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A COMPARATIVE ASSESSMENT WITHIN A MULTIGRID
ENVIRONMENT OF SEGREGATED PRESSURE-BASED
ALGORITHMS FOR FLUID FLOW AT ALL SPEEDS

M. Darwish, D. Asmar, and F. Moukalled
Faculty of Engineering & Architecture, Mechanical Engineering Department,
American University of Beirut, Beirut, Lebanon

This article deals with the evaluation of six segregated high-resolution pressure-based

algorithms, which extend the SIMPLE, SIMPLEC, PISO, SIMPLEX, SIMPLEST, and

PRIME algorithms, originally developed for incompressible flow, to compressible flow simu-

lations. The algorithms are implemented within a single grid, a prolongation grid, and a full

multigrid method and their performance assessed by solving problems in the subsonic,

transonic, supersonic, and hypersonic regimes. This study clearly demonstrates that all

algorithms are capable of predicting fluid flow at all speeds and qualify as efficient

smoothers in multigrid calculations. In terms of CPU efficiency, there is no global and

consistent superiority of any algorithm over the others, even though PRIME and SIM-

PLEST are generally the most expensive for inviscid flow problems. Moreover, these two

algorithms are found to be very unstable in most of the cases tested, requiring considerable

upwind bleeding (up to 50%) of the high-resolution scheme to promote convergence. The

most stable algorithms are SIMPLEC and SIMPLEX. Moreover, the reduction in compu-

tational effort associated with the prolongation grid method reveals the importance of initial

guess in segregated solvers. The most efficient method is found to be the full multigrid

method, which resulted in a convergence acceleration ratio, in comparison with the single

grid method, as high as 18.4.

INTRODUCTION

The multigrid method, initially developed for the solution of elliptic partial
differential equations [1–3] for which near-optimum convergence characteristics have
been demonstrated (i.e., computational time directly proportional to grid size [4, 5]),
has gained wide acceptance within the computational fluid dynamics (CFD) com-
munity and has become an essential acceleration technique for solving industrial-
type flow problems [6–13]. Multigrid strategies for the incompressible Navier-Stokes
equations using pressure-based methods, such as SIMPLE [14], as smoothers have
shown substantial increase in convergence rate and improvement in overall
robustness for both staggered [15, 16] and collocated [17–20] grids. In these

Received 23 April 2003; accepted 11 June 2003.

The financial support provided by the University Research Board at the American University of

Beirut is gratefully acknowledged.

Address correspondence to M. Darwish, American University of Beirut, Mechanical Engineering

Department, P.O. Box 11-0236, Beirut, Lebanon. E-mail: darwish@aub.edu.lb

Numerical Heat Transfer, Part B, 45: 49–74, 2004

Copyright # Taylor & Francis Inc.

ISSN: 1040-7790 print/1521-0626 online

DOI: 10.1080/1040779049025487

49



algorithms, a pressure-correction equation is used to enforce mass conservation by
correcting both the pressure and the momentum satisfying velocity field. Moreover,
being elliptic in nature, the use of a multigrid technique in solving the incompressible
pressure-correction equation [21] is expected to decrease the computational time in
comparison with a single-grid method. This elliptic form is very different from the
hyperbolic form assumed by the equation when derived for all-speed compressible
flows [22, 23]. Nevertheless, multigrid methods have been successfully employed in
the simulation of high-speed compressible flows, with density-based algorithms as
smoothers [24, 25].

In density-based methods, the continuity equation acts as an equation for
density, while pressure is obtained from the energy and state equations. This means
that for low-Mach-number flows, as small disturbances in density may result in large
variations in the pressure field, density-based algorithms become unstable and their
convergence rate greatly diminishes. Despite the extension of this class of algorithms
to predicting incompressible flows through the use of the so-called pseudo or arti-
ficial compressibility techniques [26–28], the difficulties encountered in efficiently
avoiding the stiff solution matrices generated by these methods have led to the
extension of pressure-based algorithms to this class of flows [22, 23, 29–33], thus
encompassing the entire subsonic-to-hypersonic spectrum. In pressure-based all-
speed flow algorithms the pressure-correction equation contains an advection term
whose effect dominates the other terms in the equation for supersonic and hyper-
sonic flows, while for transonic flows its effect increases with the Mach number. This
subtle change in the nature of the equation from elliptic to hyperbolic does affect the
performance of multigrid methods.

