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Abstract--A solution-adaptive grid procedure is used to obtain solutions for turbulent flow over a 
backward-facing step, and comparisons are made with measurements. Comparisons between the 
solution-adaptive grid solution and the same-CPU-effort fixed grid solution demonstrates the superiority 
of solution-adaptive gridding over intuitive refinement of fixed grids. The relative importance of numerical 
errors compared with modeling errors is emphasized and it is shown that an assessment of modeling errors, 
without properly attempting to minimize numerical errors, can be very misleading, It is argued that 
solution-adaptive grid procedures provide a convenient vehicle for reducing numerical errors and should 
be used in calculations performed to evaluate physical models. 

N O M E N C L A T U R E  

a~,aE*, a~v,a~, a~--Coefficients in the finite difference 
equation 

A*---Constant in the law of the wall 
b ~0--Source term due to non-orthogonality 

in the finite difference equation 
b0*--Source term in the finite difference 

equation 
bp~--Source term due to the pressure gradi- 

ent in the finite difference equation 
%, c,,, c,:-Constants in equations (4)-(6) 

Cr--Skin friction coefficient 
e--East face of a control volume 
E--East neighbor of the P grid point 
f--Nonhomogeneous term in the conser- 

vation equation 
ft--Constant for a given curve in the 

equidistribution law 
G--Rate of production of the turbulence 

kinetic energy 
G~, G:--Convective terms normal to the grid 

cell boundaries 
J--Jacobian 
k--Turbulence kinetic energy 
L--Differential operator 
It--Turbulence length scale 
n--North face of a control volume; also 

normal coordinate 
N--North neighbor of the P grid point 
p--Pressure 

p'--Pressure fluctuation 
P--Main grid point 
R--Local radius of curvature 

Re--Reynolds number 
s--South face of a control volume 

s~--Arc length along a line of constant ~/ 
s2--Arc length along a line of constant 
S--South neighbor of the P grid point; 

also step height 
S*--Source term 
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t--Tangential coordinate 
u:--Mean velocity in the x i direction 
u~--Velocity fluctuation in the x, direction 
uin--Inlet velocity 
u,--Friction velocity 
V"--Adaptive grid solution at the ith refine- 

ment 
w--West face of a control volume 

W--West neighbor of the P grid point 
W*--Weight function 

xr--Reattachment length 
xF-Cartesian coordinate 

Greek symbols 
~--Metric quantity 

~i, ~2, ~3, ~4 --Constants 
fl--Metric quantity 
y--Metric quantity 

6:-Kronecker delta 
E--Turbulence dissipation rate 
~/--Curvilinear coordinate 

0~, 02--Slopes of constant ~/and ~ curves 
03--Angle of intersection, (02 - 0~) 
r---Constant in the law of the wall 
#--Laminar viscosity 
#t--Turbulent viscosity 
vt--Eddy viscosity 
~---Curvilinear coordinate 

~---ith Level refined mesh 
p--Density 

ak--Effective Prandtl number for the turbulence 
kinetic energy 

c¢,--Effective Prandfl number for the turbulence 
dissipation rate 

~0--Shear stress 
rw--Wall shear stress 
d>--Dependent variable 

F~---Diffusion coefficient 
A~, At/--Cell boundary sizes in the ~ and rl directions 

in the transformed plane 
A--Control function 

¢~, ~--Weight  function 
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q', 7~--Weight function 
~ o n t r o l  function 

Subscripts 
e, w, n, s--Refer to control volume faces 

P, E, W, N, S--Refer to grid points 

x, y, r/, ~--Indicate differentiation with respect to 
x, y, ~/and 

max--Maximum value 
min--Minimum value 

n--Normalized value 
t--Refers to turbulent flow 

INTRODUCTION 

Model improvements for turbulent separated flows are based on an assessment of existing models 
by comparing predictions with corresponding measurements. The differences between predictions 
and measurements represent the cumulative effect of both numerical errors and modeling errors. 
However, frequently the importance of numerical errors are ignored, and the differences between 
predictions and measurements are attributed entirely to modeling errors. Clearly, model improve- 
ments, based on such an assessment of modeling errors, are likely to be misleading. One objective 
of this paper is to apply a solution-adaptive grid calculation procedure for the turbulent separated 
flow past a backward-facing step, and to demonstrate through comparisons with measurements and 
fixed grid solutions, the relative importance of numerical errors in making an assessment of 
modeling errors. 

It could be argued that instead of using a solution-adaptive grid procedure, the conventional 
fixed grid could simply be refined intuitively. However, as will be seen, for the same CPU-effort 
the solution-adaptive grid procedure is superior to the fixed grid procedure. 

Attention is focused in this paper on the widely used k-E model [1, 2] which has been applied 
to many separating flows [3-8]. The observed weaknesses and poor predictions of the standard k ~  
model for flows with recirculation, streamline curvature and buoyancy effects, have led to the 
development of several refined k-E models [9-15]. Jones and Launder [9] proposed a low-Reynolds 
number version of the k-e model with which the calculations can be extended to the near-vicinity 
of the wall. Chieng and Launder [8] studied pipe expansion geometry by using both the standard 
and the low-Reynolds number k--e models along with a near-wall procedure which was later 
extended by Amano [10]. Gooray et  al. [11] combined these models and developed a two-pass 
procedure, with a high-Reynolds number model applied upstream of reattachment and a 
low-Reynolds number model used downstream of reattachment. The standard high-Reynolds 
model accounted for streamline curvature effects in the recirculation region. Improvements to the 
above models, in which pressure strain effects and wall damping corrections are included, were 
subsequently developed by Gooray and co-workers [12, 13]. Leschziner and Rodi [14] derived 
functional relations for some of the constant coefficients employed in the k-E model through the 
use of algebraic stress closure relations. These improvements sensitize the turbulence model to the 
effects of streamline curvature. Nagano and Kim [15] proposed an improved form of the k--e model 
in which assumptions for the turbulent Prandtl number are not required. 

