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DOUBLE DIFFUSIVE NATURAL CONVECTION
IN A POROUS RHOMBIC ANNULUS

F. Moukalled and M. Darwish
Department of Mechanical Engineering, American University of Beirut,
Beirut, Lebanon

This article reports on an investigation performed to study laminar steady state double

diffusive natural convection in a two-dimensional porous enclosure of rhombic cross-section.

Solutions are obtained numerically using a finite volume method for the case when the inner

wall is uniformly heated to a temperature Th while subjected to a high solute concentration

Sh , and the outer wall is evenly cooled to a temperature Tc while exposed to a low solute

concentration Sc. Simulations are conducted for several values of Rayleigh number (Ra),

Darcy number (Da), Prandtl number (Pr), porosity (e), and enclosure gap (Eg) for fixed

values of Lewis number (Le¼ 10) and buoyancy ratio (N¼ 10). The results are displayed

in terms of streamlines, isotherms, isoconcentrations, mid-height velocity, temperature,

concentration profiles, and local and average Nusselt and Sherwood number values. Predic-

tions indicate that for the Lewis number and buoyancy ratio considered, the flow field is

more affected by mass transfer than by heat transfer. Moreover, convection effects increase

with an increase in Ra, Da, Eg, and/or e. The porosity of the porous matrix has no effect

on the flow, temperature, and concentration fields at low values of Darcy number. Further-

more, the total heat and mass transfer increases as Pr increases and/or as the enclosure gap

decreases due to an increase in the wall area over which heat and mass transfer occur.

Values of Nu and Sh indicate dominant diffusion at low Ra number values with convection

affecting the total heat and mass transfer at high Ra values.

INTRODUCTION

Double diffusive natural convection flows in porous media resulting from the
combined buoyancy effects of concentration and temperature gradients arise in
a variety of industrial applications such as migration of moisture in fibrous
insulation, the growth of crystals, food processing, solar energy systems, etc. [1–4].
While a number of studies in simple porous rectangular enclosures appear in the
literature [5–8], only a few investigations in complex geometries have been reported
[9–12]. The focus of the present investigation is to analyze the effects of porosity on
double diffusive natural convection in a porous annulus between two horizontal
pipes of rhombic cross section.

Received 8 December 2012; accepted 12 February 2013.

The financial support provided by the University Research Board of the American University of

Beirut is gratefully acknowledged.

Address correspondence to F. Moukalled, Department of Mechanical Engineering, Americn

University of Beirut, P. O. Box 11 0236, Riad El Solh, Beirut 1107 2020, Lebanon. E-mail: memouk@

aub.edu.lb

Numerical Heat Transfer, Part A, 64: 378–399, 2013

Copyright # Taylor & Francis Group, LLC

ISSN: 1040-7782 print=1521-0634 online

DOI: 10.1080/10407782.2013.784656

378



Several workers reported on double diffusive natural convection in square and
rectangular enclosures. Lee et al. [13] analyzed numerically, using the finite-
difference method, natural convection in a square enclosure filled with a salt water
solution and laterally heated along its side. Four distinct flow regimes were observed
depending on the magnitude of solutal stratification relative to thermal buoyancy.
Lee and Hyun [14] conducted a numerical study of double diffusive convection in
a rectangular cavity with combined horizontal temperature and concentration gradi-
ents such that the thermal and solutal buoyancy effects are counteracting, resulting
in an opposing gradient flow configuration. Borjini et al. [15, 16] studied numerically
the two-dimensional hydromagnetic double diffusive convection of a radiatively
participating fluid confined in a rectangular enclosure. In the work reported in
[15], Borjini et al. imposed uniform temperatures and concentrations along the
vertical walls, while assuming the horizontal walls to be adiabatic and impermeable.
In reference [16] however, Borijini et al. analyzed the mechanisms of the transitions
between steady compositionally dominated flow and unsteady thermally dominated
flow for fixed Prandtl, Rayleigh, and Lewis numbers. Han and Kuehn [17] analyzed
numerically double diffusive natural convection in a vertical rectangular cavity of
aspect ratio 4. Double diffusive multicell flow structures observed in experiments
by the authors were simulated successfully. Wang et al. [18] studied experimentally,
using particle image velocimetry (PIV), double diffusive convection of a binary

NOMENCLATURE

A wall area

cp specific heat

dp pores diameter

D mass diffusion coefficient

Do length of pipe’s main diagonal

Da Darcy number

Eg enclosure gap ratio

F constant in Forchheimer’s extension

g gravitational acceleration

h local convection heat transfer

coefficient
�hh average convection heat transfer

coefficient

k fluid thermal conductivity

K permeability of the porous media

Le Lewis number

n unit vector normal to surface

N buoyancy ratio

Nu local Nusselt number

Nu average Nusselt number

p dimensional pressure

P dimensionless pressure

Pr Prandtl number

Ra Rayleigh number

S dimensional solute concentration

Sh local Sherwood number

Sh average Sherwood number

T dimensional temperature

u, U dimensional and dimensionless

x-velocity component

v, V dimensional and dimensionless y-

velocity component

v, V dimensional and dimensionless velocity

vector

x, y dimensional coordinates

X, Y dimensionless coordinates

a thermal diffusivity

b expansion coefficient

m dynamic viscosity

q density

h dimensionless temperature

e porosity

X rhombus angle

w stream function

r dimensionless solute concentration

Subscripts

c cold wall or convection heat transfer

h hot wall

i condition at inner pipe

m mass transfer

o condition at outer pipe

s refers to concentration

T refers to temperature
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NH4Cl–H2O solution in a rectangular enclosure during solidification. The double
diffusive flow was found to be strong at the beginning of solidification and decayed
as solidification proceeded.

