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In this work a block coupled algorithm for the solution of three-dimensional incompressible

turbulent flows is presented. A cell-centered finite-volume method for unstructured grids

is employed. The interequation coupling of the incompressible Navier-Stokes equations

is obtained using a SIMPLE-type algorithm with a Rhie-Chow interpolation technique. Due

to the simultaneous solution of momentum and continuity equations, implicit block coupling of

pressure and velocity variables leads to faster convergence compared to classical, loosely coupled,

segregated algorithms of the SIMPLE family of algorithms. This gain in convergence speed

is accompanied by an improvement in numerical robustness. Additionally, a two-equation eddy

viscosity turbulence model is solved in a segregated fashion. The substnatially improved

performance of the block coupled approach compared to the segregated approach is demon-

strated in a set of test cases. It is shown that the scalability of the coupled solution algorithm

with increasing numbers of cells is nearly linear. To achieve this scalability, an algebraic

multigrid solver for block coupled systems of equations has been implemented and used as linear

solver for the system of block equations. The presented algorithm has been entirely embedded

into the leading open-source computational fluid dynamics (CFD) library OpenFOAM.

1. INTRODUCTION

Since resolving the pressure and velocity coupling is essential for the perfor-
mance of any computational fluid dynamics (CFD) code, a lot of effort continues
to be directed toward the development of more robust and more efficient coupling
algorithms [11, 12]. Over the past decades the pressure-based approach based on
the SIMPLE family of algorithms [1, 2, 13, 14] has become the predominant
methodology used in the CFD community. The SIMPLE algorithm basically
follows a segregated approach in resolving the pressure–velocity coupling, i.e., solving
the momentum equation in a predictor step, followed by solving a pressure equation in
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a corrector step. Variants of the SIMPLE algorithm [3–6] have been developed to
simulate a variety of fluid flows, increasingly expanding the reach of the method.
However, one area in which the SIMPLE algorithm is deficient is in its lack of
scalability with mesh size [7]. This shortcoming is inherent and is due in part to the
underrelaxation needed to stabilize the algorithm. This relaxation is akin to forcing
a pseudo-computational time step onto the numerical simulation that is proportional
to the cell volume at hand [8]. Hence, as the grid is refined, the computational
pseudo-time step is reduced, thus insuring that the number of iterations needed to
resolve the same physical problem is increased. Thus the number of iterations to
convergence increases with mesh size somewhat proportionally to the inverse of
the average element volumes in the computational domain—a behavior somewhat
resembling the performance of iterative solvers with increasing mesh size.

One algorithm that addresses this deficiency is the fully coupled algorithm of
Darwish et al. [9]. In their work they show that by accounting for the pressure–
velocity coupling more comprehensively, the fully coupled algorithm gains in
stability and robustness and avoids using implicit underrelaxation. Thus no con-
straint is placed on the pseudo-time step, which can be retained at a constant value
regardless of the mesh size. This basically allows for retention of performance as
the mesh size is increased, as demonstrated in a number of 2-D laminar test cases
[9]. Note that in the fully coupled approach, the algebraic equations resulting from
the Navier-Stokes equations are solved simultaneously. To achieve good computa-
tional performance an algebraic multigrid solver for block coupled systems of
equations has been implemented and used as linear solver for the discretized
equations.

In this work we propose to extend the methodology to 3-D turbulent industrial
applications and implement the algorithm within the context of the widely used
OpenFOAM [10] open-source library.

In what follows the discretization procedure of the fully coupled algorithm and its
implementation are presented, then its performance is evaluated in four test cases, three
of these cases originating from industry. Therein the mesh size scalability is evaluated
for a range of mesh sizes and the coupled solver’s performance in terms of computa-
tional time is compared to that of a state-of-the-art segregated SIMPLE-C solver, also

NOMENCALTURE

A, a coefficient matrix, coefficient matrix

coefficient

b, b source vector, source vector

coefficient

D Rhie-Chow numerical dissipation

tensor

g geometric interpolation weighting

factor

k turbulence kinetic energy

p pressure

S, S surface scalar, surface normal vector

u, v, w velocity components

u velocity vector

V, _VV volume scalar, volume flux scalar

v kinematic viscosity scalar

q density constant

/ general scalar quantity, solution

vector

x turbulence frequency

Superscripts

n current iteration

u, v, w refers to velocity components

/ linear interpolation to the face
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based on the OpenFOAM library, that was presented by Casartelli and Mangani [15].
As closure model of turbulence fluctuations the k–x SST model [16] is used.