NOMENCLATURE

aFP ; a
F
E ; . . . Coefficients in the discretized

equation for f
bfP source term in the discretized

equation for f
Cr Coefficient equals to 1=RT

d distance vector between a coarse and

a fine grid point

D½f� D operator

h enthalpy

H½f� H operator

H½f� vector form of the H operator

IHh restriction operator

IhH prolongation operator

P pressure

Qf source term in the conservation

equation for f
rh residuals on grid size h

R gas constant

Sf surface vector

T temperature

u; v velocity components in the x and y

directions

v velocity vector (¼ uiþ vj)

b thermal expansion coefficient

Gf diffusion coefficient for f
D½f� D operator

m viscosity

r density

f dependent variable

ff scalar value at cell face f

F dissipation term in energy equation

O cell volume

Subscripts

f refers to control-volume face f

NB refers to neighbors of grid point P

P refers to the grid point P

Superscripts

f refers to dependent variable

� refers to the updated value at the

current iteration
0 refers to correction field
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The aim of this article is to evaluate the performance of a number of high-
resolution (HR) pressure-based all-speed flow algorithms as smoothers in a multigrid
framework. In addition to the all-speed flow algorithms based on SIMPLE [14],
SIMPLEC [34], PISO [35], and SIMPLEST [37], two all-speed flow algorithms,
based on SIMPLEX [36] and PRIME [21], are also implemented and tested for the
first time in solving high-Mach-number flows. To this end a set of problems ranging
from subsonic to hypersonic flows is solved on increasingly finer grids using the
above algorithms with a single-grid (SG), a prolongation grid (PG), and a full
multigrid (FMG) methodology.

In what follows the governing equations for compressible flow are presented
and their discretization outlined. This is followed by a brief description of all-speed
pressure-based algorithms and their treatment within a multigrid framework.
Finally, test problems are introduced and results discussed.

THE GOVERNING EQUATIONS

The equations of motion for steady compressible viscous flow in conservative
form are:
Conservation of mass:

H:ðrvÞ ¼ 0 ð1Þ

Conservation of momentum:

H:ðrvvÞ ¼ �HPþ H � t ð2Þ

where

t ¼ m Hvþ HvT
� �

� 2

3
m H � vð ÞI ð3Þ

Conservation of energy:

H:ðrvhÞ ¼ H � kHTð Þ þ bT H � Pvð Þ � PH � vð Þ½ � þ Ff g ð4Þ

where

F ¼ m 2
qu
qx

� �2

þ qv
qy

� �2
" #

þ qu
qy

þ qv
qx

� �2

� 2

3
H:vð Þ2

( )
ð5Þ

An adequate manipulation of these equations allows their representation in a unified
equation of a general scalar variable f as follows:

H � rvfð Þ ¼ H � GfHf
� �

þQf ð6Þ

The equation of state for an ideal gas is written as

r ¼ P

RT
¼ CrP ð7Þ
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THE DISCRETIZATION PROCEDURE

Discretization of the Transport Equations

The discretization of the momentum and energy equations using the finite–
volume method is detailed in [22] and therefore only an outline of the procedure is
given here. The first step consists of integrating the general equation over a differ-
ential control volume to yieldZ

O
H � rvfð Þ dO ¼

Z
O
H � GfHf

� �
dOþ

Z
O
Qf dO ð8Þ

Using the divergence theorem, the convection and diffusion volume integrals are
transformed into surface integrals to giveI

qO
rvfð Þ � dS ¼

I
qO

GfHf
� �

� dSþ
Z
O
Qf dO ð9Þ

Employing the midpoint integration rule, the surface integral about the cell faces is
set equal to a summation of fluxes at the cell faces centers, while the volume integral
is evaluated at the cell center. Thus, Eq. (9) becomesX

�faces

rv � Sð Þf� GfHf � S
� �

¼ QO ð10Þ

These fluxes are then related to the values at the cell centers and their neighboring
nodes by using a suitable interpolation profile in a local coordinate direction (a high-
resolution scheme applied within the context of the NVSF methodology [38]).
Substitution of the interpolation profiles into Eq. (10) gives the final form of the
discretized equation as

afPfP þ
X
NBðPÞ

afNBfNB ¼ bfP ð11Þ

where fP is the value of f at the main grid point P, NB designates the neighbors of
P (i.e., north, south, east, and west), and bfP includes the original source term, the
deferred-correction treatment of the high-resolution advection fluxes, and the
nonorthogonal diffusion fluxes. For later use Eq. (11) can either be written as

fP ¼ H f½ � þ B ð12Þ

where

H f½ � ¼
�
P

NBðPÞ a
f
NBfNB

aP
B ¼ bP

aP
ð13Þ

or, using matrix notation, as

a fð Þf ¼ b fð Þ ð14Þ
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In a similar manner, the algebraic relation for the momentum equation can be
written as

v ¼ H v½ � þ B�DHP ð15Þ

where the pressure gradient term is treated explicitly and separated from other
sources, and D is

