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BUOYANCY-INDUCED HEAT TRANSFER IN
PARTIALLY DIVIDED TRAPEZOIDAL CAVITIES

F. Moukalled
Department ofMechanical Engineering, Faculty ofEngineering and Architecture,
American University ofBeirut, Beirut, Lebanon

S.Acharya
Mechanical Engineering Department, Louisiana State University, Baton Rouge,
Louisiana, USA .

Numerical results are reported for natural convection heal transfer in portiaJJy divided
trapezoidal cauities representing auic spoees. Two boundary conditions are considered. In
the first, corresponding to summer-like conditions, the vertical and upper surfaces are
healed while the lower surface is cooled. In the second, corresponding to winter-like
conditions, the lower surface is healed whik the other surfaces are cookd. The effects of
RDykigh number, bo.fJk height, and bo.fJk location on the heal transfer are investigaled.
Resulls are displayed in terms of streamlines, isotherms, velocity and temperature profiles,
and local and average NusselJnumber values. In winter-like conditions, convection starts to
dominate at a Raykigh number much lower than thai in summer-like conditions. For both
boundary conditions, the presence of bojJles decreases heat transfer. For the bottom-cooled
case this decrease is greater with a taller bo.fJk, placed closer to the healed walls, For the
bottom-healed case the decrease in heal tronsfer due to the bojJIes is greater with increasing
distance from the vertical wall. Average Nussels number correlations for both boundary
condmons are presented.

INTRODUCTION

Buoyancy-induced heat transfer in rectangular enclosures and cylindrical
annuli has been extensively studied in the literature. Ostrach [1] has recently
presented a comprehensive review of the work done in this area. Comparatively
little attention has been given, however, to natural convection heat transfer in
enclosures of more complex geometry. Studies on natural convection in trapezoidal
cavities have been very limited and have dealt only with the no-baffle situations
where the convective motion of the fluid filling the enclosure was unimpeded. In
this article, natural convection in partially divided trapezoidal enclosures is investi-
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788 F. MOUKALLED AND S. ACHARYA

NOMENCLATURE

a coefficients in the finite difference x,X dimensional and dimensionless
equation coordinate along the horizontal

b local imbalance of mass direction
cp specific heat of fluid y,Y dimensional and dimensionless
e, E cast face of a control volume; east coordinate along the

neighbor of the P grid point vertical direction
g gravitationalacceleration a,{3,'Y metricquantity; 13 is also coefficient
G"G, convective terms normal to grid cell of thermal expansion

boundaries r" diffusion coefficient
/r,h local and averageconvectionheat og,OT/ distance between grid points

transfercoefficient in g and T/ directions
H height of cavity at baffle midpoint d g, dT/ control volume spacing in g and T/
(j height of the vertical side wall directions
J Jacobian O,Ob dimensionlesstemperature;
k,kh,k, thermal conductivity; baffle thermal dimensionless baffle temperature

conductivity; dimensionless baffle v kinematic viscoity
conductivity g,T/ transformed coordinate

n,N north face of a control volume; north p density
neighbor of the P grid point '" dependent variable

Nu, Nu· local and normalized Nusselt number I/J stream function
Nu, Nu· averageand normalized average

Nusselt number
p,P thermodynamic pressure; Subscripts

dimensionlesspressure;
also main grid point c cold wall

Pr Prandtl number (= !,-cpk) e east control volume face
Ra Rayleigh number E east grid point

(=g{3(Th - T,)H'/va) h hot wall
s,S south face of a control volume; condition at baffle-air interface;

arc length; south neighbor of the P also neighbors of the P grid point
grid point; also distance along a wall max maximum value

S" source term N,P,S,W north, main, south,and westgrid
T dimensional temperature points, respectively
1l,U dimensional and dimensionless x

velocity
lJ,V dimensional and dimensionless y Superscripts

velocity

w,W west face of a control volume, previous iteration value
west neighbor of the P grid point; correction value
also width of cavity ~ refers to dependent variables

gated, and the effects of baffle height and location on the total heat transfer are
determined. The physical situation is depicted in Figure la and, as described
below, is relevant to heat transfer in attic spaces and industrial buildings.

Iyican et at. [2, 3] studied experimentally and analytically the natural convec­
tion motion and heat transfer within an inclined trapezoidal cavity formed from
parallel cylindrical top and bottom walls that are maintained at different uniform
temperatures and plane adiabatic side walls. The experimental and numerical
investigations presented by Lam et at. [4] are for a trapezoidal cavity formed
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Figure 1. (0) Physical domain, (b) computational domain and an illustrative grid
network, and (c) a typical control volume.

between two vertical adiabatic side walls, a horizontal hot bottom wall, and an
inclined cold top wall. Results obtained indicated that a two-dimensional numerical
analysis cannot describe the three-dimensional flows that occur in the bottom­
heated cavity but it can predict heat transfer rates to an acceptable level of
accuracy. Karyakin [5] performed a study on transient natural convection in
prismatic enclosures of arbitrary cross section including a trapezoidal cavity with
parallel top and bottom walls and inclined side walls.