2. THE GOVERNING EQUATIONS

The basic equations governing incompressible steady-state flows are the
conservation of mass and momentum equations:

r � u ¼ 0 ð1Þ

r � uuð Þ ¼ � 1

q
rpþr � neff ruð Þ½ � ð2Þ

The density field in the context of isothermal incompressible flow is constant.
The laminar kinematic viscosity n is summed up with the turbulent kinematic
viscosity nt, yielding neff, which will also account for the turbulent stresses arising
from the Reynolds averaged eddy viscosity turbulence model. The well-known k–x
shear stress transport (SST) model, of Menter [17], is used for closure of turbulence
quantities. For convenience the model is written in the following form:

r � ðukÞ �r � ðnþ ntaKÞrk½ � ¼ 1

q
Pk � b�xk ð3Þ

r � ðuxÞ �r � ðnþ ntaxÞrx½ � ¼ C1Pk

mt
� C2x

2 þ 2aeð1� F 1Þ
x

rk � rx ð4Þ

3. RESOLVING THE PRESSURE–VELOCITY COUPLING

To avoid forming a saddle-point matrix as a result [18] of the direct discretization
of the Navier-Stokes equations, a special treatment is needed for the pressure field. This
basically takes the form of a reformulation of the continuity equation into a constraint
pressure equation that enforces mass conservation on the velocity fields. This procedure
is basically at the core of the SIMPLE family of algorithms [19]. For a collocated grid
arrangement, a special velocity interpolation is also needed to overcome any checker-
boarding of the pressure field. These issues have been widely addressed over the years
[20] and will be only briefly outlined. Still a distinguishing feature of this OpenFOAM
based solver is the fully implicit algorithm used to resolve the velocity–pressure
coupling that arises from the Navier-Stokes equations. The algorithm was originally
presented by Darwish et al. [9] and is implemented within the OpenFOAM framework
with minor modifications. Also, the implementation of the turbulence model is
enhanced to allow consistent behavior in combination with the coupled solver. In what
follows the momentum and continuity equations will be discretized.

3.1. Discretization of the Momentum Equations

Reformulating the momentum equations (2) in integral form yieldsI
S

n � u uð Þf dS ¼ � 1

q

I
S

npf dS þ
I
S

n � neff ruð Þf
� �h i

dS ð5Þ
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As we are dealing with polygonal elements, the integrals can be evaluated using
the midpoint rule over the faces of the elements to yield

X
faces

_VVf uf þ
1

q

X
faces

Sf pf �
1

q

X
faces

Sf � neffruf
� �

¼ 0 ð6Þ

The convection term in Eq. (5) is linearized by computing the convecting
flux ( _VVf¼ n�uf dS) using previous iteration values.

Starting with the first term (convection), and using a first-order upwind
discretization, we get

auuC ¼ j _VVn

f ; 0j auuNB ¼ �j � _VV
n

f ; 0j
avvC ¼ j _VVn

f ; 0j avvNB ¼ �j � _VV
n

f ; 0j
awwC ¼ j _VVn

f ; 0j awwNB ¼ �j � _VV
n

f ; 0j

In the second term (pressure gradient), a linear interpolation is used to express
the face pressure in terms of the two cell values straddling the face under concern.
With gf representing the interpolation weight,

aupC ¼ 1

q
Sf x gf aupNB ¼ 1

q
Sf x 1� gf
� �

avpC ¼ 1

q
Sf y gf avpNB ¼ 1

q
Sf y 1� gf
� �

a
wp
C ¼ 1

q
Sf z gf a

wp
NB ¼ 1

q
Sf z 1� gf
� �

The third term (stress) is rewritten in terms of an implicit orthogonal
component and an explicit nonorthogonal component, following the treatment
of Darwish [9].

