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A computationally efficient and stable adaptive grid solution procedure is developed for
convection diffusion problems. In this method, grid refinement and adaptation is based on an
equidistribution law but is only performed in regions with high error estimates that are
flagged from a preliminary coarse grid solution. The equidistribution law is implicit in the grid
generation procedure which requires the solution of two Poisson equations with control func-
tions that are obtained directly from the error estimates or weighting functions at the grid
points. Solution on the refined, equidistributed mesh in the flagged region is obtained with
boundary conditions interpolated from the coarse grid results. Accurate solutions in both the
flagged region and the coarse grid regions of the domain are obtained with a multigrid
approach that requires successive solutions on the refined, equidistributed mesh in the flagged
region and on the coarse mesh in the entire domain. The adaptive grid method including the
multigrid calculations can be extended to several levels of refinement. The acronym LAME is
coined for this procedure in view of its Local Adaptation, Multigridding, and Equidistribution
features. The method is shown to be stable, computationally efficient, and accurate by
applying it to three test problems and comparing with conventional calculations on a fixed
curvilinear grld © 1990 Academic Press, Inc.

1. INTRODUCTION

Recent interest in grid generation has focussed on the development of dynami-
cally adaptive grid systems in which the grid points move in response to the
evolving solution. The grid points should move such that they are always densely
clustered in regions of larger solution variations where error estimates are expected
to be higher. Since the solution error is generally proportional to the product of the
local grid spacing raised to some power and a measure of the local solution varia-
tion, clustering grid points in regions of large solution variation is tantamount to
equidistributing a measure of the solution error over the solution domain. A
dynamic procedure is necessary because the regions of large solution variations are
not known a priori to the solution and evolve as the solution is driven to con-
vergence or steady-state conditions.

A number of studies on adaptive grid solution procedures have been reported,
and it is not the intent here to provide an exhaustive survey of the literature.
Thompson [1] provides an excellent survey of dynamically adaptive grid systems.
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As noted in [1], all adaptive grid procedures attempt to equidistribute a measure
of the error, but differ in their individual approaches.

The most popular approach has been one in which a weighting function W which
is proportional to a measure of the error (typically containing the first or second
derivative of the dependent variable ¢ or some combination of first and second
derivatives) is calculated at all points and the mesh size 4s is adjusted so that
W - As is nearly the same at all points in the entire domain. Approaches of this or
similar kind have been reported by a number of investigators [2-11]. For the lack
of a better name, this method will be referred to as the global equidistribution
approach in this paper. Acharya and Patankar [2] have used a normalized second
derivative ¢,, as the weighting function. A linear combination given by

1+dlg,|+ B |@,,] was used as a measure of the weighting function by Dwyer et al.
[3-5] and also by Gnoffo [6] (with f=0). In [6], the idea of a spring analogy
represented in the equation for the weighting function was introduced and was
extended by Nakahashi and Deiwert [7] who introduced the notion of a torsion
spring attached to each node in order to control the inclination of the grid lines.
Rai and Anderson [8, 9], Greenberg [10], and Eiseman [11] have each used the
idea of moving the grid points under the influence of forcing or weighting functions
that either attract or repel grid points relative to each other. Thus points with
forcing (or weighting) functions greater than a specified average value attract each
other, and those with values less than the average value repel each other.

A second approach (called the variational approach here) is to use a variational
principle in which the grid generation system can be obtained from the Euler’s
equation for the minimization of an integral whose integrand is proportional to a
measure of the error. As shown in [1], this minimization process is equivalent to
the solution of a Poisson equation with the inhomogeneous terms proportional to
a measure of the error. Brackbill and Saltzman [12, 13], Yanenko et al. [14], and
Bell and Shubin [15] have each used the variational principle for grid adaptation.

The two approaches outlined above generally involve the movement of all the
grid points in the domain. These approaches are associated with problems of
excessive grid skewness, oscillations in the solution, etc. A third approach, which
avoids some of these problems is one in which the mesh is refined only in the region
where the error estimate exceeds a critical value. This method is termed the local
mesh refinement approach. Examples of such an approach are due to Berger and
Jameson [16], Phillips and Schmidt [17], and Caruso er al. [18]. Typically grid
points with higher error levels are flagged and the flagged region is expanded in
order to make it rectangular. The mesh size in the rectangular flagged region is
typically halved and calculations repeated only in the flagged, finer grid region. In
[18], an additional step similar to that in a multi-grid method was performed by
repeating the calculations in the original coarse grid but with correction terms
added to the coarse grid equations in the flagged region so that the solution in that
region matches the corresponding fine grid solutions. There are two major disad-
vantages of the studies reported under this approach. The first is that the flagged
region is generally subdivided uniformly without consideration of the relative
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magnitudes of the errors at the flagged points and therefore the mesh in the flagged
region is less than optimal. The second disadvantage is that a non-rectangular
flagged region (in the computational space) is generally accounted for by including
non-flagged points so as to generate a rectangular domain or by using overlapping
rectangular domains. Both these practices are computationally inefficient.

