 15.01 26.44 28.71 7.02 12.02 17.72 21.96 37.47 41.61 8.87 16.78 23.36 31.20 50.03 57.00
−10 1.73 4.27 5.00 7.80 12.21 14.45 2.53 6.18 6.68 11.53 17.01 22.14 5.08 7.98 8.47 15.88 22.27 29.78
−1 1.45 1.45 1.45 3.92 2.59 8.76 2.28 2.28 2.28 5.39 4.07 11.74 4.99 4.99 4.99 6.72 6.63 14.99
1 1.47 3.07 2.39 6.16 7.29 11.41 2.29 4.02 3.22 8.66 9.98 16.50 5.00 5.40 5.38 11.34 12.89 22.91
10 1.84 4.64 5.51 8.43 13.83 15.76 2.63 6.64 7.41 13.78 18.93 24.04 5.12 8.63 9.34 17.36 24.83 32.61
100 5.29 8.11 13.33 15.14 29.17 32.26 7.09 12.12 18.24 23.09 39.78 45.09 8.95 16.94 23.59 31.41 51.75 59.74

ε = 0.6 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 5.63 9.67 14.52 18.26 31.62 35.25 7.47 14.47 20.05 27.81 44.53 55.04 9.33 20.11 26.12 38.03 58.93 72.41
−10 1.76 5.04 5.37 9.31 13.85 17.59 2.55 7.24 7.10 13.89 19.24 26.68 5.09 9.82 8.89 19.21 24.87 36.28
−1 1.45 1.97 1.45 4.44 2.72 9.78 2.28 2.58 2.28 6.11 4.10 13.27 4.99 4.99 4.99 8.00 6.78 19.87
1 1.47 3.67 2.46 7.38 7.92 14.76 2.29 4.98 3.30 10.45 10.73 20.67 5.00 6.08 5.44 14.11 13.79 27.98
10 1.87 5.50 5.93 10.67 15.85 20.83 2.67 7.91 7.90 15.22 21.43 29.24 5.14 10.77 9.86 20.98 9.86 20.98
100 5.69 10.21 14.53 19.85 35.12 40.10 7.55 14.59 20.63 28.06 47.57 55.47 9.43 20.17 26.57 38.04 61.13 72.73

ε = 0.9 Eg = 0.875 Eg = 0.75 Eg = 0.5
−100 5.83 10.78 15.45 20.48 34.87 39.74 7.69 15.71 21.35 31.75 48.91 63.14 9.55 21.87 27.61 42.55 64.37 82.19
−10 1.77 5.57 5.56 10.49 14.86 19.72 2.56 7.98 7.31 15.23 20.47 30.44 5.10 10.97 9.09 21.02 26.28 40.58
−1 1.45 2.22 1.45 4.72 2.82 12.60 2.28 2.91 2.28 6.50 4.11 16.40 4.99 4.99 4.99 8.97 6.84 21.85
1 1.47 4.01 2.49 8.15 8.24 15.54 2.30 5.53 3.33 11.57 11.10 22.31 5.00 6.69 5.46 15.72 14.21 30.94
10 1.89 6.07 6.14 11.37 16.19 21.67 2.68 8.71 8.13 16.44 22.25 33.28 5.15 12.04 10.10 22.97 29.06 44.09
100 5.89 11.53 16.49 22.69 39.04 45.65 7.77 16.43 22.09 31.91 52.58 63.86 9.65 22.10 28.20 42.86 67.11 82.75
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due to the impingement of the hot fluid leaving the upper part
of the hot wall (carried by the clockwise rotating vortex) on
the upper part of the cold wall (Figure 12a). The value of this
peak is seen to be higher at higher values of N due to higher
buoyancy effects. While moving down the cold wall, the flow is
not capable of following the contour of the rhombic enclosure,
thereby decreasing the rate of heat transfer. This flow hits the
lower half of the cold wall, causing a second peak in Nusselt
number there. Unlike the first peak, the value of the second
peak decreases as N increases due to an increase in the strat-
ification level in the lower half of the enclosure. For negative
values of N, the opposite occurs. In this case the vortex flow
rotates counterclockwise moving down along the hot wall. The
hot fluid leaving the lower part of the hot wall impinges on
the lower part of the cold wall causing the Nusselt number to
peak (Figure 12a). Again, the value of this peak is seen to be
higher at higher values of |N |. While moving up the cold wall,
the flow does not follow the contour of the rhombic enclosure
(reducing heat transfer), hitting the upper part of the cold wall
and causing a second peak in Nusselt number there. Again the
value of this peak decreases as the magnitude of N increases
due to an increase in the stratification level in the upper half of
the enclosure.

