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Abstract

A new methodology for the construction of streamline bounded high resolution schemes is presented. The route followed in the
cvelopment is to combine existing streamline schemes with the Normalized Variable Formulation (NVF) bounding approach.
he Procedure is applied to the Skew Upwind Differencing Scheme (SUDS) to yield a new composite high resolution bounded

onvective scheme (NVF SUDS). The increase in computational cost with NVF SUDS is very small as compared to the
Unbouynded SUDS. The new scheme is tested and compared with the composite high resolution STOIC scheme, the upwind
Scheme, ang the unbounded SUDS by solving for three pure convection test problems. Results generated, demonstrate the
Capability of the new upwind scheme in accurately resolving steep gradients (as accurate as the ones obtained with the third-order

IC scheme) while retaining the solution bounded.

\\
N(’menclature
‘;} Coefficients in the discretized equation
b Volume integral of Q
Source term in the discretized equation
c Convective flux coefficient
5() Functional relationship
Total scalar flux across cell face
SQ Source term in the transport equation
R Surface area of control volume face
E Residual error
“,v Velocity components in x and y directions
;é General dependent variable
Diffusion coefficient
p Density
€ Quantitative indicator of error
S“Perscripts
U Upwind formulation
D Diffusion contribution
,,C Convection contribution

Refers to normalized variable
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Subscripts
e,wW,n,s Refer to control volume faces
E,W,N,S Refer to neighbors of the P grid point

p Main grid point

f Refers to any of the control volume faces
U Upstream grid point

D Downstream grid point

C Central grid point

nb Refers to neighbors

dc Deferred correction

1. Introduction

Two of the main sources of errors in numerical modeling of convection—-diffusion transport problems
are numerical diffusion and numerical dispersion. The term numerical diffusion refers to numerica!ly
induced smearing of the predicted profile while, numerical dispersion refers to non-physical spaltlal
oscillations or over/under shoots produced in the solution. Numerical diffusion, a significant source 0
error in numerical solution of conservation equations, can be separated into two comiponents namely
cross-stream and streamwise numerical diffusion. The former occurs when gradients in a convect€
quantity exist perpendicular to the flow and the direction of flow is oblique to the grid lines, i.e. due t0
the multi-dimensional nature of the flow [1-3]. The latter happens when gradients in a convected
quantity exist parallel to the flow [4] even in one-dimensional situations. Numerical dispersion, on the
other hand, comes about when the convective scheme used is unstable [5] and large gradients ar¢
present.

Several approaches have been adopted to reduce these errors. To suppress numerical diffusion two
routes have been followed: One way is to use higher-order schemes, which are basically derived as
one-dimensional schemes and applied for multi-dimensional cases and help in reducing streamwise
numerical diffusion. A variety of so-called higher-order schemes have been presented and evaluated
over the years such as the QUICK scheme of Leonard [6], the third-order scheme of Agarwal [7] and
the second-order upwind scheme of Fromm [8]. Another approach is to use skew upwind schemes, that
reduce cross-stream numerical diffusion because of their multi-dimensional nature. A number of
multi-dimensional schemes have been devised such as the SUDS and SUWDS schemes of Raithby [9],
the VSUD scheme of Lilington [10], the DTUD of Sharif [11] and the SSUD scheme of Hassan et al.
[12] to cite a few. Both higher-order and skew upwind schemes do yield more accurate results than the
highly diffusive first-order upwind scheme, and are certainly more stable than the second-order central
difference scheme, however, they suffer from a lack of boundedness, i.e. they tend to give rise to
oscillations or under/over-shoots, especially in regions of strong gradients. These under/over-shoots
can induce large errors and lead to unphysical results.