In this paper the development of a stable, computationally efficient adaptive grid
solution procedure is sought. Of the three approaches described so far, the method
developed in this paper is probably best described by the local mesh refinement
approach, but unlike earlier studies, the present method is capable of efficiently
dealing with non-rectangular flagged regions, and more importantly, grid refine-
ment in each such flagged region is based on equidistribution concepts such that a
near-optimal grid in each flagged region is obtained. In addition, multigrid concepts
have been built into the adaptive grid procedure so that the solution accuracy in
the entire domain and in the refined flagged region are both significantly improved.
The resulting adaptive grid procedure is stable and computationally efficient and
details of this procedure are described next.

In the discussion that follows, the discretization procedure on a curvilinear grid
is first described followed by the details of the adaptive grid technique, and finally
the results of the adaptive grid solution procedure on a number of test problems are
presented.

2. DiSCRETIZED CONSERVATION EQUATIONS

The numerical solution on a curvilinear grid involves three steps: grid generation,
discretization of the conservation equations, and solution of the discretized equa-
tions. Since many of these details can be found elsewhere [19,20], only the
important issues are briefly described here.

Grid Generation

Generating a grid in an arbitrary physical domain involves a coordinate transfor-
mation from the physical space (x, y) to the computational space (&, ) (see Fig. 1).
This is done here by solving a system of Poisson equations [20],

UxXer —2Bxg, + 9%, = Py (1)
%Y ee = 2BV en+ VVum =P, (2)
where
a=xi+yy,  B=xexy+tyey,,  v=xi+yi 3)
and

Py=—Jx;P+x,0], Py=—J[y.P+y,0] (4)
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(a) Physical Space (b) Computational Space

Fic. 1. Schematic of curvilinear coordinate system.

In the above equations, J is the Jacobian (=x,y,—x, y¢) and P and @ are control
functions which can be chosen in order to provide a denser distribution of points
in certain regions. Anderson and Steinbrenner [21] have shown that with proper
choices for P and Q that relate them to the local error estimates or weighting
functions, Eq. (1) and (2) can be interpreted as an equidistribution law. In this
paper, advantage is taken of this fact and Eq. (1) and (2) are used for generating
the initial curvilinear grid and also the adaptive grid in each flagged region.
Additional details are given in the next section.

Central differences are used to discretize Eq. (1) and (2). The resulting system of
algebraic equations are solved iteratively by a line by line tri-diagonal matrix or
Thomas algorithm [227]. The resulting solution gives x, y values at uniform ¢,z
values, and all metric quantities can be calculated from this solution.

Discretization of the Conservation Equations

The conservation equations for the convection—diffusion of a transport variable
¢ in curvilinear coordinates can be expressed as

{pG ¢~ (IT) (g — Bd,)}c + {pG26 — (L] T) (v, — B}, = S, (5)

where S is the source term and G, and G, are the contravariant velocity com-
ponents defined by

Gy=uy,—vx,, Gy, =vx:—uy, (6)

and p and I denote the density and diffusion coefficient of the fluid, respectively.
The task of the discretization process is to approximate the differential equation by
algebraic equations at the grid points. To this end, a control-volume based finite
difference procedure is adopted in this study, in which control volumes are first
defined around each grid point, as shown in Fig. 1. Equation (5) is then expressed
in an integral form over each control volume consisting typically of a grid point P,
with E, W, N, and S (east, west, north, and south) neighboring grid points and
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corresponding e, w, n, and s control volume faces. This leads to an integral balance
equation of the form

LoGi¢ —(I[I)agp; — B8,) 15, An+ [pG2¢ — (/1) (9, — B ) 1] AL =SpJAnds  (7)

where [---]7, denotes [---],—[---],. The terms in the parenthesis ¢, ¢, and ¢,
are expressed at the interfaces w, e, s, and » in Eq. (7), but since ¢ is stored at the
grid points, the interface values have to be expressed in terms of the grid point
values. Therefore profile approximations are necessary. In this paper, the Power-
Law profile has been chosen [23], since it has been shown to be more accurate
than either the central-difference, upwind, or hybrid schemes [24]. The resulting
algebraic equation has the form

appp=aghp+apdytaydy+asps+bs+b,,, (8)

where ap, ag, ay, ay, and ag are convection—diffusion coefficients, b is the source
term contribution, and b, is the contribution due to non-orthogonality of the
grid. The expressions for these coefficients, and additional details are given else-
where [20].