D ¼
O=aup 0

0 O=avp

" #
ð16Þ

Discretization of the Continuity Constraint

As is clear from Eqs. (1–4), there is no explicit equation for pressure, thus a
pressure or pressure-correction equation has to be derived using a combination of
the continuity and momentum equations. The continuity equation for some velocity
field v� and density field r� is written as

H � r�v�ð Þ ¼ 0 ð17Þ

However, in the above equation the equality is not satisfied because generally the
velocity field obtained by solving the momentum equations using some guessed
pressure P� does not satisfy continuity. It is only at convergence that the continuity
and momentum equations are satisfied simultaneously. Thus corrections are sought
to the velocity, pressure, and density fields to enforce conservation of both mass and
momentum equations. Denoting the corrections by v0;P0, and r0, one can write

H � r� þ r0ð Þ v� þ v0ð Þ½ � ¼ 0 ð18Þ

or

H � r�v0 þ v�r0 þ r�v� þ r0v0ð Þ ¼ 0 ð19Þ

where now the corrected fields given by

v ¼ v� þ v0; P ¼ P� þ P0; and r ¼ r� þ r0 ð20Þ

satisfy the mass conservation equation.
Noting that

r ¼ P

RT
¼ CrP ð21Þ

the correction for density can be written as

r0 ¼ CrP
0 ð22Þ

The relation between velocity and pressure corrections can be derived by considering
the following discretized form of the momentum satisfying velocity field v�,

v� ¼ H v�½ � þ B�DHP� ð23Þ
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and the continuity and momentum satisfying fields:

v ¼ H v½ � þ B�DHP ð24Þ

Subtracting Eq. (23) from Eq. (24) yields:

v0 ¼ H v0½ � �DHP0 ð25Þ

Substitution in Eq. (18) gives the pressure-correction equation as:

H � r� þ r0ð Þ v� þ H v0½ � þ �DHP0½ �ð Þf g ¼ 0 ð26Þ

or, using Eq. (22), as:

H � r� H v0½ � �DHP0
� �

þ v�Cr
� �

f
P0

� �
¼ �H � r�v�ð Þ þ r0v0ð Þð Þ ð27Þ

The segregated algorithms differ in the treatment of the underlined term [22]. Not-
withstanding these differences, the pressure-correction equation becomes

H � v�CrP
0� �
� H � r�DHP0ð Þ ¼ �H � r�v�ð Þ � H � r�H v0½ �

� �
� H � r0v0ð Þ ð28Þ

The first term on the left-hand side of Eq. (28) is an advection term, while the second
one is the standard elliptic term of the incompressible pressure-correction equation.
The last term on the right-hand side is usually neglected, as it is small in comparison
with other terms, while depending on the algorithm used, approximations are
introduced to the underscored term, as detailed in [22]. None of these approxima-
tions, however, affects the final solution, since at convergence H v0½ � is zero.

The Rhie-Chow Interpolation

The discretization of Eq. (28) yields:X
�faces

v�CrP
0� �
f
�Sf þ

X
�faces

r�DHP0ð Þf�Sf ¼ �
X
�faces

r�v�ð Þ � Sf � ::: ð29Þ

For collocated variables, the interpolation of the velocity to the cell faces in the
above equation is not trivial: a simple linear interpolation leads to the well-known
checkerboard problem [39]. To overcome this difficulty a special interpolation pro-
cedure, known as Rhie-Chow interpolation [40], has to be used to enforce the proper
coupling between the pressure and velocities. What the Rhie-Chow interpolation
achieves is basically a virtual re-formulation of the momentum Eq. (15) at cell faces,
which is accomplished by interpolating the coefficients H[ ], D, and B at all the cell
faces from the cell values either following the momentum-weighted interpolation
method (MWIM) [41],

v�f ¼ Hf v�f

h i
þ Bf �DfHP�

f ð30Þ

or the pressure-weighted interpolation method (PWIM) [40],

v�f ¼ v�f �Df HP�
f � HP�

f

� �
þ Bf � Bf

� �
ð31Þ
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where the overlined coefficients are obtained by linear interpolation from their cell
equivalents (the reader is referred to [22] for details).

The Pressure-Correction Equation

Expansion of Eq. (29) yields the final algebraic form of the pressure correction
equation as:

aPP
0
P þ

X
NBðPÞ

aNBP
0
NB ¼ b0P ð32Þ

The P0 field obtained from the solution of this equation is then used in the correction
of the velocity, density, and pressure fields.

The overall algorithm for pressure-based methods can now be summarized as
follows. The Navier-Stokes equations in their algebraic forms are solved sequen-
tially. First, the momentum equations are assembled and solved by treating the fields
of pressure, mass fluxes, and energy as known. Second, the modified continuity
equation is employed to calculate a pressure-correction field that is used to force the
velocity and density fields to satisfy mass conservation. Then the energy equation is
solved and the sequence of events repeated until convergence, which is achieved
when the normalized residuals fall below a prescribed value.