Investigators have also reported on double diffusive natural convection heat
transfer in non-rectangular enclosures. Hi and Lu [19] simulated, using a finite element
method, transient double diffusive convection in a vertical cylinder to identify the effect
of the buoyancy ratio on the evolution of the flow, temperature, and solute fields. Lee
et al. [20] conducted an experimental investigation to study the double diffusive convec-
tion phenomena of a stably-stratified salt-water solution due to lateral heating in
a stationary and rotating annulus. Dosch and Beer [21] studied numerically and exper-
imentally unsteady double diffusive convection in a horizontal concentric annulus filled
with an H2O-NaCl solution. Reported results indicated a considerable decrease in heat
transfer as compared to natural convection without a stabilizing salt gradient. Liou and
Hong [22] investigated double diffusive natural convection in a V-shaped sump using
a control volume method for two types of boundary conditions involving temperature
and concentration distributions. Kumar et al. [23] examined, using a velocity-vorticity
formulation, convection driven by combined thermal and solutal concentration
buoyancy effects in a lid-driven square cavity under aiding and opposing temperature
and concentration gradients along the vertical direction. Kumar et al. [24] extended the
analysis in reference [23] to include a heated block in the cavity.

Su�aarez et al. [25] evaluated the effects of double diffusive convection on the
thermal performance and stability of a salt-gradient solar pond and showed that
neglecting the effect of double diffusive convection over-estimate the temperatures
at the bottom of the pond. Kranenborg and Dijkstra [26] performed direct numerical
simulation of convective flows in both salt-stratified and non-stratified liquids
generated by a cooled slab of solid material. Results revealed flows of double diffus-
ive origin when the background liquid is stratified through a constant salt gradient.
Dijkstra and Kranenborg [27] studied the formation of double diffusive layer in
a laterally heated liquid which is stably stratified through a constant vertical salinity
gradient. Tanny and Gotlib [28] reported a numerical study, using the Galerkin
method, of an infinite horizontal double diffusive layer stratified vertically by tem-
perature and solute concentration for the case of temperature-dependent viscosity
and salt diffusivity. Kranenborg and Dijkstra [29] investigated through direct
numerical simulation the nonlinear evolution of double diffusive instabilities into
a laterally heated stably stratified motionless liquid.

Several investigations were also conducted in the turbulent flow regime. Van
Der Eyden et al. [30] presented numerical and experimental results of turbulent
double diffusive natural convection of a mixture of two gases in a trapezoidal enclos-
ure. Numerically generated results were in satisfactory agreement with measurements.
Hullender and Laster [31] used a low Reynolds number k-e model to predict the
wind-induced entrainment in a double diffusive system. Good agreement with experi-
mental data was obtained for wind speeds less than 10m=s. De Lemos and Tofaneli
[32] investigated turbulent double diffusive natural convection and analyzed the
stability of mixtures under gradients of temperature and concentration.

A number of studies on double diffusive natural convection in porous enclo-
sures have also appeared in the literature. Karimi-Fard et al. [33] studied numerically,
using the finite volume method, the effect of Darcy and Lewis number on double

380 F. MOULALLED AND M. DARWISH



diffusive natural convection in a square cavity filled with a porous medium. Their
study revealed that the inertial and boundary effects have a profound influence on
the double diffusive convection. Chamkha [34] reported on unsteady, laminar double
diffusive convective flow of a binary gas mixture in a rectangular enclosure filled with
a uniform porous medium subject to a temperature-dependent heat source or sink.
Bennacer et al. [35] presented a study on double diffusive natural convection in
a square cavity filled with porous media heated and cooled along vertical walls by
uniform heat fluxes when a solutal flux is imposed vertically. Beji et al. [36] carried
out a numerical investigation to study the combined effects of thermal and solutal
buoyancy forces on the flow, heat, and mass transfer in a vertical annular porous
layer subjected to constant temperature and concentration boundary conditions.
Costa [37, 38] predicted numerically double diffusive natural convection in parallelo-
grammic enclosures filled with fluid-saturated porous media. Results showed the strong
potential of this configuration for heat and mass transfer applications. Kumar et al. [39]
conducted a numerical study, using the Galerkin finite element method, on combined
heat and mass transfer by natural convection in a porous enclosure. Saghir and Islam
[40] performed a numerical study, using a finite element formulation for a wide range of
permeability contrasts, of double diffusive phenomena in porous media.