Sf � neff ruð Þf
h i

¼ neff
Sf � Sf

d � Sf
uNB � uCð Þ þ neff Sf �

Sf � Sf

Sf � d
d

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

�ruf ð7Þ

The orthogonal part in Eq. (7) is written into the coefficients, while the second
part is written into the right-hand side. Thus we get

auuC ¼ nneff
Sf � Sf

d � Sf
auuNB ¼ �nneff

Sf � Sf

d � Sf

avvC ¼ nneff
Sf � Sf

d � Sf
avvNB ¼ �nneff

Sf � Sf

d � Sf

awwC ¼ nneff
Sf � Sf

d � Sf
auwNB ¼ �nneff

Sf � Sf

d � Sf
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buC ¼ nneff Tx
@u

@x

n

f
þ Ty

@u

@y

n

f

þ Tz
@u

@z

n
 !

bvC ¼ nneff Tx
@v

qx

n

f
þ Ty

qv
qy

n

f

þ Tz
qv
qz

n

f

 !

bwC ¼ nneff Tx
qw
qx

n

f
þ Ty

qw
qy

n

f

þ Tz
qw
qz

n

f

 !

The gradient ruf is evaluated from the previous field values.
We shall now write the momentum equation’s coefficient for each cell in

a way that makes the subsequent derivation of the Rhie-Chow [20] interpolation
technique clearer.

j _VVf ; 0j þ nneff
Sf �Sf

d�Sf
0 0

0 j _VVf ; 0j þ nneff
Sf �Sf

d�Sf
0

0 0 j _VVf ; 0j þ nneff
Sf �Sf

d�Sf

2
6664

3
7775 �

uC

vC

wC

2
64

3
75

þ
X
faces

�j � _VVf ; 0j � nneff
Sf �Sf

d�Sf
0 0

0 �j � _VVf ; 0j � nneff
Sf �Sf

d�Sf
0

0 0 �j � _VVf ; 0j � nneff
Sf �Sf

d�Sf

2
6664

3
7775

�
uNB

vNB

wNB

2
64

3
75þ VCrpC ¼

nneff Tx
qu
qx

n

f
þ Ty

qu
qy

n

f
þ Tz

qu
qz

n� �
nneff Tx

qv
qx

n

f
þ Ty

qv
qy

n

f
þ Tz

qv
qz

n

f

� �
nneff Tx

qw
qx

n

f
þ Ty

qw
qy

n

f
þ Tz

qw
qz

n

f

� �

2
66664

3
77775

ð8Þ

A short notation for Eq. (8) is

aC � uC þ
X
faces

aNB � uNB þ VC

q
rpC ¼ buC ð9Þ

or

uC þ a�1
C � aNB � uNB þ a�1

C � VC

q
rpC

� �
¼ a�1

C � buC ð10Þ

This leads to the momentum equation written in operator form.

uC þHCðuÞ þDC � rpC ¼ ~bb
u

C ð11Þ
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3.2. Discretization of the Continuity Equations

The continuity equation (1) in integral form readsI
S

n � u dS ¼ 0 ð12Þ

Again integrating over the faces of our element yieldsX
faces

uf � Sf ¼ 0 ð13Þ

uf represents the face value of the velocity field. In a staggered grid, this would
be obtained directly from the algebraic form of the momentum equations. In
a collocated framework, the velocity at the face is obtained by reconstructing
a pseudo-momentum equation at the face. This is basically the function of the
Rhie-Chow interpolation [20]. We shall start from Eq. (11):

uf þHf ðuÞ þDf � rpf ¼ ~bb
u

C ð14Þ

where the tensor Df(u) at a cell face is assumed to be approximately the adjacent
cells’ value of D interpolated to the face.

Df ðuÞ � Df ðuÞ ð15Þ

Making the same assumption for the Hf(u) operator gives

Hf ðuÞ � Hf ðuÞ � �uf �Df � rpf þ ~bb
u

C ð16Þ

Substituting into Eq. (11) we get

uf � uf �Df � rpf þDf � rpf ¼ ~bb
u

C � ~bb
u

C|fflfflfflffl{zfflfflfflffl}
�0

ð17Þ

or the more standard form

uf ¼ uf �Df � ðrpf �rpf Þ ð18Þ

Substituting this equation into the continuity equation (1), we get

X
faces

Sf � uf �Df � rpf �rpf

� �h i
¼ 0 ð19Þ

The velocity part of Eq. (19) yields the following implicit coefficients:

apuC ¼ Sf x 1� gf
� �

apuNB ¼ Sf x gf

apvC ¼ Sf y 1� gf
� �

apvNB ¼ Sf y gf

apwC ¼ Sf z 1� gf
� �

apwNB ¼ Sf z gf
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The implicit pressure gradient part is discretized similar to the viscous term of
the continuity equations (6); the interpolated pressure gradient part is treated purely
explicitly. Again, sublooping will lead to a converged solution of the system. Note
that the Rhie-Chow diffusion part will not vanish completely for a converged
solution, since the terms are not discretized equally. However, with decreasing mesh
size the remainder tends to zero.