Solution of the Discretized Equations

Equation (8) represents a penta-diagonal system of equations and is solved here
by a line by line Thomas algorithm [227]. This line by line algorithm is similar, in
concept, to the ADI method and is described in greater detail in [24].

3. ADAPTIVE GRID SOLUTION PROCEDURE

In the adaptive grid procedure developed in this paper, the grid is refined in
flagged regions where the error levels or weighting functions exceed a specified
threshold value. Thus, all or nearly all of the grid points in the domain are not
forced to move each time the grid adaptation is performed. This reduces the
problem of oscillations between the grid and the solution that characterizes some
of the global equidistribution methods [2-5]. In this regard, the present method
may be considered to fall under the local mesh refinement category. However, as
noted earlier, the method developed in this paper differs from earlier studies under
this category and embodies a number of major contributions. The first is that it can
handle an arbitrary cluster of flagged points that do not necessarily yield a
rectangular flagged region in the computational space. Second, in each flagged
region the mesh refinement is not done uniformly as in earlier local mesh refinement
studies [16-18], but by an equidistribution law that provides denser clustering in
those areas of the flagged region where the error levels or weighting functions are
relatively higher. In addition, since the solution accuracy in the flagged region
depends on the accuracy of the interpolated boundary condition, it is also impor-
tant to have an accurate solution outside the flagged region. To this end, a multi-



GRID ADAPTATION FOR SCALAR TRANSPORT 37

grid approach is incorporated in the present grid adaptation strategy, by which, the
solution errors in both the flagged domain and the entire domain are successively
reduced.

The solution-adaptive grid procedure developed here is therefore characterized by
Local Adaptation with Multigridding and Equidistribution concepts (LAME). The
major steps of this procedure are flagging of points to generate flagged regions (that
are not necessarily rectangular), generating a finer mesh in the flagged regions using
an equidistribution law, interpolation of boundary conditions along the boundaries
of the flagged region, and a multi-grid-type calculation between the flagged region
and the entire domain. These details are described next.

Defining Flagged Regions

The solution process is initiated by generating a relatively coarse mesh in the
domain by solving the set of Poisson equations (Eq. (13) and (14) or Eq. (1) and
(2)) with zero or specified control functions and performing a pre-assigned number
of iterative calculations on this grid. An error estimate or weighting function W is
then calculated at each grid point. For this purpose W is defined as

W=uo,J V2| + ay(Vd)* + 03 J |VE-Vn| + a, J(VE + Vi?). ()]

The first term represents the rate of change of the gradient of the dependent
variable (V?¢), the second term is proportional to the gradient of the dependent
variable (V¢), the third term is the local orthogonality of the grid (V& -Vy), and the
last term is a measure of the grid smoothness. Each term is of the same order of
magnitude, and the relative importance of the various terms is controlled through
the constants a,, a,, a3, and a,.

To flag points, a normalized weighting function W is defined as

W=(1+W)/(1+Wgy) (10)

and points are flagged if the normalized weighting function W is greater than a
preassigned value. A flagged region is generated by identifying a cluster of con-
tiguous points. To create the cluster, a flagged point is initially chosen, and flagged
points are added to the cluster if they are the neighbors of a flagged point already
in the cluster. The cluster is closed if no new flagged points can be added to it. A
new cluster or flagged region is then generated with another flagged point (not yet
enclosed in a cluster) acting as a nucleus or starting point for the new cluster. By
this means, clusters of flagged points or flagged regions are generated until all the
flagged points are enclosed in one cluster or another.

The boundaries of the flagged region, in the computational space, are the control
volume faces of the outermost string of points in the cluster (Fig.2). Therefore,
unlike earlier studies, no constraint requiring the flagged regions to be rectangular
(or consisting of overlapping rectangles) in the computational space is imposed.
This is potentially advantageous, particularly from the viewpoint of computational
efficiency.
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FiG. 2. A typical flagged region.

