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d A new methodology for the construction of streamline bounded high resolution schemes is presented. The route followed in the 
T~velopment is to combine existing streamline schemes with the Normalized Variable Formulation (NVF) bounding approach. 

e procedure is applied to the Skew Upwind Differencing Scheme (SUDS) to yield a new composite high resolution bounded 
convective scheme (NVF SUDS). The increase in computational cost with NVF SUDS is very small as compared to the 
U~bounded SUDS. The new scheme is tested and compared with the composite high resolution STOIC scheme, the upwind 
sc e~e.' and the unbounded SUDS by solving for three pure convection test problems. Results generated, demonstrate the 
~iablhty of the new upwind scheme in accurately resolving steep gradients (as accurate as the ones obtained with the third-order 

OIC scheme) while retaining the solution bounded. -
Nomenclature 
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b 
C 
10 
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Coefficients in the discretized equation 
Volume integral of Q 
Source term in the discretized equation 
Convective flux coefficient 
Functional relationship 
Total scalar flux across cell face 
Source term in the transport equation 
Surface area of control volume face 
Residual error 
Velocity components in x and y directions 
General dependent variable 
Diffusion coefficient 
Density 
Quantitative indicator of error 

Superscripts g Upwind formulation 
C Diffusion contribution 

Convection contribution 
Refers to normalized variable 
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Subscripts 
e,w,n,s 
E,W,N,S 
p 
f 
U 
D 
C 
nb 
dc 
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Refer to control volume faces 
Refer to neighbors of the P grid point 
Main grid point 
Refers to any of the control volume faces 
Upstream grid point 
Downstream grid point 
Central grid point 
Refers to neighbors 
Deferred correction 

1. Introduction 

Two of the main sources of errors in numerical modeling of convection-diffusion transport probleIllS 
are numerical diffusion and numerical dispersion. The term numerical diffusion refers to numerically 
induced smearing of the predicted profile while, numerical dispersion refers to non-physical spatial 
oscillations or overlunder shoots produced in the solution. Numerical diffusion, a significant source of 
error in numerical solution of conservation equations, can be separated into two components namely 
cross-stream and streamwise numerical diffusion. The former occurs when gradients in a convected 
quantity exist perpendicular to the flow and the direction of flow is oblique to the grid lines, i.e. due to 
the multi-dimensional nature of the flow [1-3]. The latter happens when gradients in a convected 
quantity exist parallel to the flow [4] even in one-dimensional situations. Numerical dispersion, on the 
other hand, comes about when the convective scheme used is unstable [5] and large gradients are 
present. 

Several approaches have been adopted to reduce these errors. To suppress numerical diffusion twO 
routes have been followed: One way is to use higher-order schemes, which are basically derived as 
one-dimensional schemes and applied for multi-dimensional cases and help in reducing stream wise 
numerical diffusion. A variety of so-called higher-order schemes have been presented and evaluated 
over the years such as the QUICK scheme of Leonard [6], the third-order scheme of Agarwal [7] and 
the second-order upwind scheme of Fromm [8]. Another approach is to use skew upwind schemes, that 
reduce cross-stream numerical diffusion because of their multi-dimensional nature. A number of 
multi-dimensional schemes have been devised such as the SUDS and SUWDS schemes of Raithby [9], 
the VSUD scheme of Lilington [10], the DTUD of Sharif [11] and the SSUD scheme of Hassan et al. 
[12] to cite a few. Both higher-order and skew upwind schemes do yield more accurate results than the 
highly diffusive first-order upwind scheme, and are certainly more stable than the second-order central 
difference scheme, however, they suffer from a lack of boundedness, i.e. they tend to give rise to 
oscillations or under lover-shoots, especially in regions of strong gradients. These under lover-shoots 
can induce large errors and lead to unphysical results. 