Since the method is based on unstructured grids, the implicit pressure gradient
has to be split into an implicit part along the line connecting two neighboring cell
centroids and a correction part that has to be evaluated explicitly,

�Sf �Df � rpf ¼ �Sf �Df � Sf

d � Sf
pNB � pCð Þ

� Sf �Df �
Sf �Df � Sf

d � Sf
d

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

�rpf

auuC ¼ Sf �Df � Sf

d � Sf
auuNB ¼ �Sf �Df � Sf

d � Sf

bpC ¼ N � rpf

ð20Þ

The explicit pressure gradient of Eq. (19) yields

bpC ¼ �SfDf � rpf

A more detailed description of the Laplacian discretization for unstructured,
nonorthogonal, collocated grids is given by Muzaferija [21] and by Ferzinger [22].

The obtained discretized block coupled system of equations now contains
extradiagonal elements, for both diagonal and off-diagonal block coefficients. For
the sake of brevity the block coefficients are written down such that a surface
integration over a cell is assumed, the cell C sharing its faces with neighboring cells
NB. Like this, the block coefficients aC are directly added to the diagonal block
coefficient array, whereas the neighboring block coefficients aNB are injected into the
off-diagonal block coefficient arrays.

Equation (21) shows the resulting block coefficient filling.

auuC auvC auwC a
up
C

avuC avvC avwC avpC
awuC awvC awwC awpC
apuC apvC apwC appC

2
6664

3
7775 �

uC

vC

wC

pC

2
6664

3
7775þ

X
faces

auuNB auvNB auwNB aupNB

avuNB avvNB avwNB a
vp
NB

awuNB awvNB awwNB awpNB

a
pu
NB a

pv
NB a

pw
NB a

pp
NB

2
6664

3
7775 �

uNB

vNB

wNB

pNB

2
6664

3
7775¼

buC
bvC
bwC
bpC

2
6664

3
7775 ð21Þ

4. BOUNDARY CONDITIONS

The most common boundary conditions such as the von Neumann or Dirichlet
boundary conditions for single primitive variables are implemented identically to
those in segregated algorithms. Boundary conditions that act on various primitive
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variables at a time, such as the total pressure boundary condition or a wall boundary
condition, have to be treated implicitly in order to preserve the benefit of block
coupling. Derivations of such boundary conditions can be found in [9, 23].

5. LINEAR SOLVER

Once the partial differential equations have been discretized and assembled
into the sparse block matrix structure, they are ready to be solved. It is essential that
the equations are solved efficiently, since the matrix system contains 16 times the
number of entries than result from the discretization of one equation on the same
mesh. This means that a linear solver that does not scale linearly with the number
of cells would drastically affect the overall convergence, and the gain that we wish
to obtain from block coupling would be basically offset.

Multigrid methods as introduced by Federenko [24], Poussin [25], or Brandt [26]
are considered to be among the most efficient techniques for the numerical solution of
partial differential equations. The basic idea of the multigrid approach is to diminish
not only high-but also low-frequency errors efficiently through restricting the problem
to coarser grids. For unstructured grids, algebraic multigrid methods are very well
suited because by definition no specified mesh structure is needed for the restriction.
In the given work the authors implemented an algebraic multigrid solver based on
the additive correction approach of Hutchinson [27] or Keller [28], and
a preconditioned block-ILU is used as a smoother in the multigrid cycle (see Figure 1).

Details on an efficient implementation of a multigrid block solver can be found
in [9]. Also note that the turbulence equations are solved with the same multigrid
solver, although no interequation coupling is employed for the turbulence equations.

6. THE SOLUTION PROCEDURE

While the multigrid solver is used to solve the linearized system of equations,
an outer loop is needed to resolve the nonlinearities in these equations, this iteration
process can be outlined as follows [9].