To suppress numerical dispersion, several procedures have also been developed. These procedures
can be grouped along two lines. One approach is to follow a blending strategy where either a limited
anti-diffusive flux is added to a first-order upwind scheme in such a way that the resulting scheme is
capable of resolving sharp gradients without undue under/over-shoots, or on the contrary, some kind of
smoothing diffusive agencies are introduced into an unbounded or a higher-order scheme to damp
oscillations. The Flux-Corrected Transport (FCT) method of Zalesak [13] is an example of the first type
of flux-blending technique, while examples of the second type are the Filtering Remedy and
Methodology (FRAM) of Chapman [14], the Simple Blending (SB) methods of Peric [15] and Zhu and
Leschziner [16]. Because of their multistep nature, flux-blending techniques tend to be very expensive
computationally. A better way to remove unphysical oscillation is to use a composite flux limiter
approach. In composite high resolution (HR) schemes, the numerical flux at the interface of the
computational cell is modified by the use of a flux-limiter that enforces a monotonicity (boundedness)
criteria. The family of shock-capturing schemes based on the Total Variational Diminishing flux-limiters
(TVD) [17], widely used in compressible flow simulations, are well-known examples of composite
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Schemes, A more recent formulation for high resolution flux-limiters has been developed by Leonard
based on the normalized variable formulation (NVF) [18].
While a number of bounded high-order schemes have been implemented to form a family of
18h-resolution schemes (HR) [18-21), few workers have implemented bounded skew upwind schemes,
harif et a). have used the FRAM and the SB methods in combination with the SUDS [22,23] and the
in combination with the DTUD [11] schemes. All these bounding techniques, except for the SB
Method, are expensive computationally due to their multi-step nature. Results obtained with SB
however, are over-diffusive. In this paper, the idea of bounding skew upwind schemes by enforcing the
sonvective boundedness criteria is tested. This is done by combining the SUD scheme with the NVF
Ounding approach to yield a composite high resolution scheme with a light increase in computational
€0st in comparison with the unbounded SUD scheme. ' '

The newly developed bounded skew upwind scheme (NVF SUDS) is tested and compfired with the
Upwind scheme, the STOIC scheme [24], and the unbounded SUD scheme by solving for three
broblems (i) a two-dimensional pure convection of a scalar involving a step profile in an oblique velocity
fielg, (ii) a two-dimensional pure convection of a scalar involving an elliptic profile in an oblique
velacity field, (iii) and a two-dimensional pure convection of a scalar by a rotational velocity field (the
Smith~Hutton problem). Results generated, demonstrate the capability of the bounded skew upwind
Scheme in resolving, with relatively little additional computational cost, steep gradients while retaining

the solution bounded.

2. Numerical discretization of the transport equation

The transport equation governing two-dimensional incompressible steady flows may be expressed in
the following general form

Where ¢ is any dependent variable, u and v are the x- and y-components of the velocity vector, and p, I
and Q are the density, diffusivity and source terms respectively. Integrating the above equation over the
control volume shown in Fig. 1, and applying the divergence theorem, the following discretized

Quation is obtained in Cartesian coordinates

Je__Jw+Jn_J‘=B (2)
Where J, represent the total flux of ¢ across cell face ‘f (f=¢, w, n or s) and B is the vcolume integral of
the source term Q. Each of the surface fluxes J; contains a convective contribution, J;, and a diffusive
Contribution, J?, hence

I=JI¢+Ip o
For a purely convective scalar flow the diffusion flux, J2, is zero, while the convective flux is Eiven by
J? = (pu.S) e, = C ¢ o

Where S, is the surface of cell fact ‘f', and C; is the convective flux coefficient at cell face ‘. As can be
Seen from Eq. (4), the accuracy of the control volume solution for the convective scalar flux depends on
the Proper estimation of the face value of ¢; as a function of the neighboring ¢ values. Using some
assumed interpolation profile, ¢, can be explicitly formulated in terms of its node values by a functional

relationship of the form
be = 1(d,) .

where $,, denotes the neighboring node ¢ values (dg, v, dn, b5, by, brwr bses Psw). After
Substituting Eq. (5) into Eq. (4) for each cell face, Eq. (2) is transformed after some algebraic

Manipulations into the following discretized equation
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Fig. 1. Typical grid point cluster and control volume.

aP¢P = % (anb nb) + bP (6)

where the coefficients a, and a,, depend on the selected scheme and by is the source term of the
discretized equation.

Since the functional derivative can involve a large number of neighboring grid points, especially when
using higher-order streamline based schemes, the solution of Eq. (6) can become very expensive
computationally, hence the use of a compacting procedure is most welcome. In the present work the
deferred correction procedure o’f Rubin and Khosla [25] is used. In this procedure Eq. (2) is rewritten as

J Iy + I =17 =B +[C(8¢ - 6.) = Cldw = 6,) + C,(6¥ ~ 6,) =~ C,(87 — 8] 0

where ¢/ is the face value, J ¢ the total flux of ¢, both calculated using the first-order upwind scheme,
¢, the cell face value calculated using the chosen streamline based or higher-order scheme, and the
underlined terms represent the extra source term due to the deferred correction. Substituting the value
of the cell flux obtained from the functional relationship of the upwind and high-resolution scheme at
hand, the deferred correction results in an equation similar in form to Eq. (6), but where the coefficient
matrix is pentadiagonal (for 2D) and always diagonally dominant since it is formed using the first-order
upwind scheme. The discretized equation, Eq. (6), becomes

apdp = Sg (@aoPup) +bp + by, t:))

where now the coefficients a, and a,, are obtained from a first-order upwind discretization, nb =
(E, W, S,N) and b, is the extra deferred correction source term. This compacting procedure is simple
to implement and effective when using higher-order or streamline based schemes.