Natural convection heat transfer in a porous annulus of rhombic cross-section
was recently investigated by Moukalled and Darwish [12]. The intention of this arti-
cle is to extend the work reported in reference [12], and to study double diffusive
natural convection heat transfer in the same geometry for the case when the porous
enclosure is filled with a salty fluid.

PHYSICAL MODEL AND GOVERNING EQUATIONS

The physical domain is displayed in Figure 1a, and represents the annulus
between two concentric horizontal pipes of rhombic cross-sections. The length of
the main diagonal of the inner and outer pipe is Di and Do, respectively. The walls
of the inner pipe are maintained at high temperature and solute concentration (Th

and Sh), while the walls of the outer pipe are kept at low temperature and solute
concentration (Tc and Sc). Because of symmetry, computations are performed only
on the right half of the enclosure, which is assumed to be filled with a porous material
of porosity e. The differences in temperature and concentration between the inner and
outer walls create density variations within the fluid filling the porous enclosure and
give rise to the buoyancy forces that move the flow, which is assumed to be steady,
incompressible, and two-dimensional. Moreover, the convective fluid and the porous
matrix are assumed to be everywhere in local thermodynamic equilibrium. The
non-Darcian Forchheimer’s [41] and Brinkman’s [42] extensions are included in the
conservation equations to better model the physical situation. With these assump-
tions, and employing the Boussinesq approximation with the thermo physical proper-
ties of the working fluid assumed to be constant, except for density variations in the
body force term, the volume-averaged equations [43] governing conservation of mass,
momentum, energy, and solute are, respectively, written as follows.

r � v ¼ 0 ð1Þ
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q
e2

v � rð Þv ¼ m
e
r2v�rp� m

K
v

� F

K1=2
q vj jv� q bt T � T1ð Þ þ bs S � S1ð Þ½ �g

ð2Þ

e q cp
� �

v � rT ¼ r � krTð Þ ð3Þ

v � rS ¼ r � DrSð Þ ð4Þ

Defining the dimensionless variables as,

X ¼ x

Do
; Y ¼ y

Do
; U ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbt Th � Tcð ÞDo

p ; V ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbt Th � Tcð ÞDo

p ð5aÞ

Figure 1. (a) Computational domain showing a grid network, and (b) a typical control volume.
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P ¼ pþ qgy
qgbt Th � Tcð ÞDo

; h ¼ T � Tc

Th � Tc
;Rat ¼

qgbtDTD
3
o

ma
;Pr ¼ mcp

k
;r ¼ S � Sc

Sh � Sc
ð5bÞ

Ras ¼
qgbsDSD

3
o

ma
;Le ¼ a

D
;Da ¼ K

D2
o

;F ¼ 1:75ffiffiffiffiffiffiffiffiffiffiffiffi
150e3

p ;K ¼
e3d2

p

150 1� eð Þ2
ð5cÞ

the nondimensional form of the conservation equations becomes the following.

D � V ¼ 0 ð6Þ

1

e2
V � rð ÞV ¼ 1

e

ffiffiffiffiffiffiffiffi
Pr

Rat

s
r2V�rP� 1

Da

ffiffiffiffiffiffiffiffi
Pr

Rat

s
V� Fffiffiffiffiffiffiffi

Da
p Vj jVþ hþRas

Rat
r

� �
j ð7Þ

V � rh ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
RatPr

p r2h ð8Þ

V � rr ¼ 1

Le
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RatPr

p r2r ð9Þ

The meaning of the various dimensionless numbers is given in the nomenclature. The
boundary conditions used are as follows.

U ¼ qV
qX

¼ qh
qX

¼ qr
qX

¼ 0 along symmetry lines ð10Þ

U ¼ V ¼ 0; h ¼ r ¼ 1 at inner walls ð11Þ

U ¼ V ¼ h ¼ r ¼ 0 at outer walls ð12Þ

SOLUTION PROCEDURE

The buoyancy term appearing in the y-momentum equation (Eq. (7)) couples
the hydrodynamic field (Eqs. (6) and (7)) to the thermal (Eq. (8)) and mass transfer
(Eq. (9)) fields and necessitates a simultaneous solution of all equations. In this work,
these equations are solved numerically using the finite volume method. Solutions are
obtained by subdividing the physical domain, depicted in Figure 1a, into a number of
control volumes each associated with a grid point placed at its geometric center
(Figure 1b). In every control volume, the partial differential equations (Eqs. (6)–(9)]
are integrated and transformed into algebraic equations through profile approxi-
mations for the diffusion [44] and convection (the SMART scheme [45], applied
within the context of the NVSF methodology [46], is used here) terms. The integral
value of the source term over a control volume (Figure 1b) is evaluated by
assuming the source at the control volume center to be equal to the mean value
over the whole control volume. The collection of these algebraic equations over
the entire domain forms a system that is iteratively solved. To evaluate the pressure
field, a pressure correction is defined and a pressure correction equation is derived
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by combining the momentum and continuity equations as in the SIMPLE procedure
of Patankar [47–49]. A collocated grid is used in the present study, and checkerboard
pressure and velocity fields are suppressed through the use of the momentumweighted
interpolation method (MWIM), while calculating the mass fluxes across the control
volume faces [50].