To suppress numerical dispersion, several procedures have also been developed. These procedures 
can be grouped along two lines. One approach is to follow a blending strategy where either a limited 
anti-diffusive flux is added to a first-order upwind scheme in such a way that the resulting scheme is 
capable of resolving sharp gradients without undue under lover-shoots, or on the contrary, some kind of 
smoothing diffusive agencies are introduced into an unbounded or a higher-order scheme to damp 
oscillations. The Flux-Corrected Transport (FCT) method of Zalesak [13] is an example of the first type 
of flux-blending technique, while examples of the second type are the Fi)tering Remedy and 
Methodology (FRAM) of Chapman [14], the Simple Blending (SB) methods of Peric [15] and Zhu and 
Leschziner [16]. Because of their multistep nature, flux-blending techniques tend to be very expensive 
computationally. A better way to remove unphysical oscillation is to use a composite flux limiter 
approach. In composite high resolution (HR) schemes, the numerical flux at the interface of the 
computational cell is modified by the use of a flux-limiter that enforces a monotonicity (boundedness) 
criteria. The family of shock-capturing schemes based on the Total Variational Diminishing flux-limiters 
(TVD) [17], widely used in compressible flow simulations, are well-known examples of composite 
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~chemes. A more recent formulation for high resolution flux-limiters has been developed by Leonard 
ased on the normalized variable formulation (NVF) [18] . 
. While a number of bounded high-order schemes have been implemented to form a family of 

~lgh:resOlution schemes (HR) [18-21J, few workers have implemented bounded skew upwind schemes. 
hanf et at. have used the FRAM and the SB methods in combination with the SUDS [22,23] and the 

Fer in combination with the DTUD [ll] schemes. All these bounding techniques, except for the SB 
methOd, are expensive computationally due to their multi-step nature. Results obtained with SB 
however, are over-diffusive. In this paper, the idea of bounding skew upwind schemes by enforcing the 
~onve~tive boundedness criteria is tested .. This is do?e by combin~ng th~ S~D sche~e with the ~VF 

oun.dmg approach to yield a composite high resolutIOn scheme wIth a lIght 10crease 10 computatlOnal 
cost 1n comparison with the unbounded SUD scheme. 
~e newly developed bounded skew upwind scheme (NVF SUDS) is tested and compared with the 

uPWmd scheme, the STOIC scheme [24], and the unbounded SUD scheme by solving for three 
problems (i) a two-dimensional pure convection of a scalar involving a step profile in an oblique velocity 
field, (ii) a two-dimensional pure convection of a scalar involving an elliptic profile in an oblique 
vel~city field, (iii) and a two-dimensional pure convection of a scalar by a rotational velocity field (the 
Smith-Hutton problem). Results generated, demonstrate the capability of the bounded skew upwind 
SCheme in resolving, with relatively little additional computational cost, steep gradients while retaining 
the solution bounded. 

2. NUmerical discretization of the transport equation 

The transport equation governing two-dimensional incompressible steady flows may be expressed in 
the following general form 

d ( de/» d ( de/» -;- pue/> - r - + - pve/> - r - = Q 
uX ax dy oy (1) 

Where c/> is any dependent variable, u and v are the x- and y-components of the velocity vector, and p, r 
and Q are the density, diffusivity and source terms respectively. Integrating the above equation over the 
COntrol volume shown in Fig. 1, and applying the divergence theorem, the following discretized 
equation is obtained in Cartesian coordinates 

~-~+~-~=B rn 
Where J( represent the total flux of e/> across cell face 'r (f = e, w, n or s) and B is the volume integral of 
the source term Q. Each of the surface fluxes it contains a convective contribution, J';, and a diffusive 
COntribution, J~, hence 

II = I~ + I~ (3) 

For a purely convective scalar flow the diffusion flux, Ir, is zero, while the convective flux is given by 

i'j = (pu.S)(e/>( = C(c/>( (4) 

Where Sf is tbe surface of cell fact 'f' , and C, is the convective flux coefficient at cell face 'r. As can be 
seen from Eq. (4), the accuracy of the control volume solution for the convective scalar flux depends on 
the proper estimation of the face value of ct>r as a function of the neighboring e/> values. Using some 
aSsumed interpolation profile, rpf can be explicitly formulated in terms of its node values by a functional 
relationship of the form 

¢( = f( e/>nb) (5) 

Wher~ ct>nb denotes the neighboring node e/> values (ct>E' c/>w, ct>N' ¢s, e/>NE' e/>NW' e/>SE' e/>sw). After 
SUbs!ttuting Eq. (5) into Eq. (4) for each cell face, Eq. (2) is transformed after some algebraic 
manIpulations into the following discretized equation 
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Fig. 1. Typical grid point cluster and control volume. 
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EE 

(6) 

where the coefficients Qp and Qnb depend on the selected scheme and bp is the source term of the 
discretized equation. 