None of the above models, however, resolved all the issues. In assessing model performance, 
predictions and measurements were compared. However, as noted earlier, predictions are subject 
to numerical inaccuracies, so it is not the turbulence model alone which is responsible for the lack 
of agreement with experimental data--in addition, numerical errors play an important role. These 
numerical errors are due to the discretization errors (that arise from differencing approximations) 
and the round-off errors (machine dependent). 

The discretization errors are proportional to the product of the local grid spacing raised to some 
power and a measure of the local solution variation. Thus, these errors can be reduced by 
decreasing the local mesh size. Reducing the mesh size over the entire domain increases the 
computational cost dramatically and therefore, the grid points should be concentrated in the 
important regions of the physical domain to economically reduce the discretization errors. Prior 
to the solution, however, these important regions are not known, and a dynamic procedure in which 
the grid points move in accordance with the evolving solution is necessary. Such methods, called 
solution-adaptive grid methods, were proposed by many workers [16-26]. In this paper, the 
solution-adaptive grid procedure developed by Acharya and Moukalled [25, 26] and characterized 
by Local Adaptation with Multigridding and Equidistribution concepts (LAME) is adopted. 
Unlike other related studies, the LAME procedure [25, 26] permits the flagging of an arbitrarily 
shaped region in the computational domain, and further, instead of refining the flagged region 
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uniformly as in most other studies, performs the refinement using an error equidistribution method. 
It should also be pointed out that, in general, in demonstrating the utility of solution-adaptive grid 
procedures, simple laminar flow problems are solved and reported in the literature. In this paper 
the LAME solution-adaptive grid procedure is applied to a more complex turbulent flow problem. 

One last issue that should be addressed here is related to flow field calculations, in which the 
possibility of predicting checkerboard pressure and velocity fields is usually avoided through the 
use of a staggered grid for the velocity components. Adaptation on such a grid implies redefining 
three different sets of grid points at each step. This can be very expensive and is avoided here by 
using the calculation procedure on a non-staggered curvilinear grid developed by Acharya and 
Moukalled [27]. 

To reiterate the main motive of this paper numerical errors and modeling errors occur together 
in turbulent flows, and no conclusions related to the performance of turbulence models can be 
drawn without properly assessing numerical errors. This clearly represents a serious obstacle to the 
development and testing of these models. One objective of this paper, as noted earlier, is to predict 
the turbulent flow characteristics behind a backward-facing step using a solution-adaptive grid 
procedure [25, 26] and to demonstrate the relative importance of the numerical errors vs modeling 
errors. By comparing the solution-adaptive grid calculation with the same-CPU-effort fixed grid 
calculation, it is the intent of this paper to demonstrate the superiority of solution-adaptive grid 
procedures over same-CPU-effort fixed grid procedures and to argue that in assessing modeling 
errors, for the same CPU-effort, the more accurate, solution-adaptive grid procedure should be 
used. It is not the intent of this paper to present grid-independent results or definitively assess 
modeling errors with the two-equation turbulence models. A secondary objective of the paper is 
the application of the solution-adaptive grid procedure to the more commonly encountered 
turbulent flow problem of flow over a backward-facing step, since most reported studies have 
applied the adaptive grid procedure only to simple laminar flows. 

BASIC CONSERVATION EQUATIONS 

The mean transport equations governing the situation under consideration (written in tensor 
notation) are given by 

Continuity: 

and 

Momentum: 

where 

a(pu,) /Ox,  = 0 (1) 

O ( p u i u j ) / O X  j = - -  Op / ~ x  i "J~ O'~ij/OXj, (2) 

~'ij = [.l (On i/OXj "~- OUj/~Xi) --  2[.1 (OUk/OX k )(~ij - -  pig; U;. (3) 

In the above equations, u~ and ui are the fluctuating and mean velocity components in the x~ 
direction, 6~j is the Kronecker delta, p is the fluid density, /~ is the fluid viscosity and ~ij is the 
Newtonian viscous stress plus the Reynolds stress (-pu~ u~ ). The unknown Reynolds stresses have 
to be modeled, which leads to the well-known closure problem. This task is accomplished through 
the use of turbulence models. 

In the following section the standard k ~  model [2] and a modified version [14] that is used in 
this paper are reviewed briefly. Then the numerical techniques used to solve the resulting system 
of partial differential equations are described. These include the calculation procedure on a 
non-staggered curvilinear grid [27] and the LAME solution-adaptive grid methodology [25, 26]. 

THE TURBULENCE MODELS 

The standard k ~  model [2] utilizes the eddy viscosity/diffusivity concept and relates the eddy 
viscosity vt to the turbulence kinetic energy k (where k = ½ u~u~ ) and turbulence dissipation rate 
E (E "~ k3/2/l t ,  where It is a turbulence length scale) via the Kolmogorov-Prandtl relation: 

- u ~ u ]  = vt[Oui/dxj + Ouj/dx,] - ~ kr~j, vt = cuk2/E. (4) 
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The distribution of k and E are determined from the following modeled transport equations: 

ui dk/~X i = (~ [(Vt/O'k) ( ~ k / ~ x i ) ] / ~ X  i + G - -  E (5 )  

and 

ui &/~xi = t~ [(vt/a,) (&/dxi)]/~xi + c,~ (E/k)G - c,2 (E 2/k). (6) 

Equations (5) and (6) are derived from the Navier-Stokes equations and describe how the rate of 
change of k and ~ are balanced by convective and diffusive transport and by the production and 
molecular dissipation processes. 