Numerical Accuracy and Validation

The accuracy and grid independence of the results are established by comparing
solutions obtained over a number of grid systems. A final grid with a size of (160�
128) control volumes is used to generate all results presented here. The grid points
are nonuniformly distributed over the domain and symmetry lines where higher gra-
dients are expected (Figure 1a). The comparison of solutions for some of the cases
with similar ones obtained on a denser grid with a size of (240� 240) control volumes
revealed that the maximum differences in the average Nusselt and Sherwood number
values were less than 0.0156%. Conservation of the various physical quantities was
satisfied to within 10�8 for each control volume.

The correctness of the solution procedure is verified by comparing results
obtained from the present model with corresponding results reported in the literature
for double diffusive natural convection in a square [33] and a parallelogrammic [37]
porous enclosure. For the square enclosure, computed average Nusselt and
Sherwood number values (N¼ 0, Le¼ 10, and Ra¼ 100 and 200) are compared in
Table 1 with values reported by several workers [33, 51, 52] and is seen to be in good
agreement. For the parallelogrammic enclosure problem, the computed average
Nusselt and Sherwood number values (for N¼ 2, Le¼ 0.8, and Rat¼ 25) are
compared in Figures 2a and 2b, respectively, with similar ones reported by Costa
[37]. In the calculations, the same nonuniform grid with an expansion ratio of
1.05 and of size (101� 101) grid points suggested in reference [37] is used. The prob-
lem is solved for an enclosure with an aspect ratio H=L¼ 0.5 and for an inclination
angle (h) values varying between �60� and 60� with a step size of 10�. An initial com-
parison was done between values reported by Costa [37] using the w formulation and
results generated using the full model formulation with the SIMPLE algorithm.

Whereas Nu values were in good agreement, reported Sh values were much higher
than the calculated ones. A review of the code did not reveal any error. To get more
insight into these differences, the problem was solved via the w formulation using the

Table 1. Comparison of current average Nusselt and Sherwood number results in a square enclosure

(Le¼ 10, N¼ 0,) with similar ones reported by Karimi-Fard et al. [33], Goyeau et al. [51], and Trevisan

and Bejan [52]

Ra¼ 100 Ra¼ 200

Present

work

Ref.

[33]

Ref.

[51]

Ref.

[52]

Present

work

Ref.

[33]

Ref.

[51]

Ref.

[52]

Nu 3.104 3.11 3.11 3.27 4.954 4.97 4.96 5.61

Sh 13.379 13.43 13.25 15.61 20.182 20.32 19.86 23.23
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same developed code, which is a general one. For that purpose, slight modifications
were required. As depicted in Figure 2, results were very close to the ones generated
using the SIMPLE approach. To further confirm the correctness of results, an

Figure 2. Comparison of predicted average (a) Nusselt and (b) Sherwood numbers in a parallelogrammic

enclosure with similar ones reported by Costa [37].
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unstructured grid code was employed to solve the problem. Again, Sh values were
lower than the values reported by Costa [37] and very close to those generated with
the code used to obtain results reported here. The interesting observation was that

Nu values reported by Costa and generated in this work were very close. This fact
has led the authors to compare the energy and concentration equations used by
Costa [37]. The difference turned out to be in the diffusion coefficient, which is equal
to 1 for temperature, but 1=Le for the solute. It became clear that fluxes used by

Costa [37] to calculate Nu and Sh were directly taken from their code, which are
multiplied by the diffusion coefficients. For the case of the Nusselt number, because
the diffusion coefficient of the dimensionless energy equation is 1, it did not result in
any difference. However, for the Sherwood number the diffusion coefficient of the
concentration equation is 1=Le (Le¼ 0.8) and it resulted in higher values. By divid-

ing the Sh values reported in reference [37] by the diffusion coefficient, the variation
in the Sherwood number values with h fell on top of the ones generated in this work
(Figure 2a), confirming the correctness of the developed solution procedure. There-

fore, the Sherwood number values reported in reference [37] are actually Sh=Le.

RESULTS AND DISCUSSION

The geometric parameters affecting the hydrodynamic, heat transfer, and mass
transfer fields are the rhombus angle, which is fixed at 30�, and the enclosure gap
(Eg¼ 1-Di=Do), which is assigned three different values (Eg¼ 0.875, 0.75, and 0.5).
On the other hand, the thermophysical parameters in the problem are: the porosity
(e), the Rayleigh number (Ra), the Prandtl number (Pr), the Darcy number (Da), the
buoyancy ratio (N¼Ras=Rat), and the Lewis number (Le). Air and water are con-
sidered to be the working fluids and, as such, the Prandtl number is assigned the
two values of 0.7 and 5 while the Lewis number and buoyancy ratio are fixed at
10. Moreover, three different values of Rayleigh number (Ra¼ 105, 106, and 107),
two different values of Darcy number (Da¼ 10�3, and 10�5), and three different
values of porosity (e¼ 0.3, 0.6, and 0.9) are considered.