3. The skew upwind differencing scheme (SUDS)

This scheme was first proposed by Raithby [9, 26] and was subsequently used by a number of
investigators in treating high Reynolds number or convection-dominated flows. However, the skew
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Fig. 2. SUDS Interpolation.

Flp“’zl;lfl scheme does suffer from unphysical oscillations as demonstrated by the resuits in the literature

In the SUDS, the advected values of ¢ at the cell faces are approximated by considering the direction
of the velocity vector at the cell face and interpolating between the values at the two appropriate nodes
among the nodes surrounding the cell face. The two appropriate nodes are selected by going upstream
along the direction of the velocity vector at the cell face all the way back to the line joining the centers
Of the adjacent cells as shown in Fig. 2. The local profile for ¢,,, for example, may be obtained (see the

control volume) as follows

(=0 ifv,=0
¢W “f(‘i’w» d’sw) = mlqsw + mzquW Wlth {¢w == ¢;vw )f vw/uw = 2 (9)

Xhere ml and m2 are weighing factors for ¢y and ésw, respectively, and depend on the stream
Irection,

4. The normalized variable formulation

41 The normalized variable

The proposed scheme is bounded on the basis of the normalized variable proposed by Leonard {18).

Considering face * of a control volume (see Fig. 3), defining ¢y, ép, dc, and ¢ as the Upstream (),

Ownstream (D), central podal values (C) and face value (f) for each cell face (see Fig. 3), the

Normalized variable is defined as
r_ $-¢

b= e S 10

T (10)

Note that with this normalization ¢, = 1 and ¢, = 0. The use of the normalized variabte simplifies the

definition of the functional relationships of HR schemes and is helpful in defining the conditions that
the functional relationships should satisfy in order to be bounded and numerically stable.

4.2, The convective boundedness criteria (CBC)

Based on the normalized variable analysis, Gaskell and Lau [28] formulated a convection bounded-
ness criterion (CBC) for implicit steady-state flow calculation, which states that for a scheme to have the
QUQdedtless property its functional relationship should be continuous, should be bounded from below
Y &= ¢., and from above by unity, and should pass through the points (0,0) and (1,1), in the
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Fig. 3. (a) Original and normalized variables and profiles. (b) The interpolation points used in calculating ¢.

monotonic range (0< de< 1), and for 1< éc or & <0, the functional relationship f (J;C) should equal
¢c- The above conditions illustrated in Fig. 4, can be formulated as

f (J;C) is continuous
f (‘é’c) =0
¢c) =1

1.0 1

£(
f(dc)<tland f(dc)>pe for0< o<1
(

$c) =

$c

for q?;c =0

for ¢ =1 (11

for o <0or o >1

%
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Fig. 4. Convective Boundedness Criterion (CBC).

Fig. 5. NVD plot for the STOIC High Resolution Scheme.
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5.
The NVF SKEW UPWIND scheme

~

i R . .
glzld, & and the CBC criterion is enforced in the event when it is not satisfied. It is clear that this
fication to the original skew upwind scheme is not difficult to implement and is not expensive

computationally.

After the calculation of &, using the SKEW UPWIND scheme, the cell face value is normalized to

6. The STOIC scheme

sc};rhe STOIC scheme (Second- and Third-Order Interpolation for Convection) is a high-resolution
o €me developed and implemented in the context of the NVF methodology. Its development is based
a?tthhe Premise that the normalized variable at the cell face, ¢ can be related to the normalized variable
iy € center, @ by a combination of linear functions. In the monotonic range, the second-order central

erence scheme and the third-order QUICK scheme are combined in the manner shown in Fig. 5, to
f‘;fm.a Second- and Third-Order Interpolation for Convection (STOIC) scheme. An ad-hoc linear
funct.lon is used in the {0~0.2] segment of the NVD diagram to enforce the CBC condition f(0) = 0. The
renctxonal relationship of the STOIC scheme passes through the points (0,0) and (1,1) anq sat}sfy th.e
gi\sfé :fbthe CBC conditions. This functional relationship of the STOIC scheme, illustrated in Fig. 5, is

Y

& =3¢ for0< ¢e <0.2
Fe=3(1+ ) for0.2<:<0.5

$=f(8c)=% $=3+3f for05<dc<5/6 (12)
$=1 for5/6< o<1
¢ = ¢ elsewhere

I8 Applications

coIn wl'xat follows, the results of calculations for three test situations (Figs. 6-8) involving purely
;Wect:vc transport of scalars containing discontinuities or large gradients, are presented.
D all three tests, the computational results were considered ‘converged’ when the residual error given

¥ Eq, (13) became smaller than 0.08%.