The triangular cavity may be viewed as a special case of trapezoidal enclo­
sures whose upper and lower surfaces are not parallel. Akinsete and Coleman [6]
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obtained numerical predictions for natural convection in a triangular cavity that
consists of adiabatic vertical walls, a horizontal bottom wall, and an inclined top
wall. Results were presented for two different boundary conditions of uniform
temperature and uniform heat flux along the horizontal and inclined walls. Bejan
and Poulikakos [7) studied natural convection in an attic space filled with porous
material. Poulikakos and Bejan [8, 9) analyzed theoretically and experimentally the
fluid dynamics of an attic space. Transient heat transfer results in the same
geometry were reported by Karyakin et al. [10).

In this article a control volume based numerical technique is used to generate
results for the problem shown schematically in Figure la. The physical situation
that this configuration represents is that of an attic space or an industrial building.
Two boundary conditions are investigated. In the first, the bottom wall of the cavity
is maintained at a uniform cold temperature Te and all other walls are maintained
at a uniform hot temperature Th • This corresponds to, for example, conditions on a
summer day in the attic, with all the vertical and top walls exposed to the hot
ambient at an elevated temperature and the lower surface exposed to the air­
conditioned interior at a lower temperature. In the second, the bottom wall is hot
(T h ) , while the temperature of all other walls is Te . This configuration mimics
wintertime conditions in the attic with the vertical and top walls exposed to the
cold ambient and the lower surface adjoining the heated interior of the building. In
both cases, the effects of mounting two symmetrically located baffles or partial
dividers to the horizontal base of the enclosure, on the amount of heat transferred
to an adjacent space (for example, to the interior of the building) are studied.
Because of symmetry around the y axis, computations are performed in only half
of the physical domain.

In the configuration studied the computational domain or the half-width of
the cavity (W) is 4 times the height (11) of the short vertical wall. The inclination
of the top of the cavity is fixed at 15°. Two baffle heights (BH = HI3 and 2H/3)
and two baffle locations (BL = W13 and 2W13) are considered. In all computa­
tions the baffle thickness (BT) is taken as BT = W/20, to simulate a thin baffle.

GOVERNING EQUATIONS

The equations governing the flow and heat transfer are those that express the
conservation of mass, momentum, and energy. The flow, driven by buoyant forces
arising from variation in density within the enclosure, is assumed to be steady,
laminar, and two-dimensional. Radiation is neglected in this study, and therefore
results are applicable for moderate temperature differences. The Boussineq ap­
proximation is used to incorporate the temperature dependence of density in the
conservation equations. In this approximation the density variations are only
included in the body force term of the y momentum equation and are assumed to
be a linear function of temperature. With these assumptions, the nondimensional
mass, momentum, and energy equations become

au av
-+-=0ax aY

(1)
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au au ap a2u a2u

u- + v- = - - + -- + --ax aY ax ax 2 ay 2

av av ap a2v a2v Ra e
u- + v- = - - + -- + -- + --ax aY aY ax 2 ay 2 Pr

ae ae 1 ( a2e a2e )
Uax + v aY = Pr ax 2 + ay 2

where the following dimensionless variables have been used.
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(2)

(3)

(4)

x Y= Y,x=---;;- (5)
H H

u v
u=-, v=-, (6)

v/H »/n

p + pgy T-T
P= , 2

e = C (7)
p(v/H) Th - T,;

In the baffle the governing conservation equation is the dimensionless Laplace's
equation, expressed as

(8)

where kb/k = k, is the dimensionless baffle conductivity and eb denotes the
temperature in the baffle region. The energy balance at the baffle-air interface can
be stated as

(9)

where n denotes the direction normal to the baffle-air interface and the subscript i
refers to the interface.

To close the system of equations, hydrodynamic and thermal boundary
conditions are needed. Along the walls of the enclosure the velocity components
are set to zero; the nondimensional wall temperature is specified to be 1 and 0
along the hot and cold walls, respectively (Figure Ib). The U velocity and the
gradients of the remaining variables are set to zero along the symmetry line.

SOLUTION PROCEDURE

A nonstaggered curvilinear grid arrangement is used in solving the conserva­
tion equations, and the method of Rhie and Chow [11] that embodies the .
semi-implicit method for pressure linked equations (SIMPLE) algorithm of



792 F. MOUKALLED AND S. ACHARYA

Patankar (12) is employed to suppress oscillatory checkerboard fields. The grid
generation procedure along with the discretization of the conservation equations
are briefly reviewed next. Additional details can be found in the works by Rhie and
Chow (11) and Acharya and Moukalled [13).

Grid Generation

The curvilinear grid is generated by an algebraic method known as "trans­
finite mappings" or "transfinite interpolations" [14-16). In this approach the
mapping is done by using a bilinear shape function very similar to a finite element
shape function. However, a special procedure is used to calculate the local
coordinates of each internal grid point as a weighted function of the boundary
points. The local coordinates are obtained from a linear interpolation procedure
between the opposite boundary nodes for the east-west and north-south bound­
aries, respectively.