Along the hot wall (Figure 12b) the Nusselt number peaks
near the bottom region for positive values of N and near the
top region for negative values of N. In all cases a sharp peak is
obtained at mid-height. In the aiding mode (N > 0), the cooled
fluid from the lower part of the cold wall is transported by
the clockwise eddy toward the lower part of the hot wall, and
the largest temperature gradients and Nusselt numbers therefore
occur in the leading region of the hot wall. In the opposing mode
(N < 0), the cooled fluid from the upper part of the cold wall
is transported by the counterclockwise rotating eddy toward the
upper regions of the hot wall, increasing Nu there. The sharp
peak at mid-height of the domain is due to the acceleration of
the flow until reaching the tip of either the lower part or the
upper part of the hot wall where it has to change direction to
turn around the corner. Again the level of Nusselt number and
the values of the peaks increase as |N | increases.

The Sherwood number profiles along the cold and hot walls
of the annulus are depicted in Figures 12c and 12d, respectively.
Variations in local Sh values are similar to variations in local Nu
values for the same reasons stated above. The only difference
between the two sets of profiles is in the level of Sh values,
which is much higher than the Nu values due to higher con-
vection effects as a result of the high value of Lewis number
(Le = 10).

The average Nu values for all cases studied are presented in
Table 2 for Pr = 0.7 and Table 3 for Pr = 5. At RaT = 105

and Da = 10−5 (Table 2), predictions indicate that diffusion
is the dominant heat transfer mode in the enclosure. This is
demonstrated by the Nu values, which are independent of the
enclosure porosity, the buoyancy ratio (except at |N | = 100,
where convection starts to contribute to total heat transfer), and
the Prandtl number. The increase in Nu as Eg decreases is due

Figure 13 Computational domain and boundary conditions for the annulus
between two concentric horizontal circular cylinders.

to an increase in the hot wall area. At other values of RaT

and/or Da, convection contribution to total heat transfer starts
at lower values of the buoyancy ratio, with the value of |N | at
which convection begins affecting heat transfer decreasing as
ε increases. The overall heat transfer

(
Nu

)
increases with an

increase in |N | and/or RaT due to stronger buoyancy effects, an
increase in ε due to an increase in the available convective area

Figure 14 Streamlines, isotherms, and isoconcentrations in the annulus be-
tween two horizontal concentric circular cylinders (ε = 0.6, Ra = 106, Pr =
0.7).
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Table 6 Average Nusselt number values (Nu) in a circular annulus for Pr = 0.7 (Le = 10)

ε = 0.6 Nu %�
(
Nu

)
Ra 105 106 107 105 106 107

N, Da 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3 10−5 10−3

−100 1.51 2.71 2.75 4.89 6.22 8.99 −7.28 5.17 −1.45 9.00 4.18 8.34
−10 1.32 1.65 1.49 2.47 2.56 4.31 −10.61 −3.03 −7.38 3.24 −2.34 6.26
−1 1.31 1.36 1.31 2.04 1.40 3.93 −10.69 −7.35 −10.69 6.37 −7.14 15.01
1 1.31 1.53 1.34 2.77 2.04 4.87 −10.69 −1.31 −9.70 5.42 0.98 3.49
10 1.32 1.81 1.55 3.06 3.02 5.62 −10.61 −0.55 −6.45 3.27 −3.97 1.60
100 1.52 2.77 2.79 5.02 6.36 9.26 −7.24 2.53 −5.02 2.79 −4.25 −2.27

b Average Sherwood number values
(
Sh

)
in a circular annulus for Pr = 0.7 (Le = 10)

