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Abstract. This paper reports on the performance of a high resolution implemented as part of an implicit fully coupled 
velocity-pressure algorithm for the solution of laminar incompressible flow problems. The numerical implementation of 
high resolution convective schemes follows two techniques; (i) the Deferred Correction (DC) approach, and (ii) the 
Normalized Weighting Factor (NWF) method. The superiority of the NWF method over the DC approach is 
demonstrated by solving the sudden expansion in a square cavity problem. Results indicate that the number of iterations 
needed by the NWF solver is grid independent. Moreover, recorded CPU time values reveal that the NWF method 
substantially reduces the computational cost. 
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INTRODUCTION 

Recently, the authors of this article reported on a fully coupled algorithm for the solution of incompressible flows 
[1,2] with acceleration rates at least an order of magnitude higher than the ones achieved with the more popular 
segregated approach. In their algorithm however, the convective flux in the momentum equations was discretized 
using the first order UPWIND scheme [3]. First-order schemes are numerically stable but highly diffusive. This 
numerical diffusion is desirable for numerical stability but often leads to highly inaccurate results and causes 
smearing of sharp gradients. To overcome this shortcoming and to increase the accuracy of the predicted results, 
researchers have developed a variety of higher-order schemes [4-6]. The difficulties associated with the development 
of rehable higher order schemes stem from the conflicting requirements of accuracy, stability, and boundedness. 
Solutions predicted with high order schemes are more accurate than the first-order upwind scheme and more stable 
than the second-order central difference scheme, but tend to provoke oscillations. To suppress oscillations, several 
techniques were advertised leading to new famihes of High Resolution (HR) schemes (i.e. high order bounded 
schemes), and the one adopted here is the composite flux hmiter approach apphed in the context of the Normalized 
Variable Formulation (NVF) [3]. The Deferred Correction (DC) procedure [7] remained the preferred technique for 
the numerical implementation of these schemes, because it allows the use of codes originally intended for low order 
schemes by the addition of a source term that accounts for the difference in interpolated values between the high 
resolution and low order scheme, at the price of a reduced convergence rate. The Normalized Weighting Factor 
(NWF) method [8], which is fully implicit, was developed to overcome this issue and accelerate convergence. While 
successful in solving for scalar transport equations, the NWF resulted in oscillations when deahng with flow 
problems. 

As the aim of any coupled solver is to accelerate convergence, the effect of using high resolution schemes 
implemented via the DC method on the convergence rate is of primary importance. To this end, the objectives of this 
paper are twofold: (i) to study the effect of implementing HR schemes using the DC method on the convergence of 
the coupled solver, and (ii) to extend the applicability of the NWF to flow problems by implementing it within the 
coupled solver and to compare its performance with the DC method. 
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In what follows, the discretization procedure of the governing conservation equations, the coupled solvers, and 
the DC and NWF methods are briefly reviewed. Then the effect of using HR schemes apphed using the DC 
approach and NWF method on the performance of the coupled algorithm is assessed in a test problem. 

FINITE V O L U M E F O R M U L A T I O N 

The conservation equations governing steady, laminar incompressible Newtonian fluid flow are given by 

V-(pv)=0 (1) 

V-(pvv) = V-(//Vv)-V-(pl) (2) 

Integrating the transport equations over a control volume, transforming the volume integrals of the diffusion and 
convection terms into surface integrals using the divergence theorem, and evaluating these integrals by representing 
the variables at the control volume faces in terms of nodal values, the discretized forms of the momentum and 
continuity equations are respectively given by 

Vp+ ^ A > ^ = B ; - D ^ V / 7 ^ and X ' ^ / = ° (3) 
P=NB{P) f=nb(P) 

where NB(P) refers to the neighbors of the P grid point and nb(P) refers to the faces of the P control volume. 

High Resolution Schemes 

When evaluating the convection flux using the upwind scheme, the value of the dependent variable at the control 
volume face is taken as the value at the main grid point on the upwind side. Mathematically, this is written as 

{m(p).=(pp\m.,0\-(l)p\-m.fi\ (4) 

When using a HR scheme, the value of ^ at a control volume face is written as a composite functional relationship of 
the values at several grid points upstream and downstream of the face. Without going into details and using 
normalized variables [3], the functional relationship for the SMART scheme [5] used in this work is given by 

4̂ ^ 0 < ^ c < l / 6 

3 - 3 
—(p^ +- l/6<^^ <5/6 

(t,^=\A % ^ (5) 
1 5 / 6 < 4 < l 

(f)^ elsewhere 

Deferred Correction (DC) Procedure 

In the DC procedure the HR scheme is implemented by the splitting the convection flux into an imphcit part, 
expressed through first order upwind differencing scheme (UDS) and an explicit part (a source term in the algebraic 
equation), which equals the difference between the UDS and HR approximations, i.e.: 

nifCpf = fhff + rhf (^™ - f ) (6) 
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Normalized Weighting Factor (NWF) Method 

From equation (5) it follows that the functional relationship of HR schemes can be written as 

(f)^ =m(t)^ +k (7) 

where the expressions of m and k are obtained from the original equations. In the NWF method, equation (7) is used 
to express the Rvalue at a control volume face implicitly in terms of values at the neighboring grid points. The right 
hand side of Eq. (7) is substituted in the discretized leading to an imphcit description of (p.. 