Results are presented in the form of streamlines, isotherms, isoconcentrations,
mid-height velocity, temperature, and concentration profiles, and local and average
Nusselt and Sherwood number values.

Streamlines, Isotherms, and Isoconcentrations

The influence of the various parameters on the flow, temperature, and con-
centration fields is revealed by the streamline, isotherm, and isoconcentration plots
depicted in Figures 3–6. Figures 3 and 5 present results for a Rayleigh number
with a value of 105, while Figures 4 and 6 are for Ra¼ 107. Moreover, results for
the highest enclosure gap (Eg¼ 0.875) are presented in Figures 3 and 4, while
contours in the lowest enclosure gap (Eg¼ 0.5) are shown in Figures 5 and 6.
Contours are plotted for two values of Darcy number (Da¼ 10�5 and 10�3), for three
values of porosity (e¼ 0.3, 0.6, and 0.9), and for Pr¼ 0.7. In all figures, streamlines
are displayed in plots (a)–(c) and (k)–(m), isotherms in plots (d)–(f) and (n)–(p),
and isoconcentrations in plots (g)–(i) and (q)–(s).
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In this work, the stream function is defined as follows,

1

e2
U ¼ qw

qY
and

1

e2
V ¼ � qw

qX
ð13Þ

and is calculated by integrating numerically the above equation.
At the lowest values of Rat andDa and the highest value of Eg (Figure 3), the flow

is weak and for e¼ 0.3 streamlines are almost symmetrical with respect to the horizon-
tal centerline of the domain (Figure 3a). As porosity increases, the flow asymmetry
increases with the center of the recirculating eddy characterizing the flow, moving
slightly upward to the upper half of the domain (Figures 3b and 3c). This behavior is
more visible at higher Da value (Figures 3k–3m), where the flow is much stronger
and the eye of the recirculating eddy is almost in the middle of the upper half of the
domain. The increase in the strength of the flow with Da is due to an increase in the

permeability of the porous medium Da ¼ K=D2
o

� �
. The effect of porosity on K can

be inferred from its functional relationship (Eq. (5)), which can be rewritten as follows.

K ¼
e3d2

p

150 1� eð Þ2
¼

d2
p

150
e3 1þ eþ e2 þ :::::
� �2 ð14Þ

Figure 3. (a)–(c), (k)–(m) Streamlines (d)–(f), (n)–(p) isotherms, and (g)–(i), (q)–(s) isoconcentrations for

different values of e and Da (Eg¼ 0.875, N¼ 10, Le¼ 10, Pr¼ 0.7, and Ra¼ 105).
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From Eq. (14), it is clear that an increase in e at constant Da implies a decrease
in the diameter of the porous matrix. This decrease is associated with an increase in
the surface area and, consequently, friction losses and a decrease in pressure drop.
These counteracting effects compete to determine the flow field. Results clearly
indicate an increase in the flow strength as e increases, which indicate that the
decrease in the form drag is higher than the increase in friction drag. Because of these
two opposing effects, the flow strength is more affected by Da than by e. The
decrease in the values of w as the flow strength increases (at higher e) is due to the
way the streamfunction values are calculated [equation (13)].

The symmetrical distribution of isotherms at low Da presented in Figures 3d–3f
reflects the above described behavior with the distribution of isotherms becoming asym-
metrical at higher Da values (Figures 3n–3p). Nevertheless, effects of convection due to
temperature gradient are low at this value of Rat as reflected by the slight distortion of
the isotherms with thermal stratification confined to a small region in the lower part of
the rhombic annulus. Temperature-driven convection effects are seen to slightly
increase with increasing values of porosity, which is more visible at Da¼ 10�3.

Isoconcentration maps displayed in Figures 3g–3i and 3q–3s indicate stronger
concentration-driven buoyancy effects especially at high Da (Figures 3q–3s). This is
expected as Ras is an order of magnitude higher than Rat (i.e., N¼ 10), and is

Figure 4. (a)–(c), (k)–(m) Streamlines (d)–(f), (n)–(p) isotherms, and (g)–(i), (q)–(s) isoconcentrations for

different values of e and Da (Eg¼ 0.875, N¼ 10, Le¼ 10, Pr¼ 0.7, and Ra¼ 107).
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reflected by the higher stratified concentration region in the lower part of the domain
and the higher asymmetry and distortion in isoconcentration lines. This behavior is
due to the significantly larger area of the surface with low solute concentration rela-
tive to the area of the surface with high solute concentration. Below the horizontal
diagonal the surface with low solute concentration promotes stratification in the
lower half, and above the diagonal the surface with high solute concentration pro-
motes stratification in the upper half. Since the lower half is dominated by the much
larger surface area with low concentration, there is significant stratification in the
lower half, as seen in Figures 3q–3s. Because of the high level of stratification in
the lower half, the flow cannot easily penetrate the lower region, and as seen in
Figures 3k–3m, the flow in this region is essentially very weak. In the upper half,
due to the relatively lower proportion of surface area with high solute concentration,
stratification is not significant, and a strong recirculating flow is obtained. Again
concentration-driven convection is seen to increase with increasing e as reflected
by the denser clustering of isoconcentration lines near the walls of the enclosure.