Since the functional derivative can involve a large number of neighboring grid points, especially when 
using higher-order streamline based schemes, the solution of Eq. (6) can become very expensive 
computationally. hence the use of a compacting procedure is most welcome. In the present work the 
deferred correction procedure of Rubin and Khosla [25] is used. In this procedure Eq. (2) is rewritten as , 

J~ - J~ + J~ - J~ = B + [Ce(rP~ - rPel- Cw(rP~ - rPw) + Cn(rP~ - rPn) - C.(rP~ - rPs)l (7) 

where rP~ is the face value. J~ the total flux of rP. both calculated using the first-order upwind scheme. 
rPf the cell face value calculated using the chosen streamline based or higher-order scheme. and the 
underlined terms represent the extra source term due to the deferred correction. Substituting the value 
of the cell flux obtained from the functional relationship of the upwind and high-resolution scheme at 
hand. the deferred correction results in an equation similar in form to Eq. (6). but where the coefficient 
matrix is pentadiagonal (for 20) and always diagonally dominant since it is formed using the first-order 
upwind scheme. The discretized equation. Eq. (6). becomes 

QprPp = ~ (anbrPnb) + bp + bdc (8) 
nb 

where now the coefficients Qp and Qnb are obtained from a first-order upwind discretization. nb == 
(E. W. S, N) and bdc is the extra deferred correction source term. This compacting procedure is simple 
to implement and effective when using higher-order or streamline based schemes. 

3. The skew upwind differencing scheme (SUDS) 

This scheme was first proposed by Raithby [9. 26] and was subsequently used by a number of 
investigators in treating high Reynolds number or convection-dominated flows. However. the skew 
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NW N NE 

sw s 
Fig. 2. SUDS Interpolation. 

[Upwind scheme does suffer from unphysical oscillations as demonstrated by the results in the literature 
1,27]. 

In the SUDS, the advected values of cP at the cell faces are approximated by considering the direction 
of the velocity vector at the cell face and interpolating between the values at the two appropriate nodes 
among the nodes surrounding the cell face. The two appropriate nodes are selected by going upstream 
along the direction of the velocity vector at the cell face all the way back to the line joining the centers 
of the adjacent cells as shown in Fig. 2. The local profile for cPw • for example, may be obtained (see the 
~ Control volume) as follows 

"'" . {cPw = cPw if Uw = 0 
¢..,-f(cPw.¢sw)=m1¢W+ m2cPSW With A.:;:::.J. ifv Ju =2 

'1',., 'l'SW w,., (9) 

~here m1 and m2 are weighing factors for cPw and <Psw' respectively, and depend on the stream 
direction. 

4. The normalized variable formulation 

4.1. The normalized variable 

The proposed scheme is bounded on the basis of the normalized variable proposed by Leonard [18]. 
~nsidering face 'r of a control volume (see Fig. 3), defining cPu. cPP' cPc, and cPt as the Upstream (U), 

Own stream (0), central nodal values (C) and face value (f) for each cell face (see Fig. 3), the 
normalized variable is defined as 

(10) 

Note that with this normalization $p = 1 and $v = O. The use of the normalized variable simplifies the 
definition of the functional relationships of HR schemes and is helpful in defining the conditions that 
the fUnctional relationships should satisfy in order to be bounded and numerically stable. 

4.2. The convective boundedness criteria (CDC) 

Dased on the normalized variable analysis, Gaskell and Lau [28] formulated a convection bounded­
~ess criterion (CBC) for implicit steady-state flow calculation, which states that for a scheme to have the 
b OU'!.ded'!.ess property its functional relationship should be continuous, should be bounded from below 

Y ¢, = <Pc, and from above by unity, and should pass through the points (0,0) and (1,1). in the 
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Fig. 3. (a) Original and normalized variables and profiles. (b) The interpolation points used in calculating tPf' 

I!}onotonic range (0 < t$c < 1), and for 1 < t$c or t$c < 0, the functional relationship f( t$c) should equal 
cPc. The above conditions illustrated in Fig. 4, can be formulated as 

f( t$c) is continuous 

f(t$c) = 0 for t$c = 0 

f(t$c) = 1 for t$c = 1 (11) 

f( t$c) < 1 and f( t$c) > t$c for 0 < t$c < 1 

(t$c) = t$c for t$c < 0 or t$c > 1 

STOIC 

\."'<~;....-._ CDC 

Fig. 4. Convective Boundedncss Criterion (CDC). 