The above method requires that all the physical coordinates of the nodes on
all four boundaries (11 = 11min' 1) = 11max , g = gmin, g = gmax) of the solution domain
be given. The proportionality factors are formed using the boundary grid points as
follows:

x -xrt _ i, I I, I
Ji,l -

X ni,l -XI,I

!
" _ YI,j - YI.I
I' -

,J YI,nj - YI.I

.f.~ . = Xi,nj - X1,nj
J It nl

Xni,nj -X1,nj

f ". . = Yni,j - Yni.1
nl,J

Yni, nj - Yni,l

(10)

(11)

The coordinates of the interior grid points are then calculated from the following
interpolation formulae:

X· . = XI . + r.t .(x .. - XI .)
t v I ,} J,,] nt,) ,J

Y· . =y. 1 +f!'(y· . <v. I)'t} s; 1,J I,n) I,

(12)

(13)

where the values of functions rand!" for the interior points are calculated by
interpolating between the two boundary functions defined by Eqs. (10) and (II).
The interpolation practice employed is as follows:

(nj - j)!/l + (j - O!/njN=---'------'-'-'') nj - 1

(ni - i)!~j + (i - I)!:ii,j
!;",j = ni - 1

(14)

(15)

While generating the grid system, care was taken to make sure that the edges of
the baffle lie along coordinate lines. An illustrative grid network generated is
shown in Figure lb.
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Discretization of the Conservation Equations

The governing equations (Eqs. (1)-(4)) are first expressed in a general
curvilinear coordinate system. If cP represents a general scalar variable, its dimen­
sionless conservation equation in curvilinear coordinates is given by

a [ r'" (acP acP )] a [ r- (acP acP )]- G cP - - a- - {3- + - G cP - - y- - {3- = S"'Jat I J at aT! aT! 2 J aT! at
(16)

where S<l> is the source term, r- is the diffusion coefficient, GIIJ and G21J are
the contravariant velocity components, and a, {3, and yare the metric quantities.
The terms a, {3, y, G j , G2 , and J are defined by

a = ( ::r+ ( ::r {3 = ( :;)( ::) + ( :;)( ::)

y = ( :;r+ ( :;r
(17)

ax aY
G =V--U-,

2 at at
ax aY ax aY

J= -- - -- (18)
at aT! aT! at

Since the control volume approach is adopted, the physical domain is subdivided
into a number of control volumes (Figure l c), each associated with a grid point.
The discretized form is obtained by integrating Eq. (16) over the control volume
shown in Figure Ic along with suitable interpolation expressions for the variables
at the control volume faces. This leads to the following general form of the
conservation equation for cP

(19)

The subscripts P, E, W, N, and S refer to the grid point at the center of the control
volume and the four neighboring grid points, respectively. The term Sf includes
the original source term in the equation, plus the contribution due to nonorthogo­
nality of the grid system used.

The unknown pressure field is obtained using a guess-and-correct procedure
similar to that described by the SIMPLE algorithm of Patankar [12], in which a
pressure-correction (p' = p - p*) equation is derived by combining the momen­
tum and continuity equations. The source term of the p' equation contains the
sum of the interface mass flow rates and represents the local mass imbalance.
Spurious oscillations in the predicted solutions are suppressed by adding the
following stabilization term to G* in the source term of the pressure-correction
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equation [11]:

F. MOUKALLED AND S. ACHARYA

(20)

The overbar in the equation indicates that the results are obtained -by linear
interpolation between grid nodes, and B depends on the metric quantities and the
coefficients. This practice ((Eq. (20)) has been found to successfully suppress
spurious oscillatory pressure and velocity fields.

Computational Details and Numerical Accuracy

The presence of baffles is accounted for in the momentum equations by
specifying a very high up coefficient ( _1030) in the baffle region. When solving the
energy equation, the dimensionless baffle conductivity is set to kVPr. This specifi­
cation of a high up, in addition to the no-slip boundary condition, suppresses the
velocities in the baffle to vanishing values. Thus in the baffle region, Eq. (4) is
reduced to the appropriate Laplace's equation (Eq. (8)). Further, since the numeri­
cal scheme is conservative, flux leaving a control volume through one face is exactly
equal to the flux entering the adjacent control volume through the same face. Thus
the interface energy balance (Eq. (9)) is exactly satisfied at the baffle-air interface.
Furthermore, because of the high values of up (_1030), the coefficients of the
discretized velocity equation in the baffle region are very high (_1030), and since
the coefficients in the pressure-correction equation are inversely proportional to
the coefficients in the velocity equations, the coefficients of P' in the baffle region
are nearly zero. Therefore the pressure-correction field in the fluid is independent
of the P' values in the baffle. Thus incorrect pressure-correction fields are
avoided.

A grid independent solution was obtained with a 120 X 120 mesh size. A
nonuniform grid was used in order to concentrate grid nodes in regions where
large gradients of the flow variables were expected. This practice was adopted near
the walls and symmetry lines. The accuracy of the solution presented in this article
was checked by direct comparison with the solution generated on a 160 X 160
nearly uniform grid. The maximum difference in the various quantities predicted
was less than 0.69%. Conservation of mass, momentum, and energy were found to
be satisfied to within 0.001% in each control volume. Comparisons were also made
with results generated using the well-known FLOW-3D commercial computational
fluid dynamics (CFD) code. The difference in the average Nusselt numbers for the
cases studied was less than 0.05%. A three-dimensional version of the problem was
also solved using FLOW-3D, for a few cases, for the boundary condition represent­
ing summertime situations. The maximum difference in the average Nusselt
number between the two- and three-dimensional computations was within accept­
able limits (less than 5.84%), given the coarseness of the grid used in the
three-dimensional computations. In fact, streamline plots revealed that the prob­
lem is actually two-dimensional. As a further check for accuracy, computations
were performed for a nonpartitioned trapezoidal cavity using the boundary condi­
tions of Lam et al. [4]. The two solutions compared very well with each other, with
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the streamline and isotherm maps computed in this work falling right on top of the
plotted streamline and isotherm maps of Lam et al. [4].