THE MULTIGRID METHOD

The procedure described in the previous section applies to a single-grid method
whose convergence rate is high during the very first iterations but then stalls
thereafter, and the situation gets worse on finer grids. This behavior is attributed to
the smoothing property [42] of the algorithm, which is efficient in removing only
the high-frequency (short-wavelength) Fourier components of the error. The low-
frequency components, which have long wavelength compared to the grid spacing,
are not properly resolved. This is clearly noticed when using any of the solvers on
progressively denser grids, in which case the convergence rate decreases more rapidly
on the finer grids. This behavior is attributed to the fact that on increasingly finer
grids, the portion of the low-frequency error components increases. The performance
of these algorithms can thus be substantially improved by combination with the
multigrid method.

In the multigrid approach the high-frequency errors are initially eliminated on
the finest grid, then, when the convergence rate degrades, the process is repeated on a
coarser grid, where part of the low-frequency-component errors of the finer grid are
transformed into high-frequency error components on the coarser grid that can be
efficiently removed. This step is recursively applied on coarser grids, and more of the
error components are reduced. Results are then interpolated back from coarser to
finer grids. It is clear that for multigrid methods what is needed is a good smoother,
i.e., a scheme that is capable of efficiently attenuating the high-frequency error. This
is contrary to the single-grid method, in which a solver that can attenuate lower-
frequency errors is needed, even at the cost of a degradation of efficiency in dealing
with high-frequency errors.
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Prolongation and Restriction

Any multigrid method relies on two important notions: restriction and pro-
longation. Restriction, denoted by IHh , defines the manner in which the variables are
transferred from a fine to a coarse grid, while prolongation, denoted by I hH, applies to
the transfer of the variable and to the transfer of corrections from a coarse to a fine
grid. Another deciding factor is the cycling, i.e., the sequence of prolongation and
restriction that occur during the multigrid iterations.

In the restriction step the coarse-grid variables are computed from the fine grid
values as:

~ffH ¼ IHh fhð Þ ¼ 1

4

X
i¼1�4

fhi þ Hfhi � dhiH
� �

ð33Þ

the tilde, ˜ , indicates a restricted value on the coarse grid.
The prolongation can be applied to the solution fields of the coarse grid, or to

the field corrections. The first case is used when the solution of the coarse grid is to
be used as an initial guess for the fine grid, while the second case is used when the
solution of the coarse grid is to be used to correct the fine-grid fields, i.e., to remove
some of the low-frequency errors on the fine grid. For the first case the prolongation
takes the form:

fhi ¼ I hH fH½ � ¼ fH þ HfH � dHhi ð34Þ

while for the second case it takes the form:

f0
hi
¼ I hH f0

H

	 

¼ f0

H þ Hf0
H � dHhi ð35Þ

where

f0
H ¼ fH � ~ffH ð36Þ

The Multigrid Correction Process

An exact solution of the discretized equations for variable f¼ (v,P, h, . . . )
satisfies the equation:

ahfh ¼ bh ð37Þ

where the subscript h indicates that the equation is solved on the fine grid h.
After several outer iterations on the whole set of equations (as explained

previously), an approximate solution f�
h is obtained which satisfies Eq. (37) to a

residual rh, defined as:

rh f�
h

� �
¼ bh f�

h

� �
� ah f�

h

� �
f�
h ð38Þ

where bh f�
h

� �
and ah f�

h

� �
are approximations to bh and ah based on the approximate

solution f�
h. Subtracting the above two equations, one gets:

ahfh ¼ bh þ a�h f�
h

� �
f�
h � b�h f�

h

� �
þ rh f�

h

� �
ð39Þ
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Restriction of this equation to the coarse grid leads to the following fundamental
coarse-grid, full approximation scheme equation:

IHh ahfh½ � ¼ IHh bh½ � þ IHh a�h f�
h

� �
f�
h

	 

� IHh b�h f�

h

� �	 

þ IHh rh f�

h

� �	 

ð40Þ

which also can be written as:

aHfH ¼ bH þ a�H IHh f�
h

	 
� �
IHh f�

h

	 

� b�H IHh f�

h

	 
� �
þ IHh rh f�

h

� �	 

ð41Þ

or, after simplification, as:

aHfH ¼ bH þ a�H
~ff�
H

� �
~ff�
H � ~bb�H

~ff�
H

� �
þ ~rrH ð42Þ

where now aH, fH, and bH are approximations to the exact values of ah, fh, and bh,
respectively, and are computed on the coarse grid H, while ~ff�

H,
~bb�H, and ~rrH are the

restricted vector values of f�
h, b

�
h, and rh, respectively, on the coarse grid H.

