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Abstract 

The indiscriminate application of the Convective Boundedness Criterion (CBC) in all flow 

regions results in a new and subtle error that leads to a significant reduction in accuracy at 

locations where physical extrema (maxima or minima) with steep profiles are present. In 

this paper, a new Bounded EXtremum PREServing Strategy (B-EXPRESS) that addresses 

this issue is presented. The B-EXPRESS is a two-stage procedure in which, an Extremum 

Recognition Algorithm (ERA) is first applied to a solution converged to a set level to flag 

locations at which enforcing the CBC leads to extrema attenuation. Then, in the second 

stage, an unbounded scheme is used at the flagged locations, while a bounded scheme is 

used elsewhere. The new strategy is applied to the SMART (a 3rd order bounded scheme) 

and BSEVENTH (a 7th order bounded scheme) schemes to yield two new schemes denoted 

by B-EXPRESS-3 and B-EXPRESS-7, respectively. These schemes are tested by solving 

four problems of pure convection in an oblique velocity field of a sinusoidal, elliptic, 

triangular, and box profiles. Results obtained reveal the B-EXPRESS-3 to greatly reduce 

the rate of attenuation in the levels of the profiles and to be as accurate as the BSEVENTH 

scheme which, on average, requires 540% more CPU time than the B-EXPRESS-3 

scheme. Moreover, the B-EXPRESS-7 scheme computations do not show any observable 

attenuation in the levels of the profiles while marginally increasing the CPU effort (3.43% 

on average) over the BSEVENTH scheme.  



 

Nomenclature 

A  Coefficients in the discretized equation. 

B  Source term integrated in the discretized equation. 

Cf  Convective flux coefficient. 

Grad Gradient. 

J  Total scalar flux across cell face. 

minGrad Minimum Gradient. 

Q   Source term in the conservation equation.  

S  Surface vector of cell face. 

u  Velocity vector. 

Γ  Diffusion coefficient. 

φ  General dependent variable. 

ρ  Density. 

ξ  Local Curvilinear coordinate. 

Superscripts 

˜   Refers to normalized variable. 

C   Convection contribution. 

D   Diffusion contribution. 

U   Upwind formulation. 

Subscripts 

C   Central grid point. 

D   Downstream grid point. 

E,W,. Refers to neighbors of the P grid point. 

e,w,.. Refers to control volume faces. 

f   Refers to control volume face. 
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NB   Refers to neighbours of the main grid point. 

nb   Refers to neighbours of a control volume face. 

P   Main grid point 

U   Upstream grid point. 
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Introduction 

The numerical dispersion problems that have hindered the use of one-dimensional and 

multi-dimensional higher-order interpolation profiles in the simulation of convection- 

diffusion transport problems have been eliminated [1-4]. This has been accomplished by 

enforcing a monotonicity constraint or a Convective Boundedness Criterion (CBC) [5] on 

the higher-order profiles and has resulted in a family of bounded High Resolution schemes 

following either the TVD [6] or NVF/NVSF [1,7] approaches. 

However, the indiscriminate application of the CBC in all flow regions has resulted in a 

new and subtle error that leads to a significant reduction in accuracy at locations where 

physical extrema (maxima or minima) with steep profiles are present. The reduction in 

accuracy is mainly due to the attenuation of the physical extrema levels. More specifically, 

the local physical extrema in the profiles gradually decrease in value with distance as if in 

the presence of a diffusion phenomenon. 

This can be assessed in a very simple numerical experiment: simulation of pure convection 

of a sinusoidal, a triangular, an elliptic, or even a box profile using the SMART [5] or 

SHARP [1] scheme. As will be shown, prediction using the SMART scheme 

underestimate the maximum value by about 30% near the outlet region. On the other hand, 

employing an unbounded version of the SMART scheme, namely the QUICK scheme of 

Leonard [8], results in a much lower attenuation in the profile levels (∼10% near the 

outlet). Moreover, results obtained with the BSEVENTH [9] scheme, a bounded Very 

High-Order scheme (Very High-Resolution) based on a seventh order profile, 

underestimate the maximum by about 10% near the outlet region, while the unbounded 

SEVENTH scheme yields negligible attenuation of the maximum. Even though the 

SEVENTH and QUICK schemes show lower attenuation levels, they suffer from a well 

known problem of over/under shoots which, for some problems, results in values for 

certain variables that are physically meaningless (e.g., negative density or energy). 