Grid Generation in the Flagged Region Using an Equidistribution Scheme

Once flagged regions have been defined in the computational domain, the next
step is to generate a finer mesh in the flagged region using an equidistribution
scheme such that areas within the flagged region that are associated with higher
error levels or weighting functions have the densest grid point clustering. Thus a
more optimal mesh in the flagged region will be obtained compared to the mesh
obtained by simply reducing the mesh size everywhere, say by half. The latter
practice has been adopted in earlier local mesh refinement studies [16-18].

To obtain a refined grid in the flagged region using an equidistribution scheme,
the ideas of Anderson and Steinbrenner [21] are used. In [21] it is shown that the
conventional grid generation procedure of solving two Poission equations (Eq. (1)
and (2)) can be interpreted as an equidistribution scheme, if the control functions
P and Q are related to local error levels or weighting functions. This approach of
using control functions P and Q in the Poisson equations to force grid movement
in order to obtain an equidistributed grid has also been established from variational
principles [25, 26]. Thus the same grid generation routine that is used in obtaining
the initial curvilinear grid in the entire domain can be used to calculate the equi-
distributed grid in each flagged region. This practice is computationally efficient.

The relationship between the weighting functions W (or the error levels) and the
control functions P and Q in Eq. (1) and (2) can be most easily derived by con-
sidering the one-dimensional equidistribution law along the constant-n line, ie.,

(81): W=fi(n), (11)
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where s, is the arc length along a line of constant #, f,(n) is a constant for a given
curve, and W is the weighting function. Differentiating Eq. (11) with respect to £,
the following equation is obtained:

(51)ee + [(W)/W]1(s5():=0. (12)

To relate the above equidistribution law to Eq. (1), the control functions are
redefined as ¢ = J?P/o and § = J2Q/y and substituted into Eq. (1) and (2), resulting
in

o(x ez + Gx:) — 2B% g, + (X + ¥x,) =0 (13)
“(J’§<+$)’§)“2BJ’¢»,+Y()’W+';yn)=0v (14)

Eliminating § between the above two equations, and assuming orthogonality and
zero curvature the following equation for the distance along a constant 5 arc is
obtained:

(s1)ee+ 85 ) =0. (15)

If the orthogonality and zero curvature constraints are removed then a similar
equation is obtained, i.e.,

($1)ee +01(51) =0, (16)

where

$1=8—[(6,)¢—2(6,)¢] cot 85— (s,); (), sin 63/(s,); (17)

and 8, and 8, are the slopes of the constant » and ¢ curves and 8, is the angle of
intersection (0,=0, + 6,).

Comparing Eq. (16) and (12) leads to a relationship between the function ¢, and
the weighting function W, and a similar relationship can be derived between i, and
W. These relationships are

gr=(W)/W, Y =(W),/W. (18)

Thus the conventional elliptic grid generation procedure [19] can be interpreted as
an equidistribution law if the control functions ¢ and ¢ (in Eq. (13) and (14)) are
obtained from Eq. (17) and (18). This approach is incorporated in the present
work.

The expression for the weighting function W, given in Eq. (9), consists of four
terms, and as explained earlier, these represent the gradient (Vg), its rate of change
(V?¢), the local orthogonality (V& -Vy) and the grid smoothness (V&2 4 Vi?). The
relative importance of the various terms can be controlled through the constants
oy, &y, 03, and a4. In this paper, a5 and a, have been set equal to zero.

To generate the refined grid in each flagged region, the number of grid points
along the boundaries of the flagged region are increased. In this paper, they have
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been doubled. The &=¢;,, & and # =9, fmax boundaries of the flagged
region are then chosen. Since the flagged region is not rectangular in the original
¢, n computational space, the choice of £, &, and 7., Nmax 1S DOt along the
orginal ¢ and » coordinate directions, respectively. Rather the points along the
boundaries of the flagged region are divided into four parts and each part is
assigned to form a new computational boundary, ie., the ¢ .., fmin> Emax> Mmax
boundaries, respectively. This is illustrated in Fig. 2, where the boundaries of the
flagged region (dark lines) are divided into four parts with 1-2 and 4-3 assigned as
Hmin and n... and 1-4 and 2-3 as £, and &,,,. With the new boundary grid
points assigned equally to each of the four boundaries of the flagged region, a
preliminary grid is guessed or generated in the flagged region and the values of the
weighting functions W and the control functions ¢, and ¥, are interpolated onto
this grid from the corresponding coarse grid values. Equations (13) and (14) are
then solved, with the ¢, and y, values interpolated as stated above, and a new
equidistributed grid is generated in the flagged region. This procedure can be
extended further and taken to convergence by again interpolating fresh ¢, and ¥,
values on to the new equidistributed grid, and solving Eq. (13) and (14). The pro-
cedure is repeated until grid points undergo no further change in position. As a
final step, boundary grid point locations are adjusted so that the grid is orthogonal
along the boundaries of the flagged region. This is done by requiring the distance
[ between the first interior grid point x,, y; and the boundary point x(s), y(s) to be
a minimum, i.e.,