RESULTS AND DISCUSSION

An examination of the dimensionless governing equations reveals three flow
parameters for each of the two boundary conditions employed: the Prandtl number
Pr, the Rayleigh number Ra, and the conductivity ratio k .. The Prandtl number is
assigned the value of 0.72 corresponding to air, the Rayleigh number values are
varied between 103 and 5 X 107 for summertime boundary conditions and between
103 and 106 for wintertime boundary conditions, and the conductivity ratio is
assigned the value of 2 to simulate a poorly conducting baffle. In addition to the
aforementioned parameters, there are two geometric parameters: the baffle height
(BH) and the baffle location (BL). As noted earlier, two different baffle heights
(BH = H/3 and 2H/3) and two different baffle locations (BL = W/3 and 2W/3)
are studied.

Results presented next are displayed in the form of streamlines, isotherms,
midwidth U velocity and temperature profiles, and the local and average Nusselt
number values.

Summertime Boundary Conditions

Streamlines and isotherms. Representative flow patterns and tempera­
ture distributions are shown in Figures 2-4 and the maximum absolute values of
the stream function (l'I'm,,!) are displayed in Table 1. In Figure 2, streamlines and
isotherms are presented in a baffle-free enclosure for different values of Rayleigh
number (Ra = 104-107

) . The flow consists of a recirculating eddy rotating clock­
wise, indicating that air is moving up along the heated wall, down along the
symmetry line, and horizontally to the left along the cold base of the trapezoidal
cavity. The eye of the recirculation is close to the vertical hot wall of the enclosure,

rzag;;2)]
(a)

b • 10"

(b)

StU.AUn..

(e) (d)

(e) . (f) (g) (h)

Figure 2. Streamline and isotherm plots in a nonpartitioned cavity (summer).
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(a) (b)

Ra • 105

Stnam.lln••

(c) (d)

Ra - 107

(e) (I)
bother-

(g) (h)

Figure 3. Streamline and isotherm plots for BL = W/3 and BH = 2 H/3 (summer).

where the largest velocities are located. As Ra increases, the eye moves further
downward and toward the lower corner of the hot wall, and the intensity of
convection in the upper part of the domain close to the symmetry line decreases
(Figures 2a-2d).

At low Ra, isotherms are uniformly distributed over the domain (Figure 2e),
implying weak convection effects. As Ra increases, the temperature distribution in
the upper portion of the enclosure approaches the conditions of thermal stratifica­
tion (Figures 2f-2h). In this region, buoyancy forces are small, as are the heat
fluxes through the inclined wall. Furthermore, isotherms reveal that convection
heat transfer is mainly from the vertical hot wall along which a thermal plume of
increasing strength rises.

The effect of baffles on flow patterns and temperature distributions is shown
in Figure 3 for BH = 2H13, BL = Wl3 and in Figure 4 for BH = H13, BL =

(a) (b)

Streaa11n..

(c) (d)

(e) (I)

lsotheru

(g) (h)

Figure4. Streamline and isotherm plots for BL = 2W/3 and BH = H/3 (summer).
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Table 1. Maximum absolute values of the stream function for summertime conditions

BH - 0
BH = HI3 BH = 2HI3

Ra BL = 0 BL = W/3 BL = 2W/3 BL = W/3 BL = 2W/3

103 1.42 1.18 1.39 1.06 1.35
10' 5.66 5.23 5.56 3.99 5.24
10' 11.61 12.01 11.66 9.29 10.95
10" 17.02 19.85 18.02 21.31 16.52
10' 23.45 29.129 24.36 37.40 26.43
5 X 10' 27.63 39.05 28.97 47.83 125.05

2W/3. The results in Figure 3 indicate that at the lowest Ra presented (Ra = 104
) ,

the recirculating flow exhibits two vortex cores within one overall large rotating
eddy (Figure 3a). These two inner vortices rotate in the clockwise direction. As Ra
increases (Ra = 105

) , the two vortices merge into one (Figure 3b). Further in­
creases in Ra (Ra = 106 and 107

, Figures 3c and 3d) result in flow separation
between the baffle and the symmetry centerline.

To explain the above behavior, it should be noted that as the flow rises along
the heated vertical and then the heated inclined wall, it gets stratified. At low Ra
the flow moving down the right symmetry line is not sufficiently stratified and is
therefore able to negotiate into the lower right cavity. At higher Ra 006, 107

) the
right portion of the cavity is fully stratified, and the flow is no longer able to
penetrate the lower right cavity. Consequently, the flow separates from the symme­
try line at a location that corresponds to the baffle height, and a jet-like flow
directed from the symmetry line to the baffle tip is observed. This behavior has
been observed earlier computationally [17) and experimentally [18) in rectangular
enclosures with isothermal vertical walls and adiabatic horizontal walls. As a
consequence of this flow separation, a counterclockwise eddy, primarily shear­
driven, is formed in the lower right cavity.