ε = 0.6 Sh %�
(
S̄h

)
−100 5.70 10.35 14.11 19.22 29.66 35.69 2.46 7.92 1.56 8.12 2.19 5.86
−10 1.77 5.35 5.44 9.87 13.57 18.32 0.56 7.48 2.57 7.09 1.40 7.42
−1 1.31 2.41 1.31 4.88 2.61 11.12 −10.69 19.50 −10.69 13.93 3.83 18.44
1 1.34 4.05 2.62 7.90 8.02 14.66 −9.70 10.62 6.49 9.87 3.37 4.43
10 1.93 5.84 6.00 10.82 14.72 20.20 3.11 7.71 2.50 4.16 −2.65 0.74
100 5.75 10.40 14.23 19.40 29.88 36.09 2.43 4.13 −2.53 1.39 −6.63 −5.21

that leads to a lower hydrodynamic resistance, and a decrease
in Eg due to an increase in the hot wall area and consequently
an increase in conduction contribution to total heat transfer. The
highest Nu is obtained at the highest values of RaT, N, ε, and
Eg. At low values of Ra and ε, estimates at ±N are nearly equal,
with values at positive N being slightly higher as buoyancy
forces resulting from temperature and concentration gradients
are both in the upward direction. As RaT and ε increase, the
difference between the Nu values obtained at ±N increases.
The largest difference in values is obtained in an enclosure with
the highest Eg value, that is, the largest convective area. At Pr =
5 (Table 3), the predicted Nu values are equal to those obtained
for Pr = 0.7 for the cases when conduction is the dominant heat
transfer mode. When convection effects are important (i.e., at
high RaT and/or Da values), higher Nu are obtained at higher
Pr, indicating higher heat transfer rates. This increase in heat
transfer is due to a decrease in the thermal boundary layer,
which results in higher temperature gradients. The highest Nu
value of 18.81 is found for the lowest Eg, and the highest Da,
RaT, Pr, N, and ε. Furthermore, when conduction is the dominant
heat transfer mode, Nu predictions depend only on Eg.

The Sh values are presented in Tables 4 and 5 for Pr = 0.7 and
5, respectively. Predictions indicate that for all values of RaT and
Da considered, mass transfer increases as the magnitude of the
buoyancy ratio increases. Moreover, for different enclosure gap
and porosity values, convection contribution to mass transfer
starts at values of N lower than the values for which convection
starts impacting total heat transfer due to the high Lewis number
value used (i.e., Le = 10), which results in a high convection
mass transfer coefficient. For diffusion-dominated mass transfer
mode (i.e., N = ±1), predictions indicate that Sh and Nu val-
ues are equal. At higher N values, Sh predictions are higher than
Nu estimates, with the difference increasing as N increases due
to the higher convection mass transfer coefficient in comparison

with the convection heat transfer coefficient, as explained ear-
lier. The effects of the enclosure gap and Pr number (Table 5) on
the variation of Sh is similar to their effects on Nu, which was
described earlier and is deemed unnecessary to be repeated.

COMPARISON WITH RESULTS IN A CIRCULAR
ANNULUS

It is interesting to quantitatively compare the heat and mass
transfer obtained in the rhombic annulus with values obtained
in a circular annulus between two concentric horizontal cylin-
ders for the same inner and outer perimeters. For that purpose,
a rhombic annulus with an Eg value of 0.875 is selected. The
equivalent circular annulus is obtained with two horizonal con-
centric pipes of inner (Di) and outer (Do) diameters of size nearly
equal to Di = 0.0919 and Do = 0.7351, respectively, resulting in
the same inner and outer perimeters as the rhombic annulus. The
physical situation and boundary conditions considered are dis-
played in Figure 13. Results in the enclosure are generated for a
total of 36 cases with the values of ε, Le, and Pr fixed at 0.6, 10,
and 0.7, respectively. The problem is solved, subject to the same
boundary conditions given by Eqs. (11)–(13), for three values of
RaT (105, 106, and 107), two values of Da (10−5 and 10−3), and
six values of N (–100, –10, –1, 1, 10, and 100). Representative
streamlines, isotherms, and isoconcentrations are displayed in
Figure 14 for values of N equal to –100 and 100. The trend of
results is similar to that reported for the rhombic enclosure with
streamlines presented in Figures 14a, 14b, 14g, and 14h, being
similar to corresponding cases presented in Figures 5a, 5f, 5g,
and 5l, respectively. For N = –100 the strongest eddies are lo-
cated in the lower half of the domain, while the opposite is true
for N = 100. Stronger flow is predicted at the higher value of
Da. Similar to contours displayed in Figures 7a, 7f, 7g, and 7l,
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isotherms depicted in Figures 14c, 14d, 14i, and 14j are concen-
trated in the lower half of the domain for N = –100 and in the
upper half for N = 100. The same is true for isoconcentrations
shown in Figures 14e, 14f, 14k, and 14l, which indicate, similar
to lines reported in Figures 9a, 9f, 9g, and 9l, a stratification in
the upper half of the domain for N = –100 and in the lower half
for N = 100. In all cases the stratification is higher at the higher
value of Da.