Once Eq. (42) is solved on the coarse mesh, the correction defined in Eq. (35) is
prolonged rather than the solution, and the fine-grid solution is corrected using the
formula:

fh ¼ fh þ I hH f0
H

	 

¼ fh þ f0

H þ Hf0
H � dHh

� �
ð43Þ

This is needed to ensure that when rh ¼ 0, i.e., when the fine-grid solution is satisfied,
the prolonged coarse-grid correction is also zero.

The two-grid multigrid cycle explained above can be applied recursively
through sequences of grid levels. There are different strategies to control the intergrid
transfer, which may depend on dynamic criteria such as residual reduction rate or
can be initiated following a prescribed numbers of iteration sweeps. In this study the
second approach, in which the number of pre- and postsmoothing relaxation sweeps
is assigned a priori, is adopted in combination with a V-cycle (Figure 1b). Moreover,
as it is relatively much cheaper to compute an initial solution on a coarser mesh and
then prolong it to the finer mesh, the current iteration procedure starts on the
coarsest grid. After convergence, the solution is prolonged to the next finer grid to be
used as an initial approximation. Then a V-cycle (Figure 1b) is initiated on this level.
The procedure is repeated consecutively until the finest grid level is reached, where
conventional multigrid V-cycle begins. The sequence of operations is as follows.

1. Start with an initial guess on the coarsest grid and iterate to convergence.
2. Prolong solution to the next fine-grid to use it as an initial guess.
3. Apply a number of V-cycles on the fine grid to get the solution.
4. Repeat steps 2 and 3 until a converged solution on the finest grid is

obtained.

In addition to the full multigrid strategy, the prolongation grid approach is
also tested. This approach differs from the FMG method in that the solution moves
in one direction from the coarse to the fine grids with the initial guess on level nþ 1
obtained by interpolation from the converged solution on level n. As such, the
acceleration over the single-grid method obtained with this approach is an indication
of the effect of initial guess on convergence.
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Figure 1. (a) Prolongation and restriction. (b) Full multigrid algorithm cycles. (c) Converging-diverging

nozzle test problem.
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RESULTS AND DISCUSSION

The validity of the above-described procedure is demonstrated in this section
by presenting solutions to the following test cases: (1) subsonic and hypersonic flow
in a converging diverging nozzle; (2) subsonic, transonic, and supersonic flow over a
bump; and (3) transonic flow over an airfoil. The problems are solved using the
single grid (SG), prolongation grid (PG), and full multigrid (FMG) methods. With
the prolongation grid and full multigrid methods, four grid levels are used for all
results presented here. Experimentation with more grid levels did not show any
noticeable difference. For all problems, results obtained are verified by comparison
against values reported in previous publications [43, 44]. This is followed by a per-
formance comparison of the different pressure-based algorithms in terms of number
of iterations and CPU time to reach the desired level of convergence. In the con-
vergence history plots, residuals are displayed on the finest grid level. Moreover, the
residual of a variable f at the end of an outer iteration is defined as:

RESf ¼
X
c:v

Apfp �
X

all p neighbours

Anbfnb � Bp

�����
����� ð44Þ

All residuals are normalized by their respective inlet fluxes. Computations are ter-
minated when the maximum normalized residual of all variables drops below a very
small number es (’ 1075). For a given problem, the same value of es is used with all
algorithms.

Flow in a Converging-Diverging Nozzle

The flow in a converging-diverging nozzle is a standard test that has been used
by several researchers [32, 44] to validate their new numerical methodologies. The
nozzle cross-sectional area (Figure 1c) varies according to the relation [23]:

AðxÞ ¼ Ath þ Ai � Athð Þ 1� x

5

� �2

ð45Þ

where Ai¼ 2.035 and Ath¼ 1 are the inlet and throat areas, respectively, and
0� x� 10. An axisymmetric grid of size 290634 is used, and solutions for subsonic
(Min¼ 0.3) and hypersonic (Min¼ 7) flow are generated. For the subsonic case, all
flow variables except pressure are specified at the inlet and the pressure is prescribed
at the outlet. For the hypersonic situation, all variables are given at the inlet, while at
the outlet they are all extrapolated from the interior domain. The area-averaged axial
Mach number profiles are compared in Figure 2 against one-dimensional exact
solutions. As can be seen, predictions agree well with the exact solutions for both
subsonic (Figure 2a) and hypersonic (Figure 2b), flows with numerical results falling
on top of analytical calculations except near the throat of the nozzle in the subsonic
case, where the Mach number is slightly underpredicted. This could be improved by
further refining the grid in that region.