Isotherms presented in Figures 3e-3h reflect the above described flow
patterns. At a low Ra, variations in temperature are almost uniform over the
domain, indicating dominant conduction heat transfer mode. As Ra increases,
convection is promoted, and isotherms are distorted. Along the inclined hot wall,
the heat fluxes are small and decrease with increasing Ra. In this region the fluid
has a homogeneous temperature and is thermally stratified. Along the cold base of
the enclosure, temperature gradients to the left of the baffle are higher (i.e.,
isotherms are closely packed) than those to the right because of stronger convec­
tion-induced flows.

Streamline and isotherm maps for BH = H/3 (shorter baffle) placed at
BL = 2W/3 (closer to the symmetry line) are shown in Figure 4 and reveal
essentially the above discussed behavior with the exception of the flow separation
from the symmetry line occurring even at the lowest Ra. Furthermore, comparison
of streamlines and isotherms presented in Figures 3 and 4 indicates a stronger
convective flow for the case when BH = 2H/3 and BL = W/3, but for BH = H/3
and BL = 2W/3 the area covered by the strong convective eddy is larger. This is
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further revealed in Table 1, where l'I'maxl is shown to increase with increasing BH,
decreasing BL, and increasing Ra. As will be shown below, this increase in \'I'maxl
does not necessarily mean an increase in the total heat transfer because it is
associated with a smaller effective convection area.

The partitions appear to decrease the isothermal stratification near the top
inclined wall. This is evidenced by the larger isothermal region in the isotherms of
Figure 2, compared to the isotherms in Figure 3 and 4. A similar comparison of the
streamlines indicates an increase in the flow velocity along the inclined wall in the
presence of the partitions.

Velocity and temperature profiles. The variations of the horizontal veloc­
ity component and the temperature profiles along X = W/2H are shown in
Figures 5 and 6, respectively, for a nonpartitioned cavity and for a partitioned one
for which BL = W/3 and BH = 2H/3. The velocity profiles in general reflect the
flow patterns displayed in Figure 2. Near the hot upper wall the velocity profiles
are steeper for the partitioned cavity as compared to those in the nonpartitioned
cavity. However, the opposite is true near the cold wal1, where for the partitioned
case the region is characterized by stratification and flow separation. Near the cold
wall the velocities are therefore very smal1 for the partitioned cavity, indicating
weak convection in that region (to the right of the baffle). At Ra = 107 the flow
separation from the symmetry line along the baffle tip can be clearly seen with
large negative U velocities near the tip and smal1 positive velocities in the
counterclockwise eddy behind the baffle. However, both at Ra = 105 and 107

, the
velocity very close to the cold wall is negative, implying that some fraction of the
primary clockwise eddy is able to penetrate down to the cold wall. The temperature
profiles (Figure 6) indicate the increasing stratification near the top wall with

no baffle

100
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Figure s. Velocity profiles at X - WlUI for BL - W13 and BH - 2HI3 (summer).
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1.6

Figure 6. Temperature profiles at X = WlUI for BL = W13 and BH ~ 2H13 (summer).

increasing Ra. As for the velocity gradients, for a partitioned cavity, temperature
gradients are higher near the hot wall and lower near the cold wall as compared to
values obtained for a nonpartitioned cavity. This implies that the baffles increase
the heat transfer from the upper (inclined) heated surface and decrease it along
the lower cooled surface. The latter effect (reduced heat gain) is clearly desirable
in summertime conditions.

Nusselt numbers. The local heat transfer coefficient and the Nusselt
number along the hot and cold walls are computed using the following definitions:

hh =
k(BT/ Bn)]h

h =
k(BT/Bn)]e

(21)
(Th - Te)

e (Th - Te)

NU h =
hhSh,max

NU e =
heSe, max

(22)
k k

where n denotes the normal distance from the wall and S is the distance along the
heated or cooled wall measured from its lowest point (X = 0, Y = 0). The average
heat transfer coefficients and Nusselt numbers are calculated as

71..=e
Qconv

(23)

-- lieSe, max
NU e = -----'--

k
(24)
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where Qro"V is the overall convection heat transfer at the surface and A hand A e
are the heat transfer areas along the hot and cold walls, respectively. Since
hhSh.mnx = heSe,max' it follows that NUh = NUe = Nu.

The normalized local Nusselt number distribution Nu* (Nu* = Nu/Nu o,
where Nu., is the value of Nusselt number for pure conduction, i.e., Ra = 0) along
the hot and cold walls are presented for a partition-free enclosure and a parti­
tioned enclosure (BL = W13 and BH = 2 H13) in Figures 7 and 8, respectively. In
this normalized form the relative effect of convection can be directly assessed.
Values are plotted as a function of SISmax, where Smax is the maximum possible
value of S along the wall.

In Figure 7 the variations of Nu* along the hot wall are presented. At low Ra,
conduction is the dominant heat transfer mode in the whole enclosure (Nut = 1).
At high Ra and along the vertical portion of the hot wall (i.e., ShiSh max < 0.1945),
convection is the dominant heat transfer mode (Nu* > 1) for both the partitioned
and nonpartitioned enclosures, and Nu* increases with increasing Ra values. Along
the inclined portion of the hot wall (1 > ShiSh. max > 0.1945), Nu* < 1 along most
of its length, and this is caused by the strong stratification effects in the upper
region. As shown in Figure 7, the Nu ratio decreases all the way to the apex of the
enclosure, reaching values as low as 0.02.