This is a clear indication that significant improvements in accuracy can be achieved and 

unnecessary errors avoided if these extrema can be found and flagged in a computational 

field, and the CBC [5] de-activated at these locations while remaining active in the  
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remainder of the flow field, thus not compromising the boundedness of the solution 

profile. In his work on the explicit Non-oscillatory Integrally Reconstructed Volume-

Averaged Numerical Advection scheme (NIRVANA) [10], Leonard addresses this issue 

and through the use of the "discrete integral variable", ψ, locates local extrema by 

inflection points in ψ. However, the ramifications of his approach have remained more-or-

less unnoticed by the computational fluid dynamics community at large. The underlying 

concepts are simple as will be demonstrated later, and his algorithm can be reformulated 

and fitted within a strategy that applies equally for implicit and explicit schemes in the 

scalar field. The development of such a strategy is the subject of this paper. 

The Bounded EXtrema PREServing Strategy (B-EXPRESS) developed in this work to 

preserve extrema in steady flows, can be applied to the family of high-resolution schemes 

constructed using either the NVF/NVSF or the TVD methodology by incorporating a 

switch-off parameter that controls the application of the CBC. The strategy followed in 

implementing the B-EXPRESS is a two-stage procedure. In the first stage, an Extremum 

Recognition Algorithm (ERA) is applied to a solution converged to a set level obtained 

using a High-Resolution (HR) or Very High-Resolution (VHR) scheme to flag the extrema 

regions. Then, in the second stage, the computational field is driven to full convergence by 

using the unbounded base scheme in the flagged regions and the bounded scheme in the 

remainder of the domain. The B-EXPRESS is applied to the SMART and BSEVENTH 

schemes to yield two new schemes denoted by B-EXPRESS-3 and B-EXPRESS-7, 

respectively. Moreover, the new strategy is tested for efficiency and accuracy by 

comparing the performance, in four steady test problems, of the newly developed B-

EXPRESS schemes against that of the SEVENTH, BSEVENTH,  SMART, and QUICK 

schemes. Results indicate that accuracy similar to that of the BSEVENTH scheme is 

achieved with only about 70% increase in computational cost when compared to the 

SMART scheme and over 5 fold reduction when compared to the BSEVENTH scheme. It 

should be mentioned here that a fifth order scheme could have been chosen instead of the 

seventh order scheme. However, experimentation showed that the difference in results 

between the third and fifth order schemes is not as large as the difference between the third 

and seventh order schemes. Accordingly, the latter was chosen. Nevertheless, the 
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methodology developed is applicable to all HR and VHR schemes irrespective of their 

order of accuracy. 

In the remainder of this article, a brief description of the discretization process and the 

CBC is given followed by a short review of the high-resolution schemes used in this work. 

Then the ERA is presented and its implementation within the B-EXPRESS detailed. 

Finally, a number of problems are solved to illustrate the advantages of the new strategy. 

Numerical Discretization of the Transport Equation 

The transport equation governing two dimensional incompressible steady flows may be 

expressed in the following general form: 

( ) ( ) Q+φ∇Γ⋅∇=φρ⋅∇ u  (1) 

where φ is any dependent variable, u is the velocity vector, and ρ, Γ, and Q are the density, 

diffusivity, and source term respectively.  Since a control volume based formulation is 

sought, Eq. (1) is integrated over the control volume shown in Figure 1(a) to yield, upon 

applying the divergence theorem, the following discretized equation: 

BJJJJ snwe =+++  (2) 

where Jf represents the total flux of φ across cell face f (f= e, w, n or s), and B is the 

volume integral of the source term Q.  Each of the surface fluxes Jf contains a convective 

contribution, Jf
C , and a diffusive contribution, Jf

D , hence: 

D
f

C
ff JJJ +=  (3) 

where the diffusive flux is given by: 

( ) ff
D
f .J Sφ∇Γ−=  (4) 

and the convective flux by: 

( ) ffff
C
f C.J φ=φρ= Su  (5) 

where Sf is the surface of cell face f, and Cf is the convective flux coefficient at cell face f.  

The discretization of the diffusive flux does not require any special consideration and the 

use of a linear interpolation profile to write the gradient as a function of the neighboring 
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grid points is adequate. Therefore, the suggested diffusion model is second-order accurate 

as would be the overall scheme in a diffusion-controlled problem. 