1. Initialize values for volume flux _VV (n), pressure p(n), and velocities u(n).
2. Assemble source and matrix coefficients for momentum equations.
3. Evaluate the D tensor field from momentum equations’ matrix coefficients.
4. Assemble source and matrix coefficients for continuity equation.
5. Solve simultaneously for pressure p(nþ1) and velocities u(nþ1).
6. Solve the turbulence equations sequentially and adapt the kinematic turbulent

viscosity nt.
7. Extract volume flux _VV (nþ1) from continuity equation.
8. Return to step 1 and loop until convergence.

7. RESULTS

The performance of the fully coupled solver is evaluated in four test problems,
and comparisons to a SIMPLE-C solver by Mangani [15] are presented. The first

8 L. MANGANI ET AL.



case is that of the NACA 0012 test problem. It is used to establish the accuracy of
the solver by comparing its results with experimental data. The next test problem
is a backward-facing step problem (Section 7.2) that is part of the test cases that
are bundled with openFOAM. The third test case is an industrial-size test problem
(Sections 7.3) used to demonstrate the computational performance and scalability
of the coupled solver as compared to that of the segregated solver. Finally, an
industrial test case, namely, a Pelton distributor (Section 7.4), is selected to evaluate
the performance of the coupled solver with very large mesh domains.

In all the above test cases the root mean square (RMS) residuals for each
field are evaluated as

RMSð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼0

res½/ðiÞ�=a//C
n o2

s
maxð/; 0Þ �minð/; 0Þ ð22Þ

7.1. NACA 0012 Airfoil

The numerical studies were carried out based on measurement values of the
flow field around a NACA 0012 airfoil section with a rounded (body of revolution)
wing tip, based on the work of Dacles-Mariani et al. [29]. The detailed experimental
results of these studies have been used to develop turbulence models more tuned
to reflect the increased production of turbulent kinetic energy accompanied with
rotating flows as for the case of wingtip vortices.

The wing has a 1.22m chord length and a semispan of 0.91m. Complete
geometry including the walls of the wind tunnel is given in Figure 2a. Distances
are given in terms of chord length for generality. The mesh was built in agreement
with the restrictions of the low-speed wind tunnel used during the measurements.
To better investigate the development of the wingtip vortices, the domain was
extended behind the trailing edge, as can be seen from Figure 2c An O-grid was used
around the airfoil and the complete computational domain is built up as a structured
grid. A detail of the grid around the airfoil is given in Figure 2b. The complete mesh
consists of approximately 1.5 million hexahedral cells. For the boundary conditions,
a uniform Dirichlet field was applied to the inlet, where a turbulence length scale and
a turbulence intensity were prescribed for the turbulence quantities. A von
Neumann-type boundary condition was applied for the pressure at the inlet as well

Figure 1. Multigrid cycle with restriction, prolongation and pre=post smoothing.
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as for velocities and turbulence quantities at the outlet. For the pressure field
at the outlet a uniform field was applied. The density of the fluid is set to 1.225 kg=
m3 and kinematic viscosity is 1.46e� 05m2=s. The performance of the coupled and
segregated solvers in terms of computational time is shown in Table 1 and Figure 3.
The runs were stopped at a specified RMS convergence threshold of 1e� 5.

Different numerical schemes and turbulence models have been used to investi-
gate the influence on wingtip vortices. A converged solution is given in Figure 4,
including the two evaluation planes. The first evaluation plane is placed right at
the position of the trailing edge, the second on 24% of chord length downstream.
Figure 5 shows the mentioned wingtip vortex, and the eddy-viscosity ratio is plotted
on the evaluation planes. To compare simulation and experimental data, a cross-flow
velocity was computed, defined as U crosssflow ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ w2

p
=U Inlet.

7.2. Backward Facing Step

The backward-facing step test case was chosen to demonstrate the good
scalability of the outlined solver with respect to the number of grid cells. The geo-
metry of the test case can be seen in Figure 7. The test case has been carried out
with three different grid sizes. For all grid sizes the same flow field has been obtained
for both the block coupled and the segregated algorithm. The difference in
performance and scalability is outlined in Table 2. The runs have been stopped at
a specified RMS convergence threshold of 1e� 5.