The effect of the baffles is to decrease heat transfer along the initial portion
of the hot wall and to increase it along the remaining portion (Figure 7). The
decrease in the initial part is due to the shift in the location of the vortex core from
the lower to the upper left part of the domain (compare streamlines in Figures 2
and 3). The increase over the remaining portion of the hot wall is due to the larger
temperature gradients caused by lower stratification levels (compare isotherms in
Figures 2 and 3).

- - --

0.1

'"

'"

....

- -

",

'"

0.01 '- ~__~__~_.......JL__~__~__~__~_ _'

o o.s S/Smax

Figure 7. Local normalized Nusselt number distribution along the hot wall for BL = W/3
and BH = 2H/3 (summer).
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Figure 8. Local normalized Nusselt number distribution along the cold wall for BL ~ W13
and BH = 2HI3 (summer).

The Nu distributions along the horizontal cold wall are displayed in Figure 8.
As expected, the level of Nu increases with increasing Ra value. In a baffle-free
enclosure the values of Nu decrease monotonically from right to left along the cold
wall (except very close to the corner, where there is an increase due to the
proximity of the heated wall). This is expected and is caused by the decease in the
temperature of the fluid as it moves along the cold wall. In a partitioned enclosure
the flow separates in the right portion of the domain. This flow separation leads to
a separate counterrotating eddy in the right-trap region at higher Ra values and is
associated with a decrease in heat transfer (Nusselt number) in that region as
compared to values obtained in a nonpartitioned enclosure. The fluid reaching the
portion of the cold wall to the left of the baffle is carried by the separated shear
layer from the symmetry line and is therefore hotter than its counterpart in a
nonpartitioned enclosure. Consequently, as depicted in Figure 8, the temperature
gradients (and thus the Nusselt numbers) along that portion are higher for a
partitioned enclosure. Note the very sharp increase in Nu~ across the baffle, which
attests to the effect of the separated jet that impinges first on the top of the baffle
and then moves down to the cold wall.

The normalized average Nu values (Nli") and the average conduction values
(Nuj) for all cases studied are given in Tables 2 and 3, respectively. At low and
moderate Ra ( < 105

) the overall heat transfer appears to be strongly dominated by
conduction. The contribution of advection to the total heat transfer becomes as
important as the conduction contribution at Ra between 106 and 107

• In general,
the presence of baffles decrease the overall heat transfer. The decrease in heat
transfer is greater with increasing BH (baffle height) and decreasing BL (distance
from the hot vertical wall). The average Nu values, displayed in normalized form in
Table 2, are correlated with a maximum deviation of less than ± 12.52% via the
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Table 2. Normalized average Nusselt number values (I'lii") for summertime conditions

BH = 0
BH =H/3 BH = 2H/3

Ra BL = 0 BL = W/3 BL = 2W/3 BL = W/3 BL = 2W/3

103 1.010 1.007 1.008 1.007 1.008
10' 1.107 1.076 1.100 1.0632 1.090
10' 1.307 1.255 1.296 1.189 1.266
10· 1.659 1.547 1.627 1.443 1.588
10' 2.191 1.955 2.117 1.804 2.061
5 X 10' 2.519 2.234 2.451 2.034 2.333

following relation:

(
BL)O.058( BH)-O.23

Nu* = 3.03(Ra)o.0803 1 + W 1 + H (25)

Wintertime Boundary Conditions

Streamlines and isotherms. Streamline and isotherm maps are displayed
in Figures 9-11, while the maximum absolute values of the stream function I'l'max I
are depicted in Table 4. Inspection of the computed streamlines and isotherms in
the nonpartitioned enclosure (Figure 9) indicates that for Ra > 103 the flow is
composed of two counterclockwise rotating convective cells at the two ends with a
third middle cell rotating clockwise. These findings are in line with those reported
by Lam et al. [4] and Salmun [19]. Moreover, isotherm plots reveal that conduction
is the dominant heat transfer mode at the lowest Ra considered (Figure LOe) and
convection starts to dominate at values of Ra higher than 103

, as clearly seen by
the distortion in the isotherms displayed in Figures lOt-lOh. It should be pointed
out here that a two-dimensional model cannot adequately describe the three­
dimensional flows that occur in the trapezoidal cavity under this given boundary
condition; however, the two-dimensional model can predict, as demonstrated by
Lam et al. [4], heat transfer rates to an acceptable accuracy. Since the intention
here is to estimate and correlate heat transfer, the two-dimensional model used is
perhaps sufficient.

Table 3. Average conduction Nusselt number values (Nuo)
for summer andwinterconditions

BH = 0, BL = 0
BH =H/3

BL = W/3
BL = 2W/3

BH = 2H/3
BL = W/3
BL - 2W/3

5.49204

5.53837
5.52636

5.59128
5.56778
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b·106
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lsotberaa
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Figure 9. Streamline and isotherm plots in a nonpartitioned cavity (winter).

Results are presented in Figures 10 and 11 for partitioned enclosures. In
Figure 10 the baffle height is BH = 2H/3 and is located at BL = W/3, while in
Figure 11 the baffle height is BH = H/3 and is located at BL = 2W/3. As
depicted, the presence of baffles significantly alters the flow and temperature
fields. At low values of Ra (10 3 and 104) , streamlines and isotherms displayed in
Figure 10 are slightly different from those shown in Figure 9, however, they are
very different at high Ra (105 and 106

) , where the number of large convective cells
spanning the full vertical extent of the domain is reduced by 1. Small satellite cells
appear for each of the two main large cells. At all Ra, for the tall baffle, there is
little communication between the two sides.