The discretization of the convective flux is, however, problematic and requires special 

attention. As can be seen from Eq. (5), the accuracy of the control volume solution for the 

convective scalar flux depends on the proper estimation of φf as a function of the 

neighboring φ node values. Using some assumed interpolation profile, φf can be explicitly 

formulated by a functional relationship of the form: 

( )fnbf C,f φ=φ   (6) 

where φNB denotes the neighboring φ node values (φE, φW, φN, φS, φP, φEE, φWW, φNN, φSS, 

etc...). The interpolation profile may be one-dimensional or multi-dimensional of low or 

high-order of accuracy. The higher the order of the profile is, the lower numerical diffusion 

will be. However, the order of the profile and its dimensionality do not eliminate 

over/undershoots. As explained later, this error is minimized by forcing the convective 

flux to remain within set bounds. 

After substituting the face values by their functional relationships relating to the node 

values of φ, Eq. (2) is transformed after some algebraic manipulations into the following 

discretized equation: 

P
NB

NBNBPP BAA +φ=φ ∑  (7) 

where the coefficients AP and ANB depend on the selected scheme and BP is the source 

term of the discretized equation. An equation similar to Eq. (7) is obtained at every grid 

point in the domain and the collection of all these equations form a system of algebraic 

equations that is solved here iteratively to obtain the φ field. 

Normalized Variables and the Convection Boundedness Criterion (CBC) 

As mentioned above, to minimize the numerical dispersion error, limiters on the 

convective flux should be imposed. The flux limiter denoted by the CBC [5] is adopted 

here and explained next in terms of the normalized variables approach. Figure 1(b) shows 

the local behavior of the convected variable near a control-volume face. If the value of the 
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dependent variable at the control volume face located at a distance ξf from the origin is 

expressed by φf, then the normalized variables (Figures 1(c)) will be defined as [7]: 

UD

U

UD

U

~

~

ξ−ξ
ξ−ξ

=ξ

φ−φ
φ−φ

=φ

 (8) 

where the subscripts U and D that depend on the flow direction, refer to upstream and 

downstream locations, respectively. 

Using the normalized variables, the CBC for implicit steady state flow calculations [5], 

states that for a scheme to have the boundedness property its functional relationship should 

be continuous and bounded from below by φ~f = φ~C and from above by unity, should pass 

through the point (0,0) and (1,1) in the monotonic range 0< φ~C<1, and for φ~C< 0 or φ~C>1 

the functional relationship f(φ~C) should equal φ~C.  These conditions can be described 

graphically on a Normalized Variable Diagram (NVD) as shown in Fig. 2.  

This criterion can be imposed on any scheme, irrespective of the order of its interpolation 

profile. It will be used to ensure the boundedness of the third and seventh order schemes 

described below. 

Higher-Order Schemes 

The CBC can currently be enforced on any interpolation profile in order to get its 

equivalent bounded version. In general, an interpolation profile can be constructed by 

fitting a polynomial, as in the following equation, to a set of control volume nodes 

judiciously chosen (Fig. (3a)):  

...aaaaaa 5
5

4
4

3
3

2
210 +ξ+ξ+ξ+ξ+ξ+=φ  (9) 

In the above equation (Eq. (9)), ξ represents the local coordinate axis.  The order of the 

polynomial can be chosen to yield the required scheme with its coefficients calculated by 

fitting the polynomial to a number of nodes in the computational domain. Since the new 

strategy developed in this work is tested using a third and a seventh order schemes, 

attention is focussed on the polynomial profiles used in constructing these schemes. The 

unbounded third order scheme, denoted by QUICK [8] can be constructed by fitting a 
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second order polynomial to the nodes at locations U, C, and D (Figure 3(b)). The resulting 

functional relationship for the QUICK scheme may be written for a regular grid as: 

UCDf 8
1

4
3

8
3

φ−φ+φ=φ    (10)  

and for an irregular grid as: 
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≠  (11)  

Similarly, the unbounded seventh order scheme can be built by fitting a 6th order 

polynomial to the nodes at locations UUU, UU, U, C, D, DD, DDD (Figure 3(c)). Its 

functional relationship over a regular grid is given by: 

φ φ φ φ φ φ φ φf DDD DD D C U UU UUU= − + + − + −
7
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 (12)  

and over an irregular grid by:   
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 (13) 

 

The bounded versions of the QUICK (known in the literature by SMART [5]) and seventh 

order schemes (denoted by SEVENTH) are obtained by simply using Eqs. (10)-(13) to 

calculate the value of φ at the control volume face, normalizing φC and φf to yield φ~C and φ~f

 respectively, and then enforcing the CBC in the event it is not satisfied. The resultant φ~f is 

subsequently unnormalized to yield the bounded value of φf.  