The k ~  model contains the five empirical constants c~,, trk, a,, c,t and c,2. The commonly accepted 
values for these constants are 0.09, 1, 1.3, 1.45 and 1.9, respectively. The standard model presented 
so far is applicable only to flows or flow regions with high turbulence Reynolds number, Ret = vt/v, 
and cannot be applied near walls, where viscous effects become dominant, This problem can be 
overcome by either of the following two approaches. First, the low turbulence Reynolds number 
model suggested by Jones and Launder [9] can be used with a sufficient number of grid points in 
the viscous sublayer region. However, this practice is rather expensive computationaUy. The second 
alternative, used in the present work, is based on the assumption that the near-wall turbulent flow 
resembles a Couette flow, and the universal law of the wall equations are valid. With these 
assumptions, the resultant velocity parallel to the wall, up, the kinetic energy, kp, and the dissipation 
rate, Ep, at a distance yp from the wall are related to the friction velocity u~ (u~ = v/~w/p, where Tw 
is the wall shear stress) by the following relations: 

2 up/u~ = (1/x)ln(A*u,:yp/v), kp "= U~:/~//r~, ~.p ----- U~/ (xyp) .  (7) 

In the above equation, x and A* are the constants from the law of the wall with values of 0.4 and 9, 
respectively. 

The above standard form of the k-~ model does not account for important secondary strain 
effects, such as those resulting from curvature. Therefore, modifications accounting for the effects 
of streamline curvature should be introduced into the original model in cases where these effects 
are important. Such modifications are described in the following subsection. 

Modified version 
Numerical predictions of turbulent separated flows using the standard k ~  model described 

above, are found to be in less-than-satisfactory agreement with experimental data. In particular, 
the dimension of the recirculation region, which depends on the diffusive transport in the bordering 
shear layer, is underpredicted. Experimental data show a high sensitivity to curvature of the 
turbulent shear stress and of the degree of anisotropy between the normal stresses. Since the k ~  
model can recognize only the explicit extra terms due to curvature in the mean motion and 
turbulent transport equations, it will underpredict the curvature effects, and has to be suitably 
modified. This is in contrast to the algebraic stress and Reynolds stress models which need no such 
modification. Several modified k ~  models have been developed to incorporate the streamline 
curvature caused by the surface curvature as well as by swirl or rotation. Many of these models 
employ a modification of the length scale, while others incorporate this effect through the 
modification of cu needed in the evaluation of the eddy viscosity. One such modification, adopted 
for the present calculation, is due to Leschziner and Rodi [14] and is based on a simplification of 
the algebraic Reynolds stress model. The modification is to use a functional relation for % instead 
of using the constant value of 0.09. With this modification, cu is calculated as follows: 

c~ = 0.09/[1 + 0.57(k/~)2(au,/~n + u,/R)(u,/R)]. (8) 

In the above equation, R is the local radius of curvature, ut is the tangential velocity, and n and t 
are the streamline coordinates shown in Fig. 1. Details can be found in Ref. [14]. 

With this modification, the turbulence model is sensitized to curvature effects and, therefore, the 
use of this modified version is expected to improve the numerical predictions by decreasing the 
physical error. The largest improvement in the results is expected to be accomplished when using 
the modified k--e model in conjunction with the LAME solution-adaptive grid procedure, in which 
case, both the physical and numerical errors are reduced. 
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Fig. 1. Streamline coordinate system. 
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Fig. 2. Finite difference grid representation. 

CALCULATION ON A NON-STAGGERED CURVILINEAR GRID 

When solving the flow equations (conservation of mass and momentum) using SIMPLE(Semi 
Implicit Method for Pressure Linked Equations)-type algorithms [28], a staggered grid arrangement 
is generally adopted to avoid checkerboard pressure and velocity fields. Therefore, three sets of 
mesh positions (one for each of the two components of velocity and the third for pressure) and 
associated metric quantities have to be calculated and stored. If grid adaptation is performed, the 
grid changes at every step and therefore three sets of grid positions and metric quantities have to 
be calculated at each step. To avoid this cumbersome and computationally expensive procedure, 
a non-staggered grid arrangement is desirable, but the solution algorithm must be suitably modified 
to avoid checkerboard pressure and velocity fields. Such modifications have been reported by 
Acharya and Moukalled [27], Hsu [29], Reggio and Camarero [30], Rhie and Chow [31] and 
Abdallah [32]. 

In this paper, the SIMPLEM (SIMPLE--Modified) algorithm proposed by Acharya and 
Moukalled [27] is used. This algorithm has been compared with some of the other algorithms and 
has been shown to have superior characteristics [27]. In the discussion below, the various steps of 
the calculation process, including grid generation, discretization of the conservation equations and 
the SIMPLEM solution algorithm, are described briefly. Additional details are found elsewhere 
[33]. 

Grid generation 

A curvilinear grid is generated in an arbitrary shaped region by solving the following elliptic 
system of equations [34]: 

~x~¢ - 2 f lx~  + 7x,~ = - J 2 ( x ~ A  + x~Q) (9) 

and 

~y¢¢ - 2fly¢, + 7Y,, = - j 2 ( y c A  + Y,Q), (10) 

where ¢(x, y) and r/(x, y) are the curvilinear coordinates, x and y are the cartesian coordinates, 
~t, fl, 7 and J are metric quantities, given by 

2 2 : 2 ( 1 1 )  ~ = x ,  + y~,  fl = x e x ,  + yey , ,  7 = x ~ + y ¢ ,  J = x e y , -  x , y¢ ,  

and A and Q are control functions that can be chosen to provide denser clustering in certain 
specified areas. 