Fig. S. NVD plot for the STOIC High Resolution Scheme. 
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S. The NVF SKEW UPWIND scheme 
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yje~te! the calculation of <Pf using the SKEW UPWIND scheme, the cell face value is normalized to 
rnOd'fiCPf ~nd the CBC criterion is enforced in the event when it is not satisfied. It is clear that this 
corn 1 cat~on to the original skew upwind scheme is not difficult to implement and is not expensive 

putatlOnally. 

6. The STOIC scheme 

s ~he STOIC scheme (Second- and Third-Order Interpolation for Convection) is a high-resolution 
oc erne developed and implemented in the context of the NVF methodology. Its development is based 
a~t~he premise_that the normalized variable at the cell face, ~f can be related to the normalized variable 
d'ff e center, CPc by a combination of linear functions. In the monotonic range, the second-order central 
f, 1 erence scheme and the third-order QUICK scheme are combined in the manner shown in Fig. 5, to 
form a Second- and Third-Order Interpolation for Convection (STOIC) scheme. An ad-hoc linear 
f unct~on is used in the (O-O.2] segment of the NVD diagram to enforce the CBC condition f (0) ;::: O. The 
runctlOnal relationship of the STOIC scheme passes through the points (0,0) and (1,1) and satisfy the 

g:st of the eBC conditions. This functional relationship of the STOIC scheme, illustrated in Fig. 5, is 
IVen by 

7. APPlications 

~f=3~c 
¢r=Hl + ~c) 
¢{ =i +~¢c 
~r= 1 

¢r=~c 

forO< ¢c <0.2 

for 0.2 < ¢c < 0.5 

for 0.5 < ¢c < 516 
for 516 < ~c < 1 
elsewhere 

(12) 

c In What follows, the results of calculations for three test situations (Figs. 6-8) involving purely 
°fVective transport of scalars containing discontinuities or large gradients. are presented. 

b ~ all three tests, the computational results were considered 'converged' when the residual error given 
Y q. (13) became smaller than 0.08%. 

RE == 2: lapcPp - [~ a"b<Pnb + bp + bdC ] I (13) 

$=1 

$=0 
0\~----~$-=~0~----~1 

Test 1 

cp=o 
o·+----r-cp-= '::"0 ----J 1 

Tesl2 

Fig. 6. Pure convection of a scalar discontinuity (test 1). 

Fig. 7. Pure convection of an elliptic profile by a uniform velocity field (test 2). 
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$=2 

$=2 $=2 

Fig. 8. Pure convection of a scalar by a rotational velocity field (test 3). 

and the quantitative indication of the error was calculated using the following relation 

e = 2: l4>computcd - 4>exactl (14) 

summed over all computed grid points. 

Test 1: Convection of a step profile in an oblique velocity field 

Fig. 6 shows the well known benchmark test problem consisting of a pure convection of a transverse 
step profile imposed at the inflow boundaries of a square computational domain. A 25 x 25 mesh was 
used giving in this case Ax == ay = 1/25. The location of the boundary step is chosen so that the exact 
convected step passes through the midpoint of the grid. The angle 0 was chosen to be 30.92° and 
Ivl = I, so as to have the analytical profile coincide with grid nodes in the last grid column. The 
governing conservation equation of the problem is 

iJ(u4» + iJ(v4» = 0 
ax ay (15) 

where 4> is the dependent variable and u and v are the cartesian components of the uniform velocity 
vector V. The computed values of 4> using the upwind scheme, the SUDS the NVF SUDS, and the 
STOIC scheme along with the exact analytical solution to the problem are shown in Fig. 9. The results 
presented are very clear and self explanatory. The worst performance is for the upwind scheme and the 
best results obtained are for the NVF SUDS and the STOIC scheme. The maximum error for the NVf 
SUDS is slightly lower than the error obtained with the high-resolution STOIC scheme. The maximulll 
error associated with the unbounded SUDS is more than twice the error of the NVF SUDS, but what is 
worse than that, are the oscillations in the solution obtained with SUDS. These oscillations are the 
result of the SUDS not satisfying the CBC criterion. The results of the new NVF SUDS are very 
smooth and oscillations free since the CDC criterion is enforced. Furthermore, the performance of the 
new scheme, even though developed based on a first-order upwind scheme, is as good as the 
performance of the high-order STOIC scheme due to a large reduction in the cross-stream numerical 
diffusion. 