B-EXPRESS: A New Bounded Extremum PREServing Strategy             10 

 

The Extremum Recognition Algorithm (ERA) 

As illustrated in Figure 4, an Extremum Recognition Algorithm (ERA) should be based on 

the fact that a local extremum is characterized by a change of the gradient sign before and 

after its location. Using this property, it is conceptually possible to determine the location 

of any extremum in a scalar field by calculating the gradients and searching for a sign 

change. However, two difficulties arise within the context of a numerical solution. Even 

though the roots of these difficulties are different, their outcome is the same namely the 

creation of artificial extrema. The first is caused by pseudo-time numerical oscillations 

around a certain value arising from round-off errors or from iterative solutions that are not 

fully converged, whereas the second is due to the unphysical behavior of unbounded 

convective schemes (dispersion error), and guarding against these two pitfalls is important. 

In this work, the first difficulty is addressed by the ERA while the second is anticipated by 

the B-EXPRESS. 

Since the CBC is enforced on a control volume surface basis, it is only needed to restrict 

attention to locating extremum within a computational cell. Figure 4 illustrates the various 

possible configurations that may arise in the ERA. In all cases, the gradients at the control 

volume faces (Gradw, Grade,…) are calculated and their absolute values compared to a set 

value “minGrad” (=0.05). If the absolute values of the gradients are larger than “minGrad” 

and the gradients have opposite signs (Figure 4(a)), then a local maximum is present 

within the control volume and the two surfaces are flagged. If the value of the gradient at 

one of the surfaces is less than “minGrad” (the other value being higher), then the gradient 

on the surface of the adjacent cell is calculated and its value compared to “minGrad” 

(Figure 4(b)), or Figure 4(c)). If the two gradients have opposite signs then a local 

extremum is estimated to be present in the adjacent control volume and only the surface in 

question is flagged. The configurations depicted in Figures 4(d) and 4(e) are covered by 

the one shown in Figure 4(a) and therefore do not require any attention. This simple 

algorithm can also be applied with the appropriate sign change to locating local minima. 

Mathematically the algorithm is written as: 
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The ">>0" sign indicates that “Grad” is larger in magnitude than “minGrad” and positive, 

while the "0<<" sign indicates that the “Grad” is larger in magnitude than “minGrad” and 

negative. 

The above-described procedure is not limited to situations in which the convected variable 

is of order unity, rather, it is applicable to convected variables of any order of magnitude. 

This is true because the algorithm is based on the change in the sign of the gradient rather 

than its magnitude. 

The Bounded EXtrema PREServing Strategy (B-EXPRESS) 

With the ERA defined, its implementation within the iteration cycles of the overall CFD 

program is now described. Bearing in mind the second issue that need to be addressed by 

the B-EXPRESS, namely the suppression of local extrema originating from dispersion 

error, it was decided to implement the B-EXPRESS in two steps similar and compatible 

with the adaptive stencil strategy of Darwish and Moukalled [9]. In the first step a near 

converged solution is obtained using a bounded high-resolution scheme to ensure that 

undue oscillations are removed before using the ERA for flagging. The ERA is then 

invoked to determine the control volume faces that should be flagged, and the nearly 

converged field is driven to full convergence using a modified HR scheme whereby the 

CBC is enforced only on the non-flagged cell sides. Because the solution is nearly 

converged, the number of iterations needed to reach full convergence and thus the 

computational cost are minimized. Therefore, the ERA is employed once during the global 

iteration cycle to define the flagged region of a bounded nearly converged solution. 

Filtering of Plateau Regions 

In certain situations where a plateau exists (Fig. 5), the application of the current strategy 

can yield inaccurate results due to a steepening of the profiles. This situation is illustrated 

in the fourth test problem where a box profile is convected. The ERA algorithm flags a 
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number of control volumes on both sides of the steep section of the box profile. This 

flagging is due to the fact that the used solution is not complete and contain some 

numerical diffusion which changes the profile from a plateau section into a round section. 