For the configuration in Figure 11 (shorter baffle, placed further away from
the hot wall) the flow pattern undergoes a transformation from a two-cell arrange-

(a) (b) (c) (d)
Streamline.

Ba - 103 Ra - 104 Ila • 105 la _ 106

.. ac.:J ctCJ
(e) (f) (g) (h)

180tbUlDS

Figure 10. Streamline and isotherm plots for BL ~ W/3 and BH = 2H/3 (winter).
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(e) (j)
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Figure II. Streamline and isotherm plots for BL = 2W13 and BH = HI3 (winter).

ment at Ra = 103 to a three-cell pattern at Ra = 105 and then back to a two-cell
pattern at Ra = 106. This behavior is linked 10 the competing effects of the vertical
cold wall thaI promote the flow pattern in Figure 11b and a heated bottom wall
that promotes the flow pattern in Figure 11c. The cold wall at the top, because of
its inclination, is likely to support both flow pattern modes. The isotherms mimic
the flow behavior. Note the plume type isotherm patterns in Figure l1g and the
boundary layer type isotherms in Figure 11h and their direct correspondence with
the flow pattern.

Table 4 presents the maximum absolute value of the stream function l'I'ma.l,
which is seen to be lower for a partitioned enclosure. By a careful inspection of
Table 4, the following conclusions can be drawn: (1) for any Ra, partitions reduce
l'I'mux I, the largest reductions being for the partition that is farther away from the
vertical wall; (2) the location of the partition influences the flow strength more so
than does the height of the partition; and (3) at constant Ra the lowest l'I'ma.1 is
obtained for the configuration where BL = 2WI3 and BH = 2H13.

Velocity and temperature profiles. Figure 12 shows the horizontal veloc­
ity component along X = W12H for a nonpartitioned cavity and a partitioned one
with a baffle of height BH = H13 located at BL = 2W13. The velocity profiles
reflect the flow fields displayed in Figures 9 and 11. As expected, the magnitude of

Table 4. Maximum absolute values of the stream function for winter conditions

BH = 0
BH ~ HI3 BH = 2H/3

Ra BL = 0 BL = WI3 BL = 2wI3 BL = WI3 BL = 2wI3

10' 7.72 5.82 2.91 5.91 2.35
10' 35.15 33.86 24.37 33.85 21.48
10' 107.97 90.18 72.31 103.93 68.63
10' 318.35 243.94 250.10 300.63 206.74
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Figure 12. Velocity profiles at X = W12H for BL = 2W13 and BH = H13 (winter).

the horizontal velocity component increase with increasing Ra. Note the opposite
direction of the velocities near the walls between the partitioned and nonparti­
tioned cases at Ra = 104

, while at Ra = 105
, the velocities appear to be in the

same direction. This behavior is again linked to the differing flow patterns (two-cell
versus three-cell) observed at different Ra.

The midwidth temperature profiles (X = W/2H) are shown, for the same
configuration, in Figure 13. Again these profiles reflect the isotherm maps pre­
sented in Figures 9 and 11. The temperature distribution changes greatly from the
conduction regime (i.e., linear distribution) at low Ra to the convection regime at
high Ra. Furthermore, at high Ra the temperature profiles indicate the presence of
two thermal boundary layers along the hot and cold walls where sharp gradients
are observed. Because of the lower velocities and the strong stratification, the
temperature gradients in the core are very small at high Ra. This is more
pronounced in a partitioned enclosure. Furthermore, at high Ra there is clear
evidence of temperature inversion near both the hot and cold walls.

Nusselt numbers. The local heat transfer coefficient and Nu along the hot
and cold walls are computed using Eqs. (23) and (24). The normalized local Nu
distributions Nu' are shown for a nonpartitioned and a partitioned enclosure
(BL = 2W/3 and BH = H/33) in Figures 14 and 15. In Figure 14 the variations of
Nu" along the bottom hot wall are presented. For a nonpartitioned enclosure the
same trend is observed at all values of Ra considered with an increase in the level
of Nu' (i.e., in convection heat transfer) with increasing Ra. As depicted, a dual
peak in the normalized Nu is noticed. As the flow proceeds to the right, away from
the vertical cold wall, the heat transfer increases until it reaches a maximum at
X ,., 0.15 and then starts decreasing to reach a minimum at X,., 0.25-0.3, where
the thermal plumes induced by the left and middle eddies rise upward, away from
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Figure 13. Temperature profiles at X = W/2H for BL = 2W/3 and Bii. = H /3 (winter).

the hot surface, creating a region of low temperature gradients (see Figures 9f-9h)
and therefore low Nu". The second peak is caused by the impingement of the cold
streams from the middle and right eddy on the hot wall at X "" 0.5, creating large
temperature gradients and thereby large Nu", The decrease to the left and right of
the second peak is due to the increase in the temperature of the cold fluid, which
decreases the temperature gradients and leads to lower heat transfer.