Test 2: Convection of an elliptic profile in an oblique velocity field 

An elliptic profile was also used for the same geometric situation. This second problem, illustrated in 
Fig. 7, was used in order to test the resolution of the different schemes for I a profile involving a 
gradually decreasing gradient. The elliptic profile is generated using the following equation 

4> =4,~1_ U + (115)]2 for2EijEi 12 
V (9/25)2 

(16) 

The same mesh as for test 1 was used. Moreover, the governing conservation equation and the variables 
of the problem, are the same as in the previous problem. The numerical results of the various 
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Fig, 9, PrOjections of ¢ field for test 1. 
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convective schemes along with the exact analytical solution to the problem are shown in Fig. 10. Th~ 
trend of results is similar to that of test 1 with substantial improvement obtained with the NVF SVD 
over the SUDS. In addition, the results of the NVF SUDS are as accurate as the ones obtained with the 
composite high-resolution STOIC scheme. As in the previous problem, the worst performance is for the 
upwind scheme. 

Test 3: Smith-Hutton Problem 

In the third test problem shown schematically in Fig. 8, a step discontinuity at x = -0.5 is convect~d 
clockwise from the inlet plane (x < 0, y = 0) to the outlet plane (x > 0, y = 0) by a rotational velocity 
field given by 

u = 2y(1 - x2 ) (17) 

v = -2x(1 -l) (18) 
I 

The solution to this test. which was devised for evaluating a number of numerical convection schemes 
[29], is given by 

o for -0.5 < x < 0 
2 for -1 <x < -0.5 

cfJ= 2 for -1 <x < 1 
2 for x =-1 
2 for x = 1 

y=O 
y=O 
y=1 
O<y<1 
O<y<1 

In this test, no physical diffusion was considered and the same mesh as for the previous two tests waS 
employed. Moreover, the conservation equation and variables of the problem, are the same as in the 
previous ones. The computed results of the various convective schemes are displayed in Fig. 11. Again, 
numerical results obtained with the NVF SUDS are substantially better than those achieved with SUDS 
which show unboundedness. Furthermore, the results of the NVF SUDS are as accurate as the ones 
obtained using the STOIC scheme while the most diffusive results are those generated by the upwind 
scheme. 

The maximum errors in all three problems for the various convective schemes used are presented in 
Table 1. From this table, it can be inferred once more than the worst results are for the upwind scheme 
and the best ones are for the NVF SDS and the STOIC scheme. Since the employment of the NVf 
bounding methodology with the SUDS is easy to implement and is not expensive computationally, its 
use is recommended in CFD applications. 

8. Concluding remarks 

A new bounded skew upwind scheme was presented. The newly developed high resolution convective 
scheme was formulated by combining the skew upwind scheme with the NVF bounding technique. The 
results of three test problems demonstrated the capability of the new scheme in eliminating oscillations 
from the solution and in generating results as accurate as the ones obtained with the composite 
high-resolution STOIC scheme. Moreover, the paper has shown quantitatively the importance of 
minimizing cross stream false diffusion when solving numerically advection problems. Furthermore, it 
has revealed the gain that could be achieved by implementing skew high resolution schemes, in which 
case, both cross stream and streamwise diffusion would be greatly reduced. Finally, the implementation 
of the new scheme in CFD codes is straightforward and is associated with a light increase in 
computational cost as compared to the unbounded skew upwind differencing scheme. 
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UPWIND SUDS 

NVFSUDS STOIC 

Fig. 11. Projections of q, field for test 3. 

Table 1 
Errors in tests I, 2 and 3 --Scheme % Error for test 1 % Error for test 2 % Error for test 3 --UPWIND 65.54 93.06 41.3 
SUDS 36.57 27.16 20.8 
NVFSUDS 15.36 16.87 16.8 
STOIC 17.93 16.23 15.1 --
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