This detrimental behavior is easily corrected in the B-EXPRESS methodology through the 

use of a filtering algorithm which turns off the ERA flagging whenever proportion of the 

gradient magnitudes on both sides of an extrema exceeds a value of 5 i.e. whenever one of 

the gradients has a magnitude 5 times larger than the gradient on the other side. 

Results and Discussion 

To demonstrate the virtues of the new strategy, four problems involving convection in an 

oblique velocity field of the following profiles are considered: a sinusoidal profile (Fig. 

6(a)), a triangular profile(Fig. 6(b)), an elliptic profile (Fig. 6(c)), and a box profile (Fig. 

6(d)). Results are obtained by covering the computational domains with uniform grids of 

sizes 20x20. Grid networks are generated using the Transfinite Interpolation technique 

[11]. In all tests, computational results are considered converged when the residual error 

(ERROR) defined as: 

⎟
⎠
⎞⎜

⎝
⎛ ∑ +φ−φ=

= NB
pNBNBpp

N

1i
BAAMAXERROR  (15)  

becomes smaller than 10-5. 

Accuracy of the B-EXPRESS 

Convection of a sinusoidal profile in an oblique velocity field 

Figure 6(a) shows the first benchmark test problem consisting of a pure convection of a 

sinusoidal profile imposed at the inflow boundaries of a square computational domain. The 

sinusoidal profile is generated using the following equation: 

5Land10i1
L
isin i

i

=≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
=φ  (16) 

The results obtained using a number of schemes are depicted in Fig. 7. As shown, profiles 

are displayed at three different axial stations, near the inlet (x=0.375), near the centerline 

(x=0.525), and near the outlet (x=0.775) of the domain. It can be clearly seen that the 
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profiles obtained using the SMART and BSEVENTH schemes have a decreasing maxima 

as the flow moves towards the outlet region. This behavior resembles a diffusion-like 

phenomenon and should not be present in a pure convective situation. The unbounded 

version of SMART and BSEVENTH schemes, namely the QUICK and SEVENTH 

schemes, have better physical extrema preserving properties. The QUICK scheme results 

are similar to those of the BSEVENTH scheme  in spite of the difference in the order of 

their interpolation profiles (3rd versus 7th). The SEVENTH scheme computation does not 

show any observable attenuation in the profile. However, both unbounded schemes 

(QUICK and SEVENTH) show unphysical oscillations which are detrimental to the 

overall accuracy. The B-EXPRESS-3 and B-EXPRESS-7, which are the schemes obtained 

by applying the ERA procedure to the SMART and BSEVENTH schemes, have profiles 

that are similar to those of the unbounded schemes but without unphysical oscillations. 

This is a clear indication of the effectiveness of the developed strategy. Moreover, the 

increase in accuracy of the B-EXPRESS schemes over their original counterparts is over 

12% at x=0.775. 

Convection of a triangular profile in an oblique velocity field 

A triangular profile is used for the same geometric situation. This second test, illustrated in 

Figure 6(b), is more stringent than the sinusoidal test because of its sharp maximum. The 

triangular profile is generated using the following equation: 

4Land
9i5

L
)9i(

5i1
L

1i

i

i

i =

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤
−−

≤≤
−

=φ  (17) 

The trends of results, shown in Fig. 8, are similar to those reported in Fig.7. The SMART 

and BSEVENTH schemes show significant attenuation in the profiles as the flow moves 

towards the outlet. The B-EXPRESS-3 predictions are similar to the BSEVENTH results 

despite the difference in the order of their interpolation profiles. The B-EXPRESS-7 

results do not show any observable attenuation of the extrema, which indicates an 

excellent performance. Moreover, at x=0.775, the B-EXPRESS-3 profile is about 8% more 
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accurate than that obtained using SMART and the B-EXPRESS-7 profile is over 12% 

more accurate than that generated by the BSEVENTH scheme. 

Convection of an elliptic profile in an oblique velocity field 

The B-EXPRESS was also tested for an elliptic profile (Fig. 6(c)) generated using the 

following equation: 

( )
( )

5Land11i1
L

6i1 i2
i

2

=≤≤
−

−=φ  (18) 

Results obtained via the QUICK, SEVENTH, SMART, BSEVENTH, B-EXPRESS-3, and 

B-EXPRESS-7 are displayed in Fig. 9. As for the previous two problems, profiles at three 

different locations are presented (x=0.375, x=0.525, and x=0.775). The trend of results is 

consistent with what was obtained in the previous two test problems and shows the new 

strategy to be effective in decreasing the rate of attenuation in the profiles. As before, the 

best bounded results are obtained when using the B-EXPRESS-3 and B-EXPRESS-7, with 

profiles generated with the B-EXPRESS-3 (a third order scheme) being of quality similar 

to those obtained with the BSEVENTH  (a seventh order scheme). Moreover, results 

obtained with B-EXPRESS-7 do not show any observable attenuation in the extrema. 