From Table 2 it can clearly be seen that the block coupled algorithm outperforms
the segregated algorithm in terms of convergence speed. More important, the backward-
facing step test case proves the superiority of the coupled solver over the segregated

Figure 2. Experimental setup (a), computational grid (b), and computational domain (c).

Table 1. Performance comparison of the coupled (C) and segregated (S) solvers

# CV (C) time [s] (C) time=CV [s] (S) time [s] (S) time=CV [s] S=C

1,552 k 1,775.44 0.001144 34,459.20 0.022209 19.41

10 L. MANGANI ET AL.



solver with respect to scalability with increasing grid size. In Figure 6 a scaling factor
is plotted as a function of the grid size in order to show the superiority of the coupled
solver over the segregated one. It can be seen that the coupled solver scales almost
linearly, whereas the segregated solver’s convergence behavior deteriorates a lot
with increasing mesh sizes.

Scale factor ¼ time=c:v:ð ÞnCells
time=c:v:ð Þref

ð23Þ

Figure 7 compares the velocity profiles at the indicated position of the coupled
and the segregated approach. The small difference of the flow field is related to
a slightly different boundary treatment.

With respect to convergence behavior, the coupled solver shows a smooth
and steady convergence with a very good convergence rate. In Figure 8 it can be seen

Figure 3. Convergence histories for NACA 0012 airfoil test case: segregated (S), dotted lines; coupled (C),

full lines.

Figure 4. Wing-tip vortex.

NOVEL FULLY COUPLED SOLVER IN OPENFOAM 11



Figure 5. Comparison of Ucrossflow in spanwise direction pos. 0% span (a) and pos. 24% span (b).

Table 2. Backward-facing step: performance comparison of the coupled (C) and segregated (S) algorithms

# CV (C) time [s] (C) time=CV [s] (S) time [s] (S) time=CV [s] S=C

12 k 4.3 0.000351 32.5 0.002653 7.6

48 k 24.1 0.000493 393.7 0.008051 16.3

195 k 139.9 0.000715 5,888.0 0.030102 42.1

Figure 6. Backward-facing step: mesh-size scaling.
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that the segregated solver, on the other hand, converges slowly, and its convergence
shows fluctuating behavior. These fluctuations of the outer iterations, which arise
from the weak variable coupling, are considered to be a sign of bad robustness.

7.3. Draft Tube

Draft tubes are very huge constructional elements that are placed behind
hydraulic turbines in order to minimize efficiency losses at the turbine runners outlet
by decreasing there the static pressure using a diffuser. Hence, the draft tube test case
is a particularly difficult test case, because of its diffuser characteristic, which leads to
flow detachment at its separation pier. The geometry, showed in Figure 9, has sharp
edges and the mesh contains highly skewed cells at the butt of the pier. At the inlet
a swirling flow is prescribed, meaning that not only a nonuniform axial velocity field
is prescribed, but also a circumferential field that accounts for the preswirl generated
by a thought turbine runner. For the pressure a Neumann boundary condition is set
at the inlet. The turbulence quantities at the inlet are chosen to be uniformly constant
for the sake of simplicity. At the outlet a Neumann condition is used for the velocity
and turbulence quantities and a constant Dirichlet field is applied for the pressure.
At the walls, blended wall functions are used to evaluate the shear stress accordingly.

The difference in performance and scalability is outlined in Table 3. The
run times have been evaluated at a specified RMS convergence threshold of 1e–5.
The segregated method seems not to attain this convergence level for the finest grid,

Figure 7. Velocity profiles at line indicated in black.
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Figure 8. Convergence histories for backward-facing step test case: segregated (S), dotted lines; coupled

(C), full lines.

Figure 9. Computational grid of draft tube test case.
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or only very slowly. Table 3 indicates that the coupled solver converges much faster
than its segregated counterpart and that the segregated solver is being outperformed
in terms of scaling.

Astonishingly, the mesh size scalability is even sublinear for the draft tube test
case (see Figure 10). The reason for this overperformance is due to extremely skewed
cells in the butt region of the pier (see Figure 9). Since the quality of the mesh
is increased with an increasing number of cells, the convergence rate also seems
to increase for finer meshes.

Figure 11 illustrates the good performance of the coupled approach compared
to the segregated approach. For the fine-mesh configuration, the segregated solver’s
convergence rate almost stalls.