50
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Figure 14. Local normalized Nusselt number distribution along the hot wall for BL = 2W/3
and BH = H/3 (winter).
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In the presence of baffles, the level of Nu' for the same value of Ra
decreases, indicating a decrease in total heat transfer. For the cases where
convection is the dominant heat transfer mode (i.e., for Ra ss 104

) , a local
minimum (depression) in Nu' is observed at the location of the baffle. Flow
separates on both sides of the baffle (Figure lle, for example), leading to small
relatively weak baffle-comer recirculation regions, and these are associated with
low heat transfer rates. Elsewhere along the hot wall, Nu' distribution reflects the
flow patterns and isotherms displayed in Figure 11. Depending on the number of
cells, two or three peaks are observed. For Ra = 104 and 106

, where there are two
primary cells, one peak is observed where the cold flow moving down the vertical
wall impinges on the heated surface, and the other peak is associated with the
location where the smaller second eddy to the right of the baffle impinges along
the hot wall (near the symmetry line). For Ra = 105, three primary eddies are seen,
as in the nonpartitioned case, and correspondingly, three peaks are noted.

The normalized Nu distributions along the cold wall are displayed in Fig­
ure 15. In a baffle-free enclosure the Nu distributions correspond to the three-roll
pattern. Starting from the top most point (i.e., Sc/Sc max = 1) and moving to the
left, Nu' decreases because of a decrease in the temperature of the fluid descend­
ing the cold inclined wall. This decrease continues until a minimum is reached at
the location where the right-counterclockwise rotating eddy meets the middle­
clockwise rotating eddy, and the flow is directed downward as a plume toward the
opposite wall, creating a region of low temperature gradient and, thereby, a local
minimum in heat transfer. Beyond that point an increase in Nu' is seen to occur
until a peak in heat transfer is obtained at the point where the left eddy and the
middle eddy, both carrying hot fluid, impinge on the cold wall. Beyond this region,
the fluid temperature and the temperature gradient decrease, causing a decrease in

50
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Figure IS. Local normalized Nusselt number distribution along the cold wall for BL = 2W/3
and BH = H/3 (winter).
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Nu' until the cold vertical wall is reached, where the flow re-impinges on the
vertical wall, leading to a small peak. While moving down the cold vertical wall,
there is a rapid decrease in the convection heat transfer.

In the presence of baffles the Nu distribution is again dictated by the flow
field. At Ra = 105

, because of the similarity with the flow field obtained in a
baffle-free enclosure, the Nu' distribution is similar except that the Nu' values are
lower. For the other Ra, because the flow field along the cold wall is composed of
one counterclockwise rotating eddy, Nu' decreases from right to left along the cold
wall with a small local peak where the flow negotiates the corner with the vertical
wall.

Heat transfer results for all cases studied are presented in the form of
average normalized Nusselt number values in Table 5. Unlike the summertime
boundary condition, convection becomes important at relatively low values of Ra.
However, as in the previous case, partitioning the domain decreases the overall
heat transfer. For a given baffle height (BH), the decrease in heat transfer
increases with increasing distance from the vertical wall (BL) but is relatively
unaffected by the baffle height. This is in contrast to the earlier case, where the
baffle height played a dominant role in the reductions of heat transfer. The
average Nusselt number values, displayed in normalized form in Table 5, are
correlated as

(
BL) -0.198( BH )0.036

Nu' = 1.508(Ra)0.229 1 + W 1 + Ii (26)

with a maximum deviation of less than ± 12.65%. In contrast to Eq. (25), the above
equation shows a strong dependence on Ra, a strong inverse dependence on BLjW
and a weak dependence on BHjW.

CLOSING REMARKS

A numerical investigation of natural convection heat transfer in partially
divided trapezoidal cavities is performed. The effects of Rayleigh number, baffle
height, and baffle location on heat transfer in summer-like (bottom-cooled) and
winter-like (bottom-heated) conditions are studied. The following major conclu­
sions are noted.

Table S. Normalized average Nusselt number values (Nu") for winter conditions

BH = 0
BH = Hj3 BH = 2Hj3

Ra BL = 0 BL = Wj3 BL = 2Wj3 BL = Wj3 BL ~ 2Wj3

103 1.185 1.141 1.047 1.145 1.041
10' 2.317 2.191 1.602 2.004 1.681
10' 4.055 3.652 3.299 3.144 2.777
10' 6.360 5.927 4.533 5.276 4.962
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1. For the bottom-cooled situation the flow and isotherm patterns in the
unheated case are similar to that of a heated vertical enclosure except that
stratification effects at the top are important. For the partitioned case, at
high Ra, the flow separates in the form of a horizontal shear layer from
the symmetry line at a location corresponding to the baffle top. This
separated shear layer impinges on the horizontal wall on the far side of the
baffle, leading to large local heat transfer rates.

2. For the bottom-heated situation, without partitions, a three-cell flow
pattern is noted for Ra > 104

, with plume-like behavior leading to local
peaks in the heat transfer distributions. In the presence of partitions,
either a two-cell or a three-cell flow pattern could be obtained, depending
on Rayleigh number. These flow patterns have corresponding ramifica­
tions on the local heat transfer.

3. Convection effects are far more pronounced for bottom-heated situations.
The presence of baffles decreases heat transfer for both boundary condi­
tions. For the bottom-cooled (summer-like) conditions, the decrease in the
heat transfer due to partitions is strongly influenced by the baffle height,
with a taller baffle providing greater reduction in heat transfer. For the
bottom-heated (winter-like) configuration the reductions in heat transfer
are relatively insensitive to baffle height and depend mostly on baffle
location, with lower heat transfer for the baffle located closer to the
vertical wall.
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