At higher Rat values (Figure 4), the flow is stronger with the eye of the
recirculating eddy moving further upward. This is due to the increase in the buoyancy
forces, which are directly proportional to Rat. Isotherms (Figures 4d–4f and 4n–4p)
and isoconcentrations (Figures 4g–4i and 4q–4s) show the boundary layer behavior

Figure 5. (a)–(c), (k)–(m) Streamlines (d)–(f), (n)–(p) isotherms, and (g)–(i), (q)–(s) isoconcentrations for

different values of e and Da (Eg¼ 0.5, N¼ 10, Le¼ 10, Pr¼ 0.7, and Ra¼ 105).
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on the lower part of the heated surface and the upper part of the cooled enclosure
surface. The boundary layer along the inner wall rises up from the upper region of
the inner body and forms a thermal plume. This can be seen as isotherms and isocon-
centrations move away from the inner wall near the top. Again the flow strength
increases with increasing e and=or Da values (Figures 4a–4c and 4k–4m). Higher
stratification levels are obtained in comparison with levels at lower values of Rat with
the flow being more affected by concentration gradients than temperature gradients
(N¼ 10). This is evident from isotherms presented in Figures 4d–4f and 4n–4p and
isoconcentrations depicted in Figures 4g–4i and 4q–4s). The distribution of isotherms
and isoconcentrations is asymmetric even at low Da value. A large thermally stratified
region forms in the lower part of the domain with heat transfer in the non-stratified
region occurring, at low Da, mainly by conduction. This can be inferred from
Eqs. (8) and (9), where the convection term in the solute conservation equation is
multiplied by the Lewis number (Le¼ 10) indicating that the concentration distri-
bution is more affected by convection than the temperature distribution. At high
Da, the thermally stratified region is larger and convection is stronger as reflected
by the higher distortion of isotherms.

As the enclosure gap decreases [Eg¼ 0.5, Figures 5 and 6], the proportion of
the hot=high solute to the cold=low solute surface increases (approaching unity),

Figure 6. (a)–(c), (k)–(m) Streamlines (d)–(f), (n)–(p) isotherms, and (g)–(i), (q)–(s) isoconcentrations for

different values of e and Da (Eg¼ 0.5, N¼ 10, Le¼ 10, Pr¼ 0.7, and Ra¼ 107).
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the stratification effects in the lower half of the enclosure become less noticeable and
at low Rat and Da the flow patterns in the upper and lower halves are similar
(Figures 5a–5c). The decrease in the strength of the flow with increasing values of
the enclosure gap is due to a decrease in the available convective area and to the
greater viscous effects of the added surface area.

Velocity, Temperature, and Concentration Profiles

Figure 7 shows horizontal velocity, vertical velocity, temperature, and con-
centration profiles along the horizontal centerline of the cavity plotted in terms of
a dimensionless distance (DX=DXmax) defined as follows.

DX
DXmax

¼ X � Xmin

Xmax � Xmin
ð15Þ

Figure 7. Mid-height (a) U-velocity, (b) V-velocity, (c) temperature, and (d) concentration profiles

(Ra¼ 106, Eg¼ 0.75, Pr¼ 0.7, N¼ 10, and Le¼ 10).
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Plots reveal the effects of porosity at two different values of Darcy number for
a Rayleigh number of value 106 in an enclosure with Eg¼ 0.75 and Pr¼ 0.7. All profiles
indicate that at Da¼ 10�5 porosity has negligible effect on the velocity, temperature,
and concentration fields. Moreover, at this value of Darcy number, the values for U
andV velocity components (Figures 7a and 7b) are very low indicating negligible convec-
tion effects and conduction dominated transfer phenomena with porosity having negli-
gible effect on the velocity profiles except for a small region close to the hot wall. This
is further revealed by the temperature and concentration plots depicted in Figures 7c
and 7d with profiles at different values of porosity falling nearly on top of each other.

At the higher value of Da (Da¼ 10�3), the effect of porosity on the velocity
(Figures 7a and 7b), temperature (Figure 7c), and concentration (Figure 7d) distri-
bution is obvious. Profiles clearly show the boundary layer behavior close to the hot
and cold walls with larger gradients at higher value of e. The V-velocity profiles
(Figure 7b) indicate that the fluid is moving up the hot wall and down the cold wall
as reflected by the positive and negatives V-velocity values, respectively. On the other
hand, the U-velocity values (Figure 7a) are positive along both the hot and cold walls.
This is physically correct, and is the result of the positive and negative slopes of the hot
and cold wall, respectively. The effect of Da and e on the temperature and con-
centration profiles can be easily inferred from the plots presented in Figures 7c and
7d, respectively. The increase in convection contribution to total heat transfer at the
higher value of Da is reflected by the nonlinear temperature distribution with con-
vection being higher at higher e values (increase in nonlinearity of the temperature pro-
file) due to the overall reduction in damping resistance offered by the porous matrix.
Similar conclusions can be drawn for variation in concentration with convection effects
being more pronounced due to the higher value of Lewis number (Le¼ 10).