For adaptive grid generation, the ideas of Anderson and Steinbrenner [35] are used. In Ref. [35], 
equations (9) and (10) are recast into error equidistribution laws by relating A and Q to the local 
error estimate or weighting function. For this, the relationship between the weighting functions W ~ 
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and the control functions A and f~ in equations (9) and (10) are easily derived by considering the 
equidistribution law along a constant-r/line, i.e. 

(s,)~ W ~ = f ,  (q), (12) 

where Sl is the arc length along a line of  constant q,f~ 01) is a constant for a given curve and W * 
is the weighting function. Differentiating equation (12) with respect to ~, the following equation 
is obtained: 

(sl)~ + [(WO)e / W*] (s,)¢ = 0. (13) 

Returning to equations (9) and (10), and defining • = j 2 A / ~  and 0 = J2fl/~ and then eliminating 
0 between the two equations, an equation having s] as the dependent variable is obtained, i.e. 

(sl)~ + q)l (sl)¢ = 0, (14) 

where 

q~l = ~ - [(01)¢ - 2(02)¢]cot 03 - (s~)~(02), sin 03/(s2)¢. (15) 

In the above equation 01 and 02 are the slopes of  constant-q and constant-~ curves, 03 is the angle 
of  intersection and s2 is the arc length along a line of constant ¢. A similar equation can be derived 
along a line of  constant ¢. 

Comparison of  equations (13) and (14) leads to 

~1 = ( W O ) ¢ / W o  (16) 

and, similarly, 

7J~ = ( W¢)~ / W ¢. (17) 

Thus, the elliptic grid generation procedure [34] can be interpreted as an equidistribution law if 
the control functions ¢1 and ~1 are obtained from equations (16) and (17). This is the procedure 
adopted in this paper for performing grid adaptation during the calculation, 

Discret izat ion o f  the conservation equations 

The conservation equations (1), (2), (5) and (6) can be represented using the following standard 
equation, written in curvilinear coordinates in terms of  a general scalar property q~: 

{pGI q5 - ( r ~ / J ) ( ~ c ~  - fl~)}~ + {pGzgP - (F~/J)(Td?, - fl~b¢)}, = S~J,  (18) 

where S ¢ is the source term, G1/J  and G2/J  are the contravariant velocity components, with GI 
and G2 defined by 

GI = uy n - vx , ,  G: = vx¢ - uy¢, (19) 

and p and F ~ denote, respectively, the fluid density and the diffusion coefficient. The control volume 
approach is adopted here. With this approach the domain is subdivided into a number of control 
volumes, each associated with a grid point. The finite difference form is obtained by integrating 
equation (18) over the control volume shown in Fig. 2. This leads to an integral balance equation 
of the form 

[pG, g? - (r~/J)(~c~¢ - fl(P,)]~ An -- [pG, ck - (F~/J)(~gP¢ - fl~b,)]w A~/ 

+ [pGE~P - (F¢/J)(Y4) ,  - fl4)¢)]. A¢ - [pG2c~ - (FC/J)(T~p, - fl~¢)]s A¢ = S ~ J  A¢ At/. (20) 

In the above equation, ~, q~¢ and q~, at the east, west, north and south faces are expressed in terms 
of  the grid point (P) value by using the power law scheme [28]. The resulting discretization equation 
can be written as 

a~dPv = a~(aE + a~v(Ow + a~C~N + a~ dPs + bg + b~no + b~, (21) 

where a~, a~, a~v, a~ and a~ are the convection-diffusion coefficients, bg is the source term 
contribution, b~0 is the contribution due to non-orthogonality and b~ is the pressure gradient 
contribution, which has a non-zero value if q) represents the two velocity components. The 
expressions for these coefficients can be found in Ref. [33]. 
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An equation for the remaining unknown pressure is established by combining the continuity and 
momentum equations. This is done by rewriting equation (21) with ~b replaced by u and v, dividing 
across by a[ and a[,, respectively, and defining pseudo-velocities uv and t~v as 

fry = aUnUn + bo + bno av 
n = E  ,N,S 

and 

6e=(n=E,~w,N, sa~.v,+b[+b~o)/a~'" 

The momentum equations can then be written as 

up = tip + (B"p¢ + C~p,)v 

and 

(23) 

(24) 

Vv = fv + (BVp¢ + C°p~)p. (25) 

Introducing equations (22) and (23) into the definitions of the contravariant terms G~ and G2 
given by equation (19), the following equations are obtained: 

G, = G, + (BUy. - BVx.)p~ + (C"y. - C"x~)p~ (26) 

and 

G2 = G2 + (C"x¢ - C'y¢)p, + (B'x¢ - B'y¢)p¢, (27) 

where 0~ and 02 are based on ~ and z3 as defined by equations (22) and (23), respectively. Upon 
introducing G~ and G2, given by equations (26) and (27), into the continuity equation given by 

(pG~ Ar/)e - (pG. An )w + (pG2 A~)n - (pG2 A~)s = 0, (28) 

the finite difference form of the pressure equation is obtained and can be written as 

appp = ~ aV, p, + b~ + bY.o, (29) 
n=E,W,N,S 

where bg has an expression given by the negative of the left-hand side of equation (28) with the 
G's replaced by O's. 

The numerical solution to the flow problem is then obtained by solving a system of algebraic 
equations similar to equation (21) or (29) along with the appropriate boundary conditions. 

Solution algorithm 

The sequence of operations in the SIMPLEM algorithm on a fixed grid is as follows: 

1. Start with guessed fields u*, v* and p* 
2. Calculate the coefficients of the momentum equations and then fi and 3. Use these 

values to find 0~ and 02 at the grid nodes. Interpolate linearly to find 0~ and 02 
at the control volume faces. 