0l[os = (x;— x(5))(0x/0s) + (y; — y(s))0y/ds) = 0. (19)

Piecewise cubic spline profiles are used to represent x(s) and y(s) as

x(s)=ag+a,s+a,s*+a,s, y(s)=bo+ b s+ bys? + bys>. (20)

The coefficients a,---a; and b,---b; are obtained from the original grid point
values along the boundary. Equations (19) and (20) are solved using Newton’s
method to obtain the boundary grid point locations.

The above procedure for generating an equidistributed grid is repeated in each
flagged region (whether they are multiply connected or not). Only after the refined
grid in each flagged region is completed, is the solution process initiated.

Boundary Condition for the Flagged Region

In order to obtain a solution in the flagged region, boundary conditions have to
be interpolated from the coarse grid solution along the boundaries of the flagged
region. The values at the corner of the coarse grid control volume faces along
the boundaries of the flagged region are first determined as the weighted average of
the four neighboring coarse grid points. Linear interpolation is then used between
the coarse grid corner values to calculate the values at the fine grid points along the
boundary of the flagged region.
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Correction Terms for the Coarse Grid Equations in Flagged Regions

Since the fine grid solution in the flagged region is obtained with boundary con-
ditions interpolated from the coarse grid solution, the latter should be reasonably
accurate. To this end, a multi-grid type approach is adopted in this paper by which
consecutive calculations are performed on the coarse grid and fine grid with infor-
mation exchange between the two solutions (called restriction and prolongation
operations in a multi-grid method) in each cycle of calculation. In this paper, this
approach is incorporated by first obtaining a solution on the coarse grid, followed
by the fine grid solution in the flagged regions with boundary conditions inter-
polated from the coarse grid solution. The coarse grid equations are again solved
but with corrected coarse grid equations in the flagged region such that the
resulting coarse grid solution in the flagged region matches the corresponding fine
grid solution. New boundary conditions are interpolated for the flagged regions
from the improved coarse grid solution and the solution in the flagged regions is
again obtained. These consecutive calculations are repeated until convergence
within a specified tolerance.

To derive the corrected coarse grid equations in the flagged region, the conser-
vative property is invoked by which the total flux on the coarse grid must equal the
total flux on the fine grid. Denoting the coarse grid values with a superscript 1 and
the fine grid values by a superscript 0, this conservative property on the coarse
mesh is expressed by

[p'Gig¢' — (T[T ) e = B'¢,)]c+ [p'Gag" — (T[T )(y' b, — 4],
=[p°G1¢" — (I} " )(a 93— B¢ 1
+[p°G26° —(T°T)(v' ¢y — B'69)1,,- (21)

Assuming the same physical properties (p' = p°, I' = I'°) and conservation of mass
(Gi=GY, G} =GY) on both grids, the above equation reduces to

[Lx'¢'e+[Ly'¢'], = [Lx'¢°], + [Ly'6°],, (22)

where
Lx¢=pG,¢—(I')I)ap:— Bd,),  Lyp=pG,¢—(I}))vd,—Bd:) (23)

Equation (22) is the coarse grid correction equation in the flagged region.
Although derived by requiring fluxes to be conserved on both grids, Eq. (22) can
be directly derived by requiring the coarse grid values (¢') to be equal to the fine
grid values (¢°) in the flagged region. This requirement directly leads to Eq. (22).

Comparing Eq. (5) and (22), it can be seen that the left-hand sides of the two
equations are the same, but the right-hand sides are different. In Eq. (22), the right-
hand side may be viewed as a correction term so that ¢' will be equal to ¢° in the
flagged region. Thus, after the fine grid solution ¢° is obtained in the flagged region,
the coarse grid calculations are done by solving Eq. (5) outside the flagged regions
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and by solving Eq. (22) in the flagged regions. This will lead to more accurate
coarse grid solutions.