The velocity contour plot of a slice through the draft tube shows very
similar flow patterns (see Figure 12). The differences again arise from the alternate
boundary treatment, which leads to slightly different detachment positions.

7.4. Pelton Distributor

The function of a Pelton turbine distributor is to distribute water coming
from a high-altitude basin to a couple of injector nozzles that will continuously apply

Table 3. Draft tube: performance comparison of the coupled (C) and segregated (S) algorithms

# CV (C) time [s] (C) time=CV [s] (S) time [s] (S) time=CV [s] S=C

232k 535.9 0.002304 1,342.2 0.005771 2.50

491 k 988.6 0.002013 3,656.7 0.007447 3.70

1,090 k 1,997.0 0.001831 x x x

Figure 10. Draft tube mesh-size scaling.
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Figure 11. Convergence histories for draft tube test case: segregated (S), dotted lines; coupled (C), full lines.

Figure 12. Velocity contour plot of draft tube test case: (S) left; (C) right.
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jets of water to a Pelton turbine runner. The flow in Pelton turbine distributors is
very demanding for CFD applications, because plenty of detachment zones exist,
when can lead to difficulties in convergence for steady-state flow. That is, there
are flow detachment areas at the beginning of the distributor’s injectors, and further-
more, the grid contains highly skewed cells at the bifurcations (see Figure 13). The
Pelton distributor test case is evaluated with two different mesh sizes in order to

Figure 13. Pelton distributor.

Table 4. Pelton distributor: Mesh-size scaling of the coupled (C) algorithm

# CV (C) time [s] (C) time=CV [s]

2,726 k 2,932 0.001075

6,253k 6,068 0.000970

Figure 14. Pelton distributor mesh-size caling.
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investigate the mesh size scaling properties of the coupled solver. The mesh sizes are
computationally quite demanding (with 2.7 and 6.3 million cells, respectively).

The difference in performance compared to the benchmark solver is outlined in
Table 4. The run time has been evaluated at a specified RMS convergence threshold
of 1e–5.

Table 4 and Figure 14 demonstrate again that the coupled solver scales
excellently with increasing numbers of cells, even for very big meshes. As was the
case for the draft tube (Section 7.3), the coupled solver even over-performs, since
the time per control volume for the bigger-mesh case is even smaller than for
the smaller-mesh case. However, for the fine-grid case, the coupled algorithm
experiences a slowdown in convergence rate, after passing the 1e� 5 threshold of the
RMS residuals (see Figure 15).

7.5. Test Case Summary

In order to summarize the obtained results, Table 5 outlines once again the
coupled solver’s good performance and mesh size scalability.

Figure 15. Convergence history for Pelton distributor test case (2.726 k cells).

Table 5. Test case summary of mesh-size scaling for coupled (C) and segregated (S) algorithms

Test case Grid incr. factor (C) time=CV [s] (S) time=CV [s] S=C

NACA 0012 1 0.001144 0.022209 19.41

Backward-facing step 1 0.000351 0.002653 7.6

4 0.000493 0.008051 16.3

16 0.000715 0.030102 42.1

Draft tube 1 0.002304 0.005771 2.50

2.12 0.002013 0.007447 3.70

4.70 0.001831 x x

Pelton distr. 1 0.001075 x x

2.29 0.000970 x x
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8. CONCLUSION

A pressure-based, fully implicit coupled solver was developed and implemented
within the OpenFOAM framework. The coupled solver demonstrated substantially
improved performance in terms of CPU and iterations to convergence compared
to segregated algorithms. Additionally, its smoother RMS residuals convergence
history is a good indicator of its robustness. The fully implicit pressure–velocity
coupling needs to iterate to resolve the nonlinear part of the equations; this is
different from the segregated algorithms; which need to resolve both the nonlineari-
ties in the equations and the pressure–velocity coupling that is treated explicitly.

Just as important, it was shown that the coupled solver has good scalability
with increasing mesh sizes in terms of computational time to convergence. This is
a clear advantage over segregated algorithms, especially when dealing with the large
meshes that arise in industrial-size cases. The qualitative results have been shown
to be almost identical for both approaches, with minor differences, mainly due
to a different treatment of the boundary conditions.
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