3. Calculate the coefficients of the pressure equation and solve it to obtain a new 
pressure field. 

4. Use this new pressure field to calculate the pressure gradients in the momentum 
equations using a 2 -  A~ or 2 -  At/centered difference scheme. 

5. Update G* and G~' at the interfaces [equations (26) and (27)] using the new 
pressure field and using a 1 - A ~  or 1 -At /  centered difference scheme for Vp. 

6. Based on the new Gl and G2 recalculate the coefficients of the momentum 
equations and solve them to obtain new velocity fields u* and v* 

7. Solve for all other scalar variables. 
8. Return to Step 2 with the new values of u* and v* and repeat until a converged 

solution is obtained. 
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THE LAME SOLUTION-ADAPTIVE GRID PROCEDURE 

In the LAME solution-adaptive grid procedure [25, 26], the grid is refined locally in flagged 
regions where the error estimate exceeds a specified threshold value. Compared with other adaptive 
grid techniques, the LAME procedure has the advantage that the flagged region in the compu- 
tational space, where the preliminary calculations are being performed, can be arbitrarily shaped. 
More importantly, grid refinement in each flagged region is not done uniformly, as in other studies, 
but by an equidistribution law that clusters the points more densely in regions of higher error 
estimates within the flagged region. The solutions at different grid levels are successively improved 
using a multi-grid method. In the discussion that follows, the local grid refinement procedure using 
an error equidistribution law is described first followed by a description of the multi-grid 
calculation procedure. 

Local grid refinement using an error equidistribution law 

The solution process is initiated by generating a relatively coarse mesh in the domain by solving 
the set of Poisson equations [equations (9) and (10)]. After a preassigned number of iterations, an 
error estimate or weighting function is calculated at each grid point. For this purpose, a weighting 
function W ~, for each dependent variable 4) is defined as 

W ~ = ~1JlV2~bl + ~21V~ 12 + ~t3JlV~ "Vql + ct4J(V~ 2 + Vr] 2), (30) 

where ~l, ~2, 0~3 and ~t4 are constants. The first two terms represent a measure of the truncation 
error, while the last two terms represent grid orthogonality and smoothness and can be viewed as 
a measure of the geometric error due to grid distortion. To flag points, a normalized weighting 
function We is defined as 

W~ = (1 + WO)/(1 + W~max) (31) 

and points are flagged if the normalized weighting function is greater than a preassigned value 
(generally in the range of 0.4-0.6). A flagged region is identified as a cluster of contiguous flagged 
points. There can be more than one cluster, and each cluster in the ~-q space can have an arbitrary 
shape. In each flagged region, the grid is refined using an error equidistribution method. The 
adaptive grid generation starts by assigning ~min, ~max, ?]min and qmax for each flagged region. Once 
this is done, the number of grid points along each boundary is doubled and a preliminary grid 
is generated in the flagged region. The values of A and f~, which are related to the weighting 
functions or error measures W * through equations (16) and (17), are interpolated on this 
preliminary grid from the corresponding coarse grid values and equations (9) and (10) are solved 
to obtain the equidistributed mesh in the flagged region. This mesh, is used as a new guess, A and 
f~ are interpolated on to the new positions, and the above process is repeated until the grid points 
undergo no further change in position. The resulting grid is non-uniform with a finer mesh in the 
regions where the weighting function values are higher. After obtaining the interior grid 
distribution, the boundary points are adjusted, if possible, so that the grid is orthogonal to the 
boundary. 

The above procedure for generating an equidistributed grid is repeated in each flagged region. 
Once the equidistributed mesh in each flagged region is obtained, the next step of obtaining the 
solution in each of these regions is initiated. 

Boundary conditions for the locally refined regions 
In order to obtain a solution in the flagged region, boundary conditions have to be interpolated 

from the coarse grid solution along the boundaries of the flagged region. The values at the corner 
of the coarse grid control volume faces along the boundaries of the flagged region are first 
determined as the weighted average of the four neighboring coarse grid points. Linear interpolation 
is then used between the coarse grid corner values to calculate the values at the fine grid points 
along the boundary of the flagged region. For flow problems, a conservative interpolation 
procedure is used in calculating the interpolated mass flow rates, needed in the pressure equation, 
across the zonal boundaries. 
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Mult i -gr id  calculations 

The solution accuracy in the flagged region depends on the accuracy of the outer grid solution. 
To improve the solution accuracy on the outer mesh, a multi-grid type approach is used. In 
this approach, the solution V ° in the outer grid n ° is obtained first, and the outer grid solution 
is prolongated to the embedded refined grid ~1 by interpolating the boundary conditions for 
the refined grid from the outer grid solution and then obtaining the refined grid solution V ~. The 
refined grid solution is prolongated to the next level of the refined mesh nz. This process is 
continued to the finest refinement level re". Once the solution in the finest mesh has been obtained, 
the solution process steps back to its outer mesh n n- ~ and recalculates the solution with restriction 
or correction terms added to the outer grid equations in the fine grid region r~". These correction 
terms are such that the resulting corrected solution V"-~ is equal to V" in the overlap region n". 
This process is continued till the outermost grid zc ° is reached. This completes one prolongation 
sweep and one restriction sweep. The second prolongation sweep is then initiated, and at 
any refinement level i, since the outer solution V i- 1 is more accurate in view of the correction 
terms added in the previous restriction sweep, the boundary conditions interpolated along the 
boundaries of n i from V ~- l will be more accurate and therefore the solution V i will be better than 
the solution in the previous prolongation sweep. These sweeps can be continued to the desired levels 
of accuracy. 