The Generalized LAME Procedure

The description, so far, has been given with one level of refinement in mind, but,
in practice, the method is not limited to one level of refinement and generalization
to multiple levels of refinement is straightforward. If the solution on the coarsest
grid is denoted by V|, and the solution on successively finer grids in the flagged
regions by Vo, V_, V_,, .. V_, .y, V_;., V_,, then multigrid type calculations
can be performed by iterating from the coarsest to the finest grid and then back
again. Each level of refinement has its own flagged region (say Q _;) that typically
will be embedded in the flagged region corresponding to the previous refinement
(2 _;,,) This generalized LAME procedure is described by the following steps:

1. Define a preliminary coarse grid (£2,) in curvilinear coordinates in the
domain, and obtain a solution V', on it.

2. For the first level of refinement (i=0), flag grid points if normalized
weighting functions exceed a specified value. For higher levels of refinement (—i)
flag grid points with normalized weighting functions higher than those specified in
the previous level of refinement (—i+ 1). Thus flagged regions (£ _;) are generated
at any level of refinement, and typically, 2 _, is embedded in Q _,_ ;.

3. Generate a finer mesh in Q _; based on an equidistribution scheme in each
flagged region.

4. Interpolate boundary conditions along the boundaries of each flagged
region from the available solution on the previous mesh (V_,, ).

5. Obtain the solution ¥V _; in each flagged region Q_,.

6. Calculate correction terms in 2 _; for the equations on the previous mesh
(2_,.,)- Solve the new set of equations in £2_,_, to obtain an improved (—i+ 1)
level solution, V _,, ;.

7. Repeat steps 4-6 until a specified level of convergence is obtained.
8. Advance to the next level of refinement and repeat steps 2-7.

9. Proceed until the solution in the finest desired level of refinement V_, is
obtained.

4. RESULTS AND DIscussioNn

The performance of the adaptive grid solution procedure is examined by solving
three typical problems. Adaptive grid calculations are initiated on a preliminary
11 x 11 or 12x 12 coarse grid as explained earlier. Therefore adaptive grid results
are compared with a conventional 11 x 11 or 12 x 12 curvilinear grid calculation.
Since adaptive grid calculations require more work (or cpu time) per step, it is also
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appropriate to compare the adaptive grid results with the conventional calculation
on a uniformly finer curvilinear grid that takes the same amount of cpu time. For
all calculations, only one level of refinement is performed. To make a meaningful
comparison, both solutions are driven to the same level of convergence.

Test Problem 1—Heat Conduction with Discontinuous Boundary Temperature

The first test problem is that of two-dimensional heat conduction in a rectangular
plate with a step change in temperature along the upper boundary. The physical
situation is depicted in Fig. 3. The governing differential equations and boundary
conditions are

T..+T,,=0 (24)
7(0,y)=T(1,y)=T(x,0)=0 (25)
T(x,1)=1 for 0<x<4i; T(x,1)= -1 for {<x<1.  (26)

An analytical solution to Eq. (24)-(26) is given by

R

T(x,y)= ), (2/kn)[1 + cos(kn)— 2 cos(km/2)] sin knx

k=1

x sinh(kmy)/sinh (k). (27)

Since the largest temperature gradients are expected near the upper boundary,
and particularly in the vicinity of (1, 1), the flagged region is also expected to be
at the top. Figure 4 shows the flagged region, and the mesh generated using the
equidistribution scheme described earlier. As expected, the finest mesh is obtained
in the vicinity of (3, 1), (0, 1), and (1, 1). As may be seen, the mesh in the flagged
region appears to have the desirable features.

l-*— 112 ——p— |/2—-1

NT= 1 T=-i R

3 |

X

FiG. 3. Physical domain and boundary condition for Test Problem 1 (heat conduction with discon-
tinuous boundary temperature).
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FiG. 4. Preliminary 12 x 12 coarse grid (dashed lines) and refined grid in flagged region (solid lines)
for Test Problem 1. (Note that all lines denote control volume faces. Grid points are at the center of
each control volume and along the boundaries.)
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FiG. 5. Percentage error with a conventional calculation on a 12x12 uniform grid for Test
Problem 1.
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% ERROR
12.0

9.6

7.24

FiG. 6. Percentage error with an adaptive grid procedure initiated on a 12 x 12 uniform grid for Test
Problem 1.

% ERROR \\
12.0- \

FI1G. 7. Percentage error with a conventional calculation on a 20x20 uniform grid for Test
Problem 1.
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Fic. 8. Physical domain and boundary condition for Test Problem 2 (conduction in a rotating
hollow cylinder).