Nusselt and sherwood numbers

The local Nusselt and Sherwood numbers along the inner and outer walls of
the porous rhombic annulus are calculated as follows.

Nui=o ¼ hc;i=oDi=o=k hc;i=o ¼�k
rTi=o�n
Th�Tc

Shi=o ¼ hm;i=oDi=o=D hm;i=o ¼�D
rSi=o�n
Sh�Sc

9=
;)

Nui ¼� Di

Do
rhi � nNuo ¼�rho � n

Shi ¼� Di

Do
rSi � n Sho ¼�rSo � n

(
ð16Þ

Furthermore, the average Nusselt and Sherwood number values are defined as
follows.

�hhc;i=o ¼

R
i=o

�krTi=o�nð Þds
Ai=o Th�Tcð Þ with

R
i

�krTi � nð Þds ¼
R
o

�krTo � nð Þds

�hhm;i=o ¼

R
i=o

�DrSi=o�nð Þds
Ai=o Th�Tcð Þ with

R
i

�DrSi � nð Þds ¼
R
o

�DrSo � nð Þds

Nui=o ¼ 1
Ai=o

R
i=o

Nui=ods Shi=o ¼ 1
Ai=o

R
i=o

Shi=ods

Ai ¼ Di

cosXAo ¼ Do

cosX

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

) Nui ¼ Nuo

Shi ¼ Sho

(

ð17Þ
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Therefore, there is no need to give separate attention to inner and outer Nusselt

and Sherwood numbers, and attention will subsequently be focused on Nu and Sh.
The local Nusselt number distributions along the hot and cold walls are presented in
Figures 8a and 8b, respectively, while the corresponding local Sherwood number
profiles are displayed in Figures 8c and 8d, respectively. Predictions are presented
for two values of Darcy number at Ra¼ 106 in an enclosure with Eg¼ 0.75 and
Pr¼ 0.7. Estimates are plotted as a function of a dimensionless distance (DY=DYmax),
defined as follows.

DY
DYmax

¼ Y � Ymin

Ymax � Ymin
ð18Þ

Figure 8. (a),(b) Local Nusselt and (c),(d) Sherwood number distribution along the (a),(c) cold and (b),(d)

hot walls of the enclosure (Ra¼ 106, Eg¼ 0.75, Pr¼ 0.7, N¼ 10, and Le¼ 10).
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Nusselt and Sherwood number profiles are similar in shape with Sh values
being higher, reflecting the stronger effects of mass transfer over heat transfer
(Le¼ 10). Along the cold=low concentration wall, profiles exhibit two peaks
(Figures 8a and 8c), one in the lower half of the enclosure (DY=DYmax< 0.5), and
the other in the upper half (DY=DYmax> 0.5), while passing through a sharp mini-
mum at the middle of the wall (DY=DYmax¼ 0.5). The local maximum along the
lower part is due to the impingement and deflection of the downward descending
fluid by the lower portion of the cold=low concentration wall. The upper maximum
is due to the hot=high concentration fluid from the inner wall rising upward and
impinging on the upper part of the cold=low concentration wall. The sharp minimum
at the corner of the outer cold=low concentration wall is due to the tendency of the
fluid not to follow the corner contour with a consequent decrease in velocity, heat,
and mass transfer. On the other hand, the Nusselt and Sherwood numbers along
the hot=high concentration wall peak near the bottom region (DY=DYmax¼ 0) and
at the middle of the domain (DY=DYmax¼ 0.5), with the latter being sharp. The
cooled=low concentration fluid from the cold=low concentration wall is transported
by the clockwise eddy toward the lower regions of the hot=high concentration wall,
and the largest temperature=concentration gradients and Nusselt=Sherwood num-
bers therefore occur in the leading region of the hot=high concentration wall, thereby
maximizing Nu=Sh there. The sharp peak at DY=DYmax¼ 0.5 is due to the acceler-
ation of the flow until reaching the tip of the lower part of the hot=high concen-
tration wall where it has to change direction to turn around the corner. Beyond
that point and because of the increase in temperature=concentration of the fluid in
the lower part of the hot=high concentration wall, the rate of heat=mass transfer
starts to decrease (i.e., decreasing Nu=Sh), while the fluid temperature=concentration
ration continues to increase.

The effects of Darcy number on the variations of local Nusselt and Sherwood
numbers along the enclosure walls can be inferred from the two sets of profiles
displayed in the various plots (Figures 8a–8d). At low Da value (Da¼ 10�5), the
Nusselt number profiles along the lower and upper parts of the hot and cold walls
are similar in shape (Figures 8a and 8b). Along the cold wall, the local maximum
of Nusselt number in the lower region is less than that along the upper region
because the upward impinging fluid on the upper cold wall is hotter. Along the
hot wall the opposite occurs with Nusselt number being higher in the lower portion
due to the impingement of the colder fluid there. At high Da, the lower portion
becomes increasingly thermally stratified, the downward descending flow penetrates
the lower region to a lesser degree, and the maximum Nu in the lower region corre-
spondingly decreases. At high Da, the strength of the convective flow increases in the
upper portion of the enclosure as a result of the higher permeability, and conse-
quently, the Nu peak increases along the upper cold wall. Thus, as Da increases,
most of the heat transfer along the outer cold wall occurs along its upper portion.
Along the inner hot wall, the peaks near the bottom region and at the middle of
the domain increase with increasing Da values because of the stronger convective
flow as demonstrated by the streamlines and isotherms presented earlier.