The average Nusselt and Sherwood numbers in the enclosure
for the various cases are depicted in Tables 6a and 6b, respec-
tively. In addition to Nu and Sh values, the tables also display
the percent differences between the current values and the cor-
responding values obtained in a rhombic annulus. These values
are computed as

%�
(
Nu

) = 100 ∗
(
Nucircular − NuRhombic

)
Nucircular

%�
(
Sh

) = 100 ∗
(
Shcircular − ShRhombic

)
Shcircular

(19)

As shown in Table 6a, the %�(Nu) varies between –10.69%
and 15.01%. Similarly, the %�(Sh) values displayed in Table
6b indicate variations between –10.69% and 19.50%. These dif-
ferences in values do not seem to follow a clear trend. Therefore,
a large error will be committed if heat and mass transfer in com-
plex geometries is evaluated by just exploiting corresponding
values obtained in circular geometries, and this justifies the need
for conducting the current study.

CLOSING REMARKS

The effect of buoyancy ratio due to both heat and mass trans-
fer on natural convection in a porous enclosure of rhombic cross
section was studied numerically using a finite-volume method.
Solutions were generated for several values of thermal Rayleigh
number (RaT), Darcy number (Da), Prandtl number (Pr), poros-
ity (ε), enclosure gap (Eg), and buoyancy ratio (N) in the oppos-
ing (N < 0) and aiding mode (N > 0), for a fixed value of Lewis
number (Le = 10). It was found that the strength of the flow
increases as the |N | increases. Results also showed that Nu and
Sh values increase as the buoyancy ratio increases in either the
aiding or the opposing mode, with values obtained in the aid-
ing mode being higher than corresponding values obtained in
the opposing mode. The difference decreases as |N | increases.
Comparison of average Nusselt and Sherwood number values
obtained in the rhombic annulus with similar ones obtained in
a circular annulus having the same inner and outer perimeters
as the rhombic enclosure, indicated large percent difference in
values, thereby justifying the need to study the rhombic geom-
etry.
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NOMENCLATURE

A wall area
cp specific heat at constant pressure
dp pores diameter
D mass diffusion coefficient
Di length of inner pipe’s main diagonal
Do length of outer pipe’s main diagonal
Da Darcy number
Eg enclosure gap ratio

(
Eg = 1 − Di/Do

)
F constant in Forchheimer’s extension
g gravitational acceleration
k fluid thermal conductivity
K permeability of the porous media
Le Lewis number
n unit vector normal to surface
N buoyancy ratio
Nu local Nusselt number
Nu average Nusselt number
p dimensional pressure
P dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
S dimensional solute concentration
Sh local Sherwood number
Sh average Sherwood number
T dimensional temperature
u, U dimensional and dimensionless x-velocity component
v, V dimensional and dimensionless y-velocity component
x, y dimensional coordinates
X, Y dimensionless coordinates

Greek Symbols

α thermal diffusivity
β volumetric expansion coefficient
ε porosity
θ dimensionless temperature
μ dynamic viscosity
ρ density
σ dimensionless solute concentration
ψ stream function
� rhombus angle

Subscripts

c cold wall or convection heat transfer
h hot wall
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i condition at inner pipe
o condition at outer pipe
S refers to concentration
T refers to temperature
∞ refers to a reference value
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