Figures 5-7 show the percentage error in the solutions on a conventional 12 x 12
grid (Fig. 5), on an adaptive or equidistributed grid generated from an initial
12 x 12 coarse grid (Fig. 6), and on a finer 20 x 20 conventional grid whose solution
requires the same effort as the adaptive grid calculation (Fig. 7). Conventional solu-
tion on a 12 x 12 mesh has errors ranging from 5 to 15% over most of the domain.
The adaptive grid calculations dramatically reduce the error levels to values typi-
cally in the 2 to 5% range. The conventional calculations on a finer 20 x 20 grid
requiring the same effort as the adaptive grid procedure has error levels as high as
11% (near (3, 1), where temperature gradients are large.

0.8
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FiG. 9. Preliminary 11 x 11 coarse grid (dashed lines) and refined grid in the flagged region (solid
lines) for Test Problem 2 (see additional comments in legend of Fig. 4).
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% ERROR

FiG. 10. Percentage error with a conventional calculation on a 11x11 uniform grid for Test
Problem 2, Pe = 100.

% ERROR

F1G. 11. Percentage error with an adaptive grid procedure initiated on a 11 x 11 uniform grid for
Test Problem 2, Pe = 100.

581/91/1-4
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It should be pointed out that in the adaptive grid calculation the mesh in the
middle and lower parts of the domain is the original 12 x 12 uniform mesh on
which the calculations are initiated and this mesh is considerably coarser than the
conventional 20 x 20 mesh. Yet, the errors in the nonflagged region in the adaptive
grid procedure are considerably lower than the corresponding errors with the
conventional calculation on the 12 x 12 grid and comparable to the errors in the
solution in the finer 20 x 20 grid. This demonstrates the power of the multigrid type
calculation incorporated in the present work.

Test Problem 2—Conduction in a Rotating Hollow Cylinder

Radial heat conduction in a rotating hollow cylinder is a commonly studied test
problem used to test numerical schemes for convection—diffusion problems [25, 26].
A schematic of the physical situation is shown in Fig. 8. The angular speed is w and
the temperatures of the inner and outer surfaces are 7, and T,. The density p,
specific heat ¢,, and thermal conductivity k of the cylinder are assumed to be
constant. ‘

In polar coordinates, the problem is one-dimensional and an analytical solution
is available. In a cartesian domain, shown shaded in Fig. 8, the problem is two-
dimensional and is described by the following dimensionless convection—diffusion
equation

Upx+Voy=(dxx+dyy)/Pe, (28)
where
¢=(T-To)/(T,—T,), U=u/(wR)), 29)
V=v/(wR),  Pe=pw’R}/(k/c,)
and
X=x/R,, Y=y/R,. (30)

Adaptive grid calculations are initiated on a 11 x 11 grid for a Peclet number Pe
of 100, and results are compared with the analytic solution given by

U=2Y, V=-2X, ¢=1—LnX*+Y?2Ln3. (31)

Figure 9 shows the original 11 x 11 coarse mesh (9x9 control volumes), the
flagged regions at the two corners and the refined, equidistributed mesh in each
flagged region. Since the refined mesh is generated by solving a set of elliptic equa-
tions which are inherently characterized by a smoothing effect, the refined mesh
near the staircase boundary does not exhibit the staircase profile. As a result, some
of the near boundary control volumes along the staircase boundaries are coarser
than is desirable. A remedy to this problem is to join the outermost string of flagged
points in a cluster by straight lines and to use this as the boundary of the flagged
region. This remedy is adopted in the next problem.
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(initioted on 1tx 1) mesh)
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FiG. 12. Centerline profile for ¢ in Test Problem 2, Pe = 100.

Figures 10 and 11 show the percentage error in the solution obtained with a con-
ventional calculation on a 11 x 11 grid and with an adaptive grid solution initiated
on a 11 x 11 grid. Compared to the conventional calculation where error levels are
as high as 8%, the maximum error in the adaptive grid calculation is about 2.5 %.
A conventional calculation on a 26 x 26 grid takes about the same cpu time as the
adaptive grid solutions and error levels of the two solutions are comparable. This
is seen in Fig. 12, where the centerline temperature profile is plotted. The exact
solution, the adaptive grid solution, and the conventional solution on a 26 x 26 grid
are nearly identical to each other.