Convergence history plots for the single-grid, prolongation grid, and full mul-
tigrid solution methods using the different algorithms are presented in Figure 3. A
larger number of iteration is required to converge the solution to the desired level for
the subsonic (Figures 3a–3c) than for the hypersonic flow (Figures 3d–3f ) with all
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Figure 2. Comparison between the analytical and numerical Mach number distribution along the nozzle at

(a) subsonic (Minlet¼ 0.3) and (b) hypersonic (Minlet¼ 7) speeds.
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methodologies and algorithms. Starting with the subsonic case, the convergence plots
of the different algorithms using the single-grid method (Figure 3a) indicate that
PRIME and SIMPLEST are by far the least-performing algorithms. The SIMPLEC
and SIMPLEX algorithms behave similarly and require the lowest number of itera-
tions following PISO. As depicted in Figure 3b, the use of the prolongation grid
method reduces the number of iterations required by all algorithms by about 40%.
This improvement in performance is due to what amounts to a better initial guess,
which becomes increasingly more important as the nonlinearity increases. However, it
also affects the relative performance of these algorithms, indicating the sensitivity of
some of the smoothers to the initial conditions. While the performance of PRIME
and SIMPLEST is still the worst, SIMPLEC is now the best-performing algorithm,
requiring nearly half the number of iterations needed by PISO, which is followed by
SIMPLEX and SIMPLE. The convergence history plots for the various algorithms
using the full multigrid method are displayed in Figure 3c. With all algorithms, a
drastic decrease in the number of iterations is noticed. For PRIME and SIMPLEST,
the number of iterations is reduced by a factor of 25 and 18 compared to the single-
grid and multigrid methods, respectively. The SIMPLEC and SIMPLEX are the best
performers, followed by SIMPLE, which outperforms PISO. It is worth mentioning
here that PISO requires nearly twice the computational effort of any of the other
algorithms because of the four-step solution procedure, which requires solving the
pressure-correction equation twice in a global iteration [35].

The convergence history plots of the various algorithms for the hypersonic case
are depicted in Figures 3d–3f. For the single-grid method (Figure 3d ), SIMPLEC
and SIMPLEX require the least number of iterations, followed by PISO, which is
contrary to the subsonic case. Also to be noted is the unexpected performance of the
SIMPLE algorithm, which requires the largest number of iterations. The use of the
prolongation grid method (Figure 3e) does not noticeably reduce the number of
iterations needed by PISO, SIMPLEX, SIMPLEC, SIMPLEST, and PRIME.
However, it greatly improves the performance of SIMPLE by reducing the number
of iterations required for convergence by a factor of 3.33 in comparison with the
single-grid method. The full multigrid method (Figure 3f ) seems to better improve
the performance of SIMPLE, SIMPLEST, and PRIME, where a �30% reduction
in the number of iterations, as compared to the prolongation grid method, is
obtained. The performance of SIMPLEX, SIMPLEC, and PISO appears to be
unaffected.

CPU time: Flow in a converging-diverging nozzle. The CPU times
required by the various algorithms using the different solution methodologies are
displayed in Figure 4. For the subsonic case (Figure 4a), the performance of the
various algorithms can be divided into two groups, with SIMPLEST and PRIME
forming one group and the remaining algorithms composing the second. As
depicted, the computational effort of the various algorithms belonging to a group
is nearly the same, with the first group requiring (on average) nearly double the
computational time needed by the second group with all methodologies.
Moreover, the substantial savings accomplished through the use of the full
multigrid method with all algorithms is obvious. Furthermore, the use of a four-
grid-level arrangement decreases slightly the CPU time in comparison with the
three-grid-level configuration.
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Figure 4. Comparison of CPU time needed by the various algorithms using the different solution meth-

odologies for (a) subsonic and (b) hypersonic flow in a converging-diverging nozzle.
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For the hypersonic case (Figure 4b), the maximum CPU time needed is one-
twentieth that of the subsonic case. The worst performer with the single-grid method
is SIMPLE, which requires almost double the CPU time of PRIME. This CPU time
is reduced by half with the prolongation grid and full multigrid methods. Other
algorithms are less affected by the method used, with slight increase or decrease in
the CPU time required. This behavior is expected since the full multigrid method was
originally developed for elliptic flows, and hypersonic flows are of the hyperbolic
type.

Flow over a Circular Arc Bump

The flow over a circular arc bump is a good test for the stability and accuracy
of numerical algorithms [43, 44]. The physical situation consists of a channel of
width equal to the length of the circular arc bump and of total length equal to three
lengths of the bump. Results are presented for three different types of flow (subsonic,
transsonic, and supersonic). For subsonic and transonic calculations, the thickness-
to-chord ratio is 10% and for supersonic flow calculations it is 4%.