Again, as compared to the base schemes, the new B-EXPRESS schemes increase the 

accuracy by about 10% at x=0.775. 

Convection of a box profile in an oblique velocity field 

The last problem deals with the convection of a box profile in an oblique velocity field. 

The physical situation for this problem is shown in Fig. 6(d). This profile is chosen to test 

the B-EXPRESS strategy in the existence of a plateau region. The box profile at inlet to 

the domain is defined by: 

⎩
⎨
⎧ ≤≤≤≤

=φ
elsewhere0

5j1and5i11
 (19) 

Profiles at two different streamwise locations (x=0.25 and x=0.75) are presented (Fig. 10).  

The filtering of the plateau region using the previously described strategy seems to be 

working well with no signs to any problems. The unboundedness of QUICK and 

SEVENTH is obvious. The attenuation in the maxima levels is almost eliminated with both 
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B-EXPRESS schemes and the overall trend of results is identical to that obtained in the 

previous test problems. Improvements with B-EXPRESS-3 over SMART (12% at x=0.75) 

are more pronounced than B-EXPRESS-7 over BSEVENTH due to a better performance 

of the BSEVENTH scheme in this problem. 

Efficiency of the B-EXPRESS 

In the above sections, the increase in accuracy with the B-EXPRESS was shown. The 

question arises, however, as to whether this increase in accuracy is associated with a high 

increase in computational cost or not. To eliminate doubts, the CPU times needed to solve 

the above-mentioned problems using the various schemes are displayed in Fig. 11. The 

trend is similar for the various profiles. The increase in computational cost with B-

EXPRESS-3 is about 70% over SMART. However, the accuracy is the same as that 

achieved with the BSEVENTH scheme which needs 540% the CPU effort needed by B-

EXPRESS-3 (Figs. 11(a)-(d)). Moreover, the increase in CPU time with B-EXPRESS-7 is 

marginal as compared to BSEVENTH (3.43% on average, Figs. 11(a), 11(c), and (d) show 

a slight increase whereas Fig. 11(b) shows a decrease). Keeping in mind the higher 

accuracy of the B-EXPRESS-7, it is more efficient to be used, since for a desired level of 

accuracy, a denser grid will be needed with the BSEVENTH scheme. 

Concluding Remarks 

A general strategy for the development of extrema-preserving schemes has been presented 

and applied to a bounded third order scheme (SMART) and a bounded seventh order 

scheme (BSEVENTH) to yield two new schemes denoted by B-EXPRESS-3 and B-

EXPRESS-7, respectively. The new schemes were tested by solving four purely steady 

convective transport problems. The ERA based schemes (B-EXPRESS-3 and B-

EXPRESS-7) showed significant decrease in the attenuation of the extrema in all tests, 

with the B-EXPRESS-7 computation not showing any observable preservation of the 

extrema throughout the computational domain. These improvements were obtained 

without oscillations since the CBC is still applied where needed. Moreover, The B-

EXPRESS-3 results were found to be as accurate as the BSEVENTH results with the latter 
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requiring, on average, 540% more CPU effort. On the other hand, predictions using the B-

EXPRESS-7 scheme did not show any observable attenuation in the levels of the profiles 

while requiring, on average, 3.43% more time than the BSEVENTH scheme.   

 Acknowledgments  

The financial support provided by the University Research Board of the American 

University of Beirut is gratefully acknowledged. 



B-EXPRESS: A New Bounded Extremum PREServing Strategy             17 

 

References 

1. Leonard, B.P., “Simple High Accuracy Resolution Program for Convective Modeling 

of Discontinuities,” Int. J. Num. Methods Eng., vol. 8, pp. 1291-1319, 1988. 

2. Leonard, B.P., “The ULTIMATE Conservative Difference Scheme Applied to 

Unsteady One-dimensional Advection,” Comp. Methods Applied Mech. Eng., vol. 88, 

pp. 17-74, 1991. 