¢=| ¢‘|

W= 21.8°
$=0

T
$:0

-

FiG. 13. Physical domain and boundary condition for Test Problem 3 (transport of a step profile in
a uniform velocity field).
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Test Problem 3—Transport of a Step Profile in a Uniform Velocity Field

This is another typical problem employed by a number of researchers to test
various numerical schemes developed to reduce false diffusion errors that become
significant in velocity fields inclined with respect to the mesh and at high Peclet
numbers [25, 26]. Therefore this problem is a good test of the ability of the adap-
tive grid procedure to reduce false diffusion errors that are proportional to the mesh
size and the angle of the velocity vector with respect to the grid lines in the physical
space.

The physical situation is shown in Fig. 13 and is governed by the equation

(ug). + (vg), =0, (32)

where ¢ is the dependent variable and ¥ and v are the components of the uniform
velocity vector u, which in this problem is assumed to be at an angle of 21.8° with
respect to the horizontal. At x=0, a step profile in ¢ is assumed as shown in
Fig. 13, and since diffusion has been assumed to be zero in Eq. (32) and the
velocity field is uniform, this step profile must be convected at an angle of 21.8° to
the horizontal, with the exact solution being ¢ =1 above the 21.8° line and ¢ =0
below it.

The largest gradients, and therefore the flagged region, is expected to be in the
vicinity of the region where the profile has a step in it. This expectation is confirmed

1.0

0.8

0.6 -

A I O A I |

0.4 | |

0.2

FiG. 14. Preliminary 11 x 11 coarse grid (dashed lines) and refined grid in the flagged region (solid
lines) for Test Problem 3 (see additional comments in legend of Fig. 4).
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FiG. 15. The distribution of scalar variable ¢ with a conventional calculation on a 11 x 11 uniform
grid for Test Problem 3.

0.331

FiG. 16. The distribution of scalar variable ¢ with an adaptive grid solution procedure initiated on
a 11 x 11 uniform grid for Test Problem 3.
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0.33 4

Fig. 17. The distribution of scalar variable ¢ with a conventional calculation on a 25 x 25 uniform
grid for Test Problem 3.
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Fic. 18. Vertical centerline profile at x =0.44.
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in Fig. 14 which shows the original 11 x 11 coarse grid and the refined flagged
region. As pointed out in the previous problem, to avoid staircase boundary
profiles, the boundaries of the flagged region are obtained by joining with straight
lines the outermost string of flagged points in the cluster. The resulting grid does
appear to exhibit all the desirable features.

Figure 15 shows the ¢ profile in the x — y domain obtained with a conventional
calculation on a uniform 11 x 11 grid. A step profile is the correct solution, but the
calculated profile shows a significant smearing indicative of false diffusion effects.
The corresponding adaptive grid calculations initiated on the 11x11 grid are
shown in Fig. 16, and the degree of smearing can be seen to be significantly
reduced, and the profile is much closer to the expected step profile. The results of
a conventional calculation on a uniform 25 x 25 grid, that requires the same effort
in cpu time as the adaptive grid calculation, is shown in Fig. 17. Much greater
smearing in the profile is noted, compared to the adaptive grid results. These con-
clusions can be best seen in Fig. 18 where the profile along the vertical centerline
at x =0.44 is plotted. The adaptive grid solution is seen to be superior to the con-
ventional solution on either the 11 x 11 mesh or the 25 x 25 mesh. Thus, it might
be said that the adaptive grid procedure is an effective way of minimizing false
diffusion errors. '

5. CONCLUDING REMARKS

An adaptive grid solution procedure is developed for convection—diffusion
problems with local adaptation, multigridding, and equidistribution (LAME) con-
cepts. The LAME procedure is initiated on a coarse grid and weighting functions
or error estimates are calculated at each point from a preliminary solution on the
coarse grid. Grid points are flagged if the weighting functions exceed a specified
value. Thus clusters of flagged points or flagged regions are generated. The number
of points in each flagged region is increased and a new mesh based on an equi-
distribution scheme that uses the local weighting function values is generated. The
solution on the equidistributed mesh in each flagged region is calculated using
boundary conditions interpolated from the coarse grid calculations. To improve the
accuracy of the interpolated boundary conditions, the coarse grid solution should
be improved, and to this end, a multigrid approach is adopted and coarse grid
equations solved again with correction terms added to the equations in the flagged
region so that the coarse grid solution in the flagged region is equal to the corre-
sponding fine grid solution. New boundary conditions are interpolated from the
improved coarse grid results and the solution in the flagged region is again
obtained. This process is repeated until convergence. The method can be extended
to higher levels of refinement in a multi-grid fashion.

Results are obtained for three test problems and adaptive grid results are com-
pared with the calculations on a conventional fixed grid. The results clearly
demonstrate the significant improvements obtained with the LAME procedure.
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