Subsonic flow over a circular arc bump. With an inlet Mach number of
0.5, the inviscid flow in the channel is fully subsonic and symmetric across the
middle of the bump. A symmetric grid with respect to the vertical centerline of the
channel is used. At the inlet, the flow is assumed to have uniform properties and
all variables, except pressure, are specified. At the outlet section, the pressure is
prescribed and all other variables are extrapolated from the interior of the
domain. The flow tangency condition is applied at the walls.

The computed isobars in the channel, which are almost symmetric and in
excellent agreement with similar results reported in the literature [44], are displayed
in Figure 5a. Figure 5b shows a comparison between predicted Mach number pro-
files along the inner and outer walls of the channel and those documented by Favini
[43]. The two sets of results are almost identical.

The residual history plots, as a function of the number of iterations, for the
various algorithms using the different solution methodologies are presented in Fig-
ures 5c–5e. The relative performance of the various algorithms appears to be similar
with the various approaches. The SIMPLEST and PRIME algorithms require the
largest number of iterations, while PISO requires the lowest number. The perfor-
mance of SIMPLE, SIMPLEC, and SIMPLEX is nearly identical. For all algo-
rithms, the use of the prolongation grid approach (Figure 5d ) reduces the number of
iterations, on average, by half (with SIMPLE requiring less iteration than SIMPLEC
and SIMPLEX). On the other hand, the use of the full multigrid strategy (Figure 5e)
diminishes the number of iterations required to reach the desired level of con-
vergence, in comparison with the single-grid method, by a factor varying between
10.5 (for PRIME) and 21.3 (for SIMPLEC and SIMPLEX).

Transonic flow over a circular arc bump. With the exception of the inlet
Mach number being set to 0.675, the grid distribution and the implementation of
boundary conditions are identical to those described for subsonic flow. Although
a shock over the bump is predicted as shown by the pressure contours displayed
in Figure 6a, since it does not propagate in the direction of the flow, there is no
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need to change the density of the grid downstream of the bump. As depicted in
Figure 6b, Mach number distributions along the lower and upper walls of the
channel are in good agreement with similar results reported by Demirdzic [44] and
Favini [43], which is a good indication of the correctness of the solution procedure.

The convergence history plots using the single-grid method displayed in
Figure 6c reveal that PISO requires the lowest number of iterations, followed by
SIMPLE, SIMPLEC, and SIMPLEX. On the other hand, the number of iterations
entailed by PRIME and SIMPLEST is more than thrice the number needed by
PISO. As shown in Figure 6d, the use of the prolongation grid method reduces the
number of iterations of all algorithms by one-third their original values, while the
relative performance of all algorithms remains unchanged. The use of the full
multigrid method changes the performance of the various algorithms dramatically,
as depicted in Figure 6e. In this case, the number of iterations required is reduced by
a factor varying from 7.4 with PISO to over 16 by SIMPLEST. The number of
iterations required by PISO, SIMPLEC, and SIMPLEX becomes nearly identical,
while that required by SIMPLEST approaches the one needed by SIMPLE.
Nevertheless, PRIME consumes the largest number of iterations.

Supersonic flow over a circular arc bump. Computations are presented for
an inlet Mach number of 1.4. For this value of inlet Mach number and the geometry
used, the flow is also supersonic at the outlet. Thus, all variables at the inlet are
prescribed, and at the outlet all variables are extrapolated. Isobars displayed in
Figure 7a, revealing the formation of shock waves at the leading and trailing
edges of the bump, are in excellent agreement with similar results reported in [44].
This is also demonstrated in Figure 7b by the good concurrence between the
computed Mach number distributions along the lower and upper walls of the
channel and similar profiles extracted from Favini [43].

Residual histograms of the various algorithms and for the different solution
methodologies as a function of the iteration number are depicted in Figures 7c–7d.
For the single-grid method (Figure 7c), the number of iterations required by the
different algorithms varies between 450 iterations for PISO and 1,500 iterations for
PRIME (which is appreciably lower than the values obtained in the subsonic and
transonic cases). SIMPLE is the second best performer after PISO, while SIMPLEC
and SIMPLEX have identical performance, which is close to that of SIMPLE. The
number of iterations needed by SIMPLEST is about 17% less than PRIME. The use
of the prolongation grid method (Figure 7d ) reduces the number of iterations
required on the finest level by all algorithms, except PRIME, by over 30%. For the
PRIME algorithm, the number of iterations has increased by about 25%. On the
other hand, the full multigrid method (Figure 7e) appreciably decreases the number
of iterations required by all algorithms. An average reduction of about 80% is
achieved in comparison with the single-grid method. The relative performance of the
algorithms remains unchanged with the exception of SIMPLEST, which in this case
requires the largest number of iterations on the finest mesh, following PRIME.