The coarse to fine grid information transfer in the prolongation operation has already been 
described in the previous section and consists of a suitable method for interpolating the boundary 
conditions along the boundaries of the flagged region and obtaining a fine grid solution in the 
flagged region. Attention is now turned to the restriction or correction operation that applies the 
fine grid solution V ~ to the coarse grid equations in rr ~ such that the resulting outer grid solution 
V ~- ~ in rr i is equal to V( 

If  ~b is any dependent variable, then the conservation equations on both the coarse (n~ ~ ) and 
fine (re j) grid regions cast in operator forms are 

and 

Li- 'c~ i - '  = f ' - '  in rt i-l (32) 

L'~b' = f '  in Tt', (33) 

where the superscript i - 1 identifies the outer or coarse grid terms, the superscript i denotes the 
fine grid terms and L is the differential operator. The expressions for L for the pressure p and for 
a general dependent variable ~b are as follows: 

and 

Lp = (BUy, - BVx~)p~ + (CUy, - CVx~)p, + (C~'x~ - CUy~)p, + (B~'x~ - BUy¢)p~ (34) 

L~ = { p G ,  ~a - (r*tJ)(uck¢ -/~4~.)}¢ + {pG2~ - (r*lJ)(~4~. -/~4,¢)}.. (35) 

In the restriction operation, it is desirable that the outer coarse grid solutions in the fine grid overlap 
region should equal the computed fine grid values, which are more accurate. This can be done by 
setting 

L i - l O  i - l = L i - l ~  i inr t  / (36) 

and 

L i - 'q5 ' - '  = f '  ' in (n i - '  - hi). (37) 

The expression on the right-hand side of equation (36) is the coarse grid correction term 
representing the restriction operation. By solving this system of equations, the values of the 
dependent variable on the coarse grid inside the refined region are exactly equal to the values 
obtained from the solution on the fine grid. This, in turn, causes the coarse grid solution in the 
non-refined parts of the domain to improve as the iterations progress. 
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RESULTS AND DISCUSSION 

Results are presented using both the conventional and the adaptive grid techniques, with the 
intent of studying the numerical and physical errors associated with the numerical solution of 
turbulent separated flows. As previously stated, two turbulence models are employed; the standard 
k ~  model and a modified version of the model suggested by Leschziner and Rodi [14]. Three grid 
sizes are utilized in obtaining the results: a relatively coarse 20 x 8 grid; a finer 34 x 16 grid; and 
a reasonably fine 50 x 35 grid. The 34 × 16 fixed grid takes about the same CPU-effort as the 20 x 8 
adaptive grid and the 50 × 35 fixed grid takes the same CPU-effort as the 34 x 16 adaptive grid; 
thus, a comparison of the results of the conventional and the adaptive grid methods for the same 
level of computational effort can be made. The adaptive grid solution is started either on the 20 × 8 
grid or on the 34 × 16 grid and then refinement is done automatically where needed. The 34 x 16 
fixed mesh contains 544 grid points, the 34 × 16 adapted mesh contains 1088 total grid points (note 
that the mesh is refined in critical regions, thus adding more points) and the 50 × 35 mesh uses 
1750 grid points. In the literature for the flow past back steps or past ribs, numerical results have 
been reported using, for example, 450 points [36], 700 points [4, 12, 13] and 1406 points [14]. The 
number of points used in the present calculations are therefore typical of those used in the literature. 

In this paper, one level of refinement is performed and all numerical results are compared with 
the available experimental data. The values of ~j and ~2 in the definition of weighting function 
[equation (30)] have been assigned to be l, while % and 0t 4 have been set to zero. 

The separated flow problem chosen is that of flow over a backward-facing step, which has 
received a great deal of attention in the literature [3, 4, 37-39]. In this paper the physical situation 
shown in Fig. 3, and studied experimentally by Chandrasuda and Bradshaw [38], is considered. 
Figure 3 represents the vertical centerplane of a wind tunnel, 127 mm high, with a backward-facing 
step of height S = 51 mm. The tunnel roof slopes downwards at a small angle of 1.7 ° downstream 
of the step to simulate a streamline in an infinitely high tunnel. The computations in the streamwise 
direction are extended up to 16S, where the streamwise gradients in the flow can be assumed to 
be small. The inlet velocity ui,, assumed uniform, is 31.5 m/s. This velocity gives a Reynolds number 
based on the step height of about l05. The governing equations for the flow were given in previous 
sections. The turbulence intensity of the inlet stream is assumed to be 1% of the total mean kinetic 
energy, and the dissipation rate (c = c~k2/vt) is taken to be 10% of the square of the turbulence 
kinetic energy. At the walls, the law of the wall, as explained previously, is used. At the flow exit, 
the gradients of all variables are assumed to be zero. 

1 
s 

_--x 

Fig. 3. Initial mesh n o (-  -)  and adapted mesh after one level of refinement n I ( 
a step. 

) for the flow past 
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Fig. 4. Streamwise u-velocity profile at y/S = 1.8 (standard turbulence model). 

Mean velocities were measured in Ref. [38] with either a plane-ended circular pilot tube or a 
hot-wire anemometer. In reverse-flow regions, the hot-wire data is unreliable, and the measured 
data should therefore be treated with caution below the dividing streamline. Turbulence is 
measured using the hot-wire anemometer, but again, due to the uncertainty in the reverse-flow 
regions, Chandrasuda and Bradshaw [38] present turbulence intensity results only in the regions 
of positive mean flow. 

Figure 3 also shows the 34 x 16 outer grid ( - - - )  and the adapted 34 x 16 inner grid ( ) in 
the flagged region. The flagged region is based on the error estimates for the u-velocity and the 
error estimates for the turbulence kinetic energy. In order to have a more orthogonal system, the 
flagged region needing refinement is enlarged slightly. 