The Coupled Algorithm 

The low convergence rate of the segregated method is a due to the exphcit treatment of the pressure gradient in 
the momentum equation and the velocity field in the continuity equation. The coupled algorithm overcomes this 
deficiency by treating both terms implicitly. For that purpose the pressure gradient term in the momentum equations 
is integrated over the faces of the control volume and is evaluated imphcitly. The pressure equation is derived from 
the continuity equation by expressing the velocity at the control volume face using the Rhie-Chow interpolation. The 
resulting system of momentum and continuity equations in 2-D is written as 

uu , uv , up , X ^ uu , X ^ wv , X ^ up 1 u 

Up Up +ap Vp +apPp + 2^ap. Up. + 2^apVp+ 2^a/pp = Dp 
P=NB{P) P=NB{P) P=NB{P) 

GpVp + d^Up + dj^pp + ^ d^Vp + ^ d^Up + ^ dj^pp = ¥p (8) 
P=NB(P) P=NB(P) P=NB(P) 

a^'Pp+a'p"Up+a^Vp+ Y.^'/Pp+ 2 < w ^ + Y.<^F=^P 
P=NB(P) P=NB{P) P=NB{P) 

A system of equations involving velocity components and pressure is obtained for each control volume and when 
expressed over the entire computational domain yields a system of equations of the form 

A O = B (9) 

where all variables (v, p) are now solved simultaneously. 
The overall coupled algorithm can be summarized as follows: 

1. Start with the n**" iteration values 
2. Assemble and solve the momentum and continuity equation for v*and/'* 

3. Assemble m^ using the Rhie-Chow interpolation 

4. Return to the first step and repeat until convergence 

RESULTS AND DISCUSSION 

The performance of the HR coupled algorithm is assessed in this section by presenting solutions to the sudden-
expansion flow in a square cavity problem. The results are generated using quadrilateral control volumes on three 
grid sizes with cell values of 10"*, SxlO"*, and 3x10^. The performances of the NWF and DC are assessed in terms of 
the number of iterations and time required to reach convergence. The same initial guess was used for all grid sizes. 
The physical situation, which represents a square cavity of side L (W=L/5), is depicted in Figure 1(a). The inlet 

velocity vector is and the Reynolds number based on L is set at 750. In Figs. 1(b) through 1(e), the 

streamlines over the domain, contours of the u- and v-velocity components, and a comparison of the static pressure 
at y=0.5 computed using both the NWF and DC methods are presented. 

Due to its full implicitness in discretizing the convection term, the NWF method saves a lot of computational 
time as compared to the DC method. This is clearly shown in Tables 1 and 2, which compare the performance of 
both methods. The NWF accelerates the solution of the problem by approximately 50%. 
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A summary of the number of iterations and CPU time needed by both the DC and NWF methods are presented 
for all grid sizes in Table 1. The number of iterations required by the NWF method is almost grid independent while 
the iterations in the DC approach varies with the grid size. In terms of computational times, good savings are 
achieved using the NWF approach with the amount increasing with increases to the grid size. The reduction factor 
(Table 2) reaches a value of 1.78 on the densest grid (3x10^ ceUs). This represents a significant decrease in 
computational time. 

h*'*l 

\ r .J 

(a) (b) (c) (d) (e) 
FIGURE 1 (a) Physical domain, (b) streamlines, (c) u-velocity contours, (d) v-velocity contours, and (e) comparison of 

computed gauge pressure at y = 0.5 by both the NWF and DC methods. 

Table 1. Convergence requirements by the DC and NWF methods 

Grid Density 

10000 
50000* 
300000 

NWF 
Iterations 

26 
24 
26 

Time 
57.1 

288.5 
1975.4 

DC 
Iterations 

32 
25 
37 

Time 
81.25 
368.2 

3530.8 

DC/NWF 
Time Ratio 

1.42 
1.3 

1.78 

*: for the 50000 elements grid, a source under-relaxation of 0.85 had to be used to reach convergence. 

CLOSING REMARKS 

The performance of a high resolution scheme implemented within an implicit fully coupled velocity-pressure 
algorithm was assessed for the case when the high resolution convective scheme is implemented following either the 
DC approach or the NWF method. Results for the sudden expansion in a square cavity problem over a range of grids 
revealed that the NWF method is computationally more efficient than the DC approach substantially reducing the 
computational cost. 
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