CPU time: Flow over a circular arc bump. Figure 8 displays the CPU times
required by the various algorithms using the different solution methodologies in the
various Mach number regimes for the flow over a circular arc bump. As for the case
of a converging-diverging nozzle, subsonic flow results depicted in Figure 8a suggest
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Figure 8. Comparison of CPU time needed by the various algorithms using the different solution meth-

odologies for (a) subsonic, (b) transonic, and (c) supersonic flow over a bump.
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dividing the various algorithms into two groups, with SIMPLEST and PRIME
forming one group and the remaining algorithms composing the second. As
shown, the computational effort of the various algorithms belonging to a group is
nearly the same, with the first group requiring (on average) nearly 55% more
computational time than the second group with the single-grid method, 40% more
with the prolongation grid method, and around 45% more with the full multigrid
method over four grid levels (no appreciable improvement in performance is seen
for group 1 when using three grid levels). Nevertheless, the CPU time is decreased
almost 7-fold through the use of the full multigrid method.

Similar behavior is noticed for the transonic (Figure 8b) and supersonic (Figure
8c) flows with the single-grid and prolongation grid methods. With the full multigrid
method, the performance of both groups is closer than in the subsonic case. Also to
be noticed is the fact that no single algorithm is showing universal superiority over
other algorithms. Rather, superiority is case-based. The conclusion to be drawn here
is the effectiveness of the full multigrid method in greatly reducing the computational
cost with all algorithms.

Flow over a NACA 0012 Airfoil

The final test case considered is for transonic flow around a NACA 0012 airfoil,
which has become a standard test case used by several researchers to evaluate their
methodologies [43, 45–48]. The flow approaches the airfoil with a Mach number of
0.85 at 1� angle of attack. An O-type grid is used in the solution with a density on the
finest mesh of size 192696 control volumes. Moreover, the computational domain
extends 100-chord lengths in all directions around the airfoil. Furthermore, all
variables except pressure are prescribed at the inlet, while at the outlet the pressure is
assigned and all other variables are extrapolated from the interior.

Computed results using SIMPLEC and SIMPLEX are presented in Figure 9.
The use of these two algorithms is linked to the fact that they were the only ones that
did not require additional upwind bleeding for the advection terms. The remaining
algorithms required a large percentage of upwind bleeding to the high-resolution
schemes and are termed numerically unstable for the current application. Figure 9a
displays isobars around the airfoil. Two shock waves, one on the upper and the
second on the lower side of the airfoil, are obtained at two distinct streamwise
locations. These isobars are in excellent agreement with published results [43]. As a
further check for accuracy, the computed pressure coefficients along both sides of the
airfoil are compared against similar ones reported in [43]. As depicted in Figure 9b,
the agreement is very good, which is additional evidence of the correctness of the
solution procedure. The convergence history plots presented in Figures 9c–9e indicate
the capability of both algorithms to predict external transonic flows. In terms of
number of iterations, the SIMPLEC algorithm performs slightly better with the
prolongation grid method (Figure 9d ) than with the full multigrid method (Figure
9e). The opposite is true with SIMPLEX. However, both methods reduce the
number of iterations, for both algorithms, by a factor of nearly 3.5 over the single-
grid method. This reduction ratio appears to equally hold for the CPU time dis-
played in Figure 9f. To be noticed in that figure is the fact that the best performance
is obtained with the full multigrid method over three grid levels.
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CLOSING REMARKS

In this article, six incompressible flow algorithms (SIMPLE, SIMPLEC,
SIMPLEX, SIMPLEST, PISO, and PRIME) were extended to predict compres-
sible fluid flow at all speeds and implemented within a single-grid, a prolongation
grid, and a full multigrid methodology. The relative merits of these extended
algorithms were compared by solving several problems encompassing flows in the
subsonic, transonic, supersonic, and hypersonic regimes. The full multigrid method
was found to be the most efficient in all problems solved and for all algorithms,
with its efficiency, as expected, decreasing with increasing Mach number values.
Based on the computations performed, SIMPLEC and SIMPLEX were the most
stable algorithms, while SIMPLEST and PRIME were the most expensive. Even
though PISO required the least number of iterations, it was prone to numerical
instability in problems that involved shock waves. The performance of SIMPLE in
terms of CPU time was acceptable in most of the problems, but it was also sen-
sitive to shocks and became numerically unstable in such problems.

Future work will concentrate on dynamic agglomeration of fine grid cells in
multigrid methods. In such methods, instead of structured agglomeration of four
fine-grid cells to produce one coarse-grid cell, as was done in this article, the flow
conditions could be considered as a criterion in the design of the multigrid system.
For example, if a shock wave exists in the computational domain it would probably
be more efficient not to agglomerate grid points across it.
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