Representative results obtained with the k-c model and its modified version are shown in 
Figs 4-13. In Figs 4-8 the standard k--e model results are presented using both the conventional 
fixed grid (34 x 16 and 50 x 35 grids) and the present adaptive grid (34 x 16 outer grid and 34 x 16 
inner grid) techniques. The corresponding modified k-e model prediction are shown in Figs 9-13. 
For purposes of comparison the 20 x 8 adaptive grid solution has also been included in Figs 9-13. 

The streamwise mean u-velocity component at y/S = 1.8 is plotted in Fig. 4 as a function of x/S. 
The improvement in the predictions after adaptation on the 34 x 16 grid can be seen easily. Note 
that this comparison is in the free stream region where the grid is not flagged, and the improvements 
in the adaptive grid solution are due to the multi-grid strategy adopted. The adaptive grid solution 
in this region is more or less identical to the same-CPU-effort 50 x 35 fixed grid calculation, but 
is much better than the 34 x 16 fixed grid solution. The velocity at y/S = 1.8 decreases until 
reattachment, then increases very slowly. This increase is attributed to the decrease in the 
cross-sectional area of the tunnel. 

The skin friction coefficient, Cr, is defined as 

Cf = ~w/[I pU2rO, (38) 

where Zw is the shear stress along the bottom wall. The predicted values (Fig. 5) are in satisfactory 
agreement with the experimental data obtained by Chandrasuda and Bradshaw [38]. In the 
separated shear layer, the shear stress (or Cr) is overpredicted. This implies that in this region, the 
computed turbulent viscosity is higher than that existing in an actual flow. Results improve 
somewhat with adaptive refinement of the grid although the scatter in the Cr data precludes any 
definitive conclusion. 

In Fig. 6 the cross stream distribution of the mean u-velocity at different x/S locations is 
presented. The differences between measurements and predictions should be examined with care 
since, as stated in Ref. [38] and noted earlier, the hot-wire measurements of the mean velocity 
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profiles inside the recirculation zone are likely to be inaccurate in regions of intermittent separation. 
In the reverse-flow region or in its vicinity the pressure probe data is probably more reliable, The 
adaptive grid solution initiated on a 34 x 16 grid compares well with experimental values and is 
clearly superior to the 34 x 16 fixed grid solution. In comparing the 34 x 16 adaptive grid solution 
with the same-CPU-effort 50 x 35 fixed grid calculation, it should be noted that the two solutions 
are reasonably close to each other at ( x - x r ) / x r = - 0 . 6 8 ,  -0 .42 and -0.08, while at 
(x -- Xr)/Xr= --0.25 the adaptive grid solution is superior to the same-CPU-effort fixed grid 
solution. At y /S  = 0.4, for example, there is only a 6% difference between the measured values and 
the 34 x 16 solution-adapted grid results, but there is a corresponding 58% difference between the 
measured and the 50 x 35 fixed grid values. 

In Fig. 6, the high velocity gradients across the shear layer can be noticed easily. This causes 
an increase in the shear stresses and the turbulence kinetic energy and explains the greater 
concentration of the grid points in this region of the adapted grid (Fig. 3). 

The turbulence kinetic energy and dissipation rate at two different locations, one inside the 
recirculation zone and one downstream of reattachment, are presented in Figs 7 and 8, respectively. 
The computed values are only in qualitative agreement with experimental data and quantitative 
agreement is poor. The maximum turbulence intensity rapidly decreases after reattachment. The 
dissipation rate and kinetic energy predictions in the recirculation region show higher values than 
those obtained experimentally. This behavior is attributed to the fact that the coefficient c, used 
to calculate the turbulent viscosity in the turbulence model is assumed to be constant throughout 
the computational domain. Improvements in the results are expected if this constant coefficient is 
replaced by a functional relationship which sensitizes the turbulence model to the effects of 
streamline curvature, as in the work of Leschziner and Rodi [14]. Moreover, experimental results 
[38] show that the main feature in the shear stress balances near and downstream of reattachment 
is a rise in the pressure strain term, which is given by 

- (p "/p ) [(au "/dy) + (~v "flgx)]. (39) 

Little is known about this term, and it is sometimes neglected for low Mach number flows. 
However, by sensitizing the turbulence model to the effects of pressure strain interactions including 
wall damping, Gooray et al. [13] improved the predicted hydrodynamic reattachment length in their 
study of flow over backward-facing steps. In the present computational effort, the hydrodynamic 
reattachment length is underpredicted by a distance of more than one step height compared with 
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the experimental value of (6.0 + 0.5)S. However, the value calculated here is comparable with 
the numerical predictions reported using a constant c, value of 0.09 (standard k-~ models 
underpredict the reattachment length by as much as 20% [40]). This underprediction of the 
reattachment length is due, as stated earlier, to the higher computed turbulent viscosity in the 
separated shear layer. Therefore, the modeling error in turbulent separated flows is clearly 
significant. Nevertheless, numerical error due to high gradients is equally important, as demon- 
strated in Fig. 7 by the > 50% improvements in the 34 x 16 grid results obtained after adaptation. 
In comparing the 34 x 16 adaptive grid solution with the same-CPU-effort fixed grid solution, the 
two solutions appear to be comparable, in an overall sense, with each other. The E-profiles (Fig. 8) 
appear to indicate that the solution-adaptive grid results are somewhat better than the same-CPU- 
effort fixed grid results. In all the results presented, the differences observed between the predictions 
employing the same turbulence closure model (i.e. the difference in predictions between the LAME 
solution-adaptive grid technique and the conventional method) are due to numerical error. As 
stated earlier, this numerical error is the result of the finite difference representation of partial 
derivatives (discretization error) or the round-off error. If, in Fig. 7, the differences between the 
fixed grid solution ( - - - )  and the measurements is taken to be the modeling error, this would be 
inaccurate and any modeling improvements based on this error estimate could be erroneous. The 
adaptive grid solution reduces the differences between predictions and measurements, and the 
difference between the adaptive grid solution and the measurements is a better representation of 