3. Darwish, M.S., “A Comparison of Six High Resolution Schemes Formulated Using the 

NVF Methodology,” 33rd Science Week, Aleppo, Syria, 1993. 

4. Moukalled, F. and Darwish, M.S., "A New Bounded-Skew Central Difference Scheme- 

Part I: Formulation and Testing", Num. Heat Transfer, Part B, vol. 31, pp. 91-110, 

1996. 

5. Gaskell, P.H. and Lau, A. K. C., “Curvature Compensated Convective Transport: 

SMART, A New Boundedness Preserving Transport Algorithm,” Int. J. Num. Meth. 

Fluids, vol. 8, pp. 617-641, 1988. 

6. Sweeby, P.K., “High Resolution Schemes Using Flux-Limiters for Hyperbolic 

Conservation Laws,”  SIAM J. Num. Anal., vol. 21, pp. 995-1011, 1984. 

7. Darwish, M.S. and Moukalled, F., “Normalized Variable and Space Formulation 

Methodology for High-Resolution Schemes,” Num. Heat Trans., part B, vol. 26, pp. 

79-96, 1994. 

8. Leonard, B.P., “A Stable and Accurate Convective Modeling Procedure Based on 

Quadratic Interpolation,” Comp. Methods Appl. Mech. & Eng., vol. 19, pp. 59-98, 

1979. 

9. Darwish, M. and Moukalled, F., ”An Efficient Very High-Resolution scheme Based on 

an Adaptive-Scheme Strategy,” Numerical Heat Transfer, Part B, vol. 34, pp. 191-213, 

1998. 

10. Leonard, B.P., Lock, A.P., and Macvean, M.K., "The NIRVANA Scheme Applied to 

One-dimensional Advection," Int. J. Num. Heat Fluid Flow, vol. 5, pp. 341-377, 1995. 

11. Gordon, N.J. and Thiel, L.C., “Transfinite Mappings and Their Applications to Grid 

Generation,” in Thompson, J.F. (ed.), Numerical Grid Generation, North-Holland, New 

York, pp. 171-192, 1982. 



B-EXPRESS: A New Bounded Extremum PREServing Strategy             18 

 

Figure Captions 

Figure 1: (a) Control volume, (b) convected variable near a control volume face, and  

               (c) normalized variables. 

Figure 2: Normalized Variable Diagram (NVD). 

Figure 3: Interpolation Profiles. 

Figure 4 : The ERA Algorithm. 

Figure 5: Filtering the plateau region. 

Figure 6: Pure convection of (a) a sinusoidal profile, (b) a triangular profile, (c) elliptic 

profile, (d) double-step profile. 

Figure 7: Convection of a sinusoidal profile at x=0.375, x=0.525, x=0.775. 

Figure 8: Convection of a triangular profile at x=0.375, x=0.525, x=0.775. 

Figure 9: Convection of an elliptic profile at x=0.375, x=0.525, x=0.775. 

Figure 10: Convection of a double-step profile at x=0.25, x=0.75 . 

Figure 11: Time comparison for the convection in an oblique flow field of a (a) sine  

profile, (b) triangular profile, (c) elliptic profile, and (d) double step profile. 
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Figure 1: (a) Control volume, (b) convected variable near a control volume face, and  

   (c) normalized variables. 
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Figure 2: Normalized Variable Diagram (NVD). 
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Figure 3: Interpolation Profiles 
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Figure 4 : The ERA Algorithm. 
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Figure 5: Filtering the plateau region. 
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Figure 6: Pure convection of (a) a sinusoidal profile, (b) a triangular profile, (c) elliptic 
profile, (d) double-step profile. 
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Figure 7: Convection of a sinusoidal profile at x=0.375, x=0.525, x=0.775. 



B-EXPRESS: A New Bounded Extremum PREServing Strategy 26 

 

 

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1
QUICK     

SMART     
B-EXPRESS3

exact     

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1
SEVENTH   

BSEVENTH  
B-EXPRESS7

exact     

 

Figure 8: Convection of a triangular profile at x=0.375, x=0.525, x=0.775. 
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Figure 9: Convection of an elliptic profile at x=0.375, x=0.525, x=0.775. 
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Figure 10: Convection of a double-step profile at x=0.25, x=0.75 . 
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Figure 12: Time comparison for the convection in an oblique flow field of a (a) sine 
profile, (b) triangular profile, (c) elliptic profile, and (d) box profile. 
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