Whereas porosity has little effects on Nu profiles at low Da, the level of Nusselt
number increases with increasing value of e at high Da due to an increase in the
available convective area, leading to a lower hydrodynamic resistance.
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The variations in Sherwood number (Figures 8c and 8d) are very similar to
variations in Nusselt number, except that the values are higher because of the high
value of Lewis number considered in the study (Le¼ 10).

The average Nu and Sh values for all cases studied are given in Tables 2 and 3,
respectively, for the two values of Prandtl number for which computations were per-
formed (i.e., Pr¼ 0.7 and 5). At the lowest Ra considered, the overall heat and mass

transfer Nu
� �

and Sh
� �� �

appear to be strongly dominated by conduction with con-

vection effects becoming increasingly important on the overall heat and mass trans-
fer as Ra increases. As shown in Tables 2 and 3, at low Ra, convection effects are
weak, and although the velocity, temperature, concentration, and heat and mass
transfer profiles show mild distortion due to the convective flow (Figures 3–6), these
effects are not strong enough to substantially change the overall heat and mass trans-
fer. The larger heat and mass transfer predictions at lower enclosure gap values is
due to an increased diffusion contribution as a result of smaller gap width for the
same temperature and concentration difference. At Pr¼ 5 (Tables 2 and 3), the pre-

dicted Nu and Sh values are equal to those obtained for Pr¼ 0.7 at low Ra due to

diffusion dominance. As Ra increases, higher Nu and Sh values are obtained at
higher Pr indicating greater heat and mass transfer rates. This increase in heat and
mass transfer is due to a decrease in the thermal and concentration boundary layer
thicknesses, which result in sharper temperature and concentration gradients. The

highest Nu and Sh values of 12.38 and 44.09, respectively, are found for the lowest

Table 2. Average Nusselt number values Nu (N¼ 10, Le¼ 10)

Eg¼ 0.875, Pr¼ 0.7 Eg¼ 0.875, Pr¼ 5.0

Da¼ 10�5 Da¼ 10�3 Da¼ 10�5 Da¼ 10�3

Rane 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

105 1.46 1.46 1.46 1.68 1.82 1.91 1.46 1.46 1.46 1.72 1.87 1.96

106 1.62 1.65 1.66 2.37 2.96 3.22 1.63 1.66 1.67 2.7 3.26 3.5

107 2.7 3.14 3.2 4.07 5.53 6.34 3.06 3.32 3.32 4.73 6.08 6.42

Eg¼ 0.75, Pr¼ 0.7 Eg¼ 0.75, Pr¼ 5.0

Da¼ 10�5 Da¼ 10�3 Da¼ 10�5 Da¼ 10�3

Rane 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

105 2.28 2.29 2.29 2.52 2.7 2.82 2.28 2.29 2.29 2.56 2.75 2.87

106 2.46 2.49 2.51 3.52 4.13 4.47 2.48 2.5 2.51 4.04 4.49 4.8

107 3.77 4.25 4.36 5.94 7.47 8.53 4.16 4.45 4.5 6.81 8.2 9.24

Eg¼ 0.5, Pr¼ 0.7 Eg¼ 0.5, Pr¼ 5.0

Da¼ 10�5 Da¼ 10�3 Da¼ 10�5 Da¼ 10�3

Rane 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

105 4.99 4.99 4.99 5.07 5.17 5.27 4.99 4.99 4.99 5.08 5.19 5.29

106 5.08 5.1 5.11 5.92 6.56 6.92 5.09 5.11 5.11 6.1 6.78 7.14

107 6.2 6.56 6.74 8.41 9.94 11.03 6.52 6.79 6.88 9.27 11.02 12.38
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Eg and the highest Da, Ra, Pr, and e. While the lowest Nu and Sh of 1.46 and 1.84,
respectively, are attained at the highest Eg and the lowest Da, Ra, Pr, and e. Further-
more, when conduction is the dominant heat transfer mode predicted Nu and Sh
values depend only on Eg.

CONCLUSION

This article investigated numerically, using a finite volume method, double
diffusive natural convection in a porous enclosure of rhombic cross-section. Simula-
tions examined, at fixed values of Lewis number and buoyancy ratio, the effects of
Raleigh number, Darcy number, porosity, enclosure gap, and Prandtl number on
natural convection within the enclosure. Results indicated that convection effects
increase with an increase in Ra, Da, Eg, and=or e. Predictions also revealed that
porosity has no effect on the flow, temperature, and concentration fields at low
values of Da. The total heat and mass transfer rates were found to be higher at
higher Pr values and to be diffusion-dominated at low Ra, with contribution due
to convection increasing at high Ra values.
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