the modeling errors. 
The results presented so far have shown the importance of the numerical scheme used to compute 

turbulent separated flows. It has been shown, through a comparison of the velocity, the turbulent 
kinetic energy and the dissipation rate profiles, that the solution obtained with the 34 x 16 adaptive 
grid method, in the present application, is considerably better than the solution obtained with the 
conventional method for the same grid size; the adaptive grid solution is either better or comparable 
with the fixed grid that takes the same level of computational effort. 
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Fig. 9. Streamwise u-velocity profile at y/S = 1.8 (modified turbulence model). 

The effect of including the curvature correction is shown in Figs 9-13. As before, results are 
presented using both the conventional and the adaptive grid method. 

The velocity profiles (Figs 9 and 11) show clearly that the solution-adaptive grid is as good as, 
and in some cases superior to, the same-CPU-effort fixed grid calculation [see the velocity profile 
in Fig. 11 at (x - Xr)/Xr = --0.68 and --0.42]. In all cases the 34 × 16 solution-adaptive grid results 
are better than the 34 x 16 fixed grid results. At (x - Xr)/Xr = --0.68, and y/S  = 0.6, for example, 
the error measure defined as I(Umeasured- Upredicted) I/lumeasuredl is about 0.2 for the solution-adapted 
grid and about 0.7 for the same-CPU-effort fine grid. At (x - x , ) / x ,  = -0.42,  the error measure 
at y/s  --- 0.42, is 0.2 for the solution-adapted grid and 0.62 for the same-CPU-effort fine grid. The 
corresponding error measure for the same size 34 x 16 fixed grid is several times larger. 

Similar observations are also made in the turbulent kinetic energy profiles of Fig. 12 and the 
dissipation rate profiles of Fig. 13. In Fig. 12, at (x - x,:)/xr = 0.4, and y/S  = 0.8, the error measure 
is 0.27 for the solution-adapted grid and 0.49 for the same-CPU-effort fixed grid. Except for a 
region near y/s  = 0.3, the solution-adapted grid solution is superior. At (x -Xr)/X,  = -0.25,  the 
solution-adapted grid is always better. Comparing the solution on the same size grid, the 34 x 16 
adapted grid is considerably superior than the 34 x 16 fixed grid. In Fig. 13, at (x - x,)/x, of -0.25,  
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the error measure at y/S = 0.6 is 0.97 for the 50 x 35 fixed grid and 0.67 for the 34 x 16 adapted 
grid. 

The difference between the results presented in Figs 9-13 and those in Figs 4-8 is attributed to 
the streamline curvature modification (modeling or physical error). As can be seen by comparing 
both results, curvature effects are very important in correctly predicting turbulent separated flows. 
The dimension of the recirculation region in this case (6.3S after adaptation) is very close to 
the experimental value. All results show substantial improvement. The best improvement is 
obtained with the adaptive grid method which yields results better than those obtained using the 
same-CPU-effort fixed grid method. 

The adaptive grid method is clearly far more accurate than the conventional method, and 
the difference in the adaptive grid method predictions with and without curvature modification 
(on a reasonably large mesh) is primarily a physical (modeling) error. The difference in results 
between the adaptive grid method (34 x 16 grid) and the conventional fixed grid method 34 × 16 
grid is due to the numerical error arising primarily in the high gradient or curvature regions. 
Therefore, it is possible to better isolate and quantify the physical error due to streamline curvature 
effects alone (difference between adaptive grid-model predictions with and without curvature 
effects included) and also the physical error due to the turbulence models used (difference 
between the adaptive grid solutions and experimental data). To further elaborate, the numerical 
errors are minimized here through the use of an adaptive grid technique and therefore discrepancies 
between predictions and measurements can be attributed primarily to turbulence model in- 
accuracies. This reveals the need for new models which better describe the turbulence process. 
Clearly, the difference between predictions and measurements in the solution of turbulent flows 
are not due to physical or numerical errors alone but to a combination of the two, and without 
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proper attention to the selection of  a suitably accurate numerical scheme, the numerical errors 
can be as significant as the modeling errors. It is argued here, that in many cases, with stream- 
line curvature, for example, a same-CPU-effort conventional fixed grid algorithm may not be 
adequate to reduce numerical errors significantly, and that for a given CPU-effort, using a 
solution-adaptive grid may be a better way to minimize numerical errors. 
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C O N C L U D I N G  R E M A R K S  

A n  evaluation o f  the relative impor tance  o f  the physical and numerical errors associated with 
the numerical  solution o f  turbulent  separated flows, using two turbulence models, with a 
convent ional  and a solut ion-adaptive grid method  has been made. The results obtained suggest that  
adaptive grid methods  are more  accurate than fixed grid methods  for  the same level o f  
computa t iona l  effort. The numerical  error  is found  to be quite large when regions o f  high gradients 
are not  correctly resolved. Wi thou t  minimizing numerical errors, no meaningful  conclusions 
concerning the per formance  o f  turbulence closure models can be drawn. However ,  numerical errors 
in m a n y  cases cannot  be reduced efficiently without  the use o f  a solut ion-adaptive grid procedure.  
The utility o f  a solut ion-adaptive grid procedure  in reducing numerical  errors, and thus providing 
a better estimate for model ing errors, has been demonst ra ted  for turbulent  separated flow over a 
backward-facing step. The physical error  associated with k-E turbulence models is clearly 
significant. 
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