RE = 2 apdp— [Eb B Gop T bp t bdc] (13)

1 1
= =0 (pzo
=1 p=1 ¢
z, /
¢.—.o£> =30.02¢ ou1, /
9=0
=0 ¢=0 $=0
0 $=0 1 0 $=0 1
Test 1 Test2

Fig. 6. Pure convection of a scalar discontinuity (test 1).
Fig. 7. Pure convection of an elliptic profile by a uniform velocity field (test 2).
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Fig. 8. Pure convection of a scalar by a rotational velocity field (test 3).

and the quantitative indication of the error was calculated using the following relation

£= 2 |¢computed - ¢=xact| (14)

summed over all computed grid points.
Test 1: Convection of a step profile in an oblique velocity field

Fig. 6 shows the well known benchmark test problem consisting of a pure convection of a transvers®
step profile imposed at the inflow boundaries of a square computational domain. A 25 x 25 mesh was
used giving in this case Ax = Ay = 1/25. The location of the boundary step is chosen so that the exact
convected step passes through the midpoint of the grid. The angle 8 was chosen to be 30.92° an
V=1, so as to have the analytical profile coincide with grid nodes in the last grid column. The
governing conservation equation of the problem is

oug)  3wvd) _

ax ay 0 (15)

where ¢ is the dependent variable and u and v are the cartesian components of the uniform velocity
vector V. The computed values of ¢ using the upwind scheme, the SUDS the NVF SUDS, and th¢
STOIC scheme along with the exact analytical solution to the problem are shown in Fig. 9. The results
presented are very clear and self explanatory. The worst performance is for the upwind scheme and the
best results obtained are for the NVF SUDS and the STOIC scheme. The maximum error for the NVF
SUDS is slightly lower than the error obtained with the high-resolution STOIC scheme. The maximum
error associated with the unbounded SUDS is more than twice the error of the NVF SUDS, but what is
worse than that, are the oscillations in the solution obtained with SUDS. These oscillations are th¢
result of the SUDS not satisfying the CBC criterion. The results of the new NVF SUDS are very
smooth and oscillations free since the CBC criterion is enforced. Furthermore, the performance of the
new scheme, even though developed based on a first-order upwind scheme, is as good as the
performance of the high-order STOIC scheme due to a large reduction in the cross-stream numerical
diffusion.

Test 2: Convection of an elliptic profile in an oblique velocity field

An elliptic profile was also used for the same geometric situation. This second problem, illustrated in
Fig. 7, was used in order to test the resolution of the different schemes for’a profile involving a
gradually decreasing gradient. The elliptic profile is generated using the following equation

¢=V1-—-L’.—(+9-—/(21—-5/)5-}E for2sj=<12 (16)

The same mesh as for test 1 was used. Moreover, the governing conservation equation and the variables
of the problem, are the same as in the previous problem. The numerical results of the various
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Fig. 9. Projections of ¢ field for test 1.
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convective schemes along with the exact analytical solution to the problem are shown in Fig. 10. Thg
trend of results is similar to that of test 1 with substantial improvement obtained with the NVF sup
over the SUDS. In addition, the results of the NVF SUDS are as accurate as the ones obtained with the
composite high-resolution STOIC scheme. As in the previous problem, the worst performance is for the
upwind scheme.

Test 3: Smith—-Hutton Problem

In the third test problem shown schematically in Fig. 8, a step discontinuity at x = —0.5 is conveCt.‘id
clockwise from the inlet plane (x <0, y =0) to the outlet plane (x >0, y = 0) by a rotational velocity
field given by

u=2y(1-x*% an
v=-2x(1-y% ) (18
The solution to this test, which was devised for evaluating a number of numerical convection schem¢$
[29], is given by
0 for-0.5<x<0 y=0
2 for-1<x<-05 y=0
d=<2 for-1<x<1 y=1
2 forx=-1 0<y<l1
2 forx=1 O0<y<l1

In this test, no physical diffusion was considered and the same mesh as for the previous two tests Wa
employed. Moreover, the conservation equation and variables of the problem, are the same as in t.he
previous ones. The computed results of the various convective schemes are displayed in Fig. 11. Agaih
numerical results obtained with the NVF SUDS are substantially better than those achieved with SuDS
which show unboundedness. Furthermore, the results of the NVF SUDS are as accurate as the on¢s
obtained using the STOIC scheme while the most diffusive results are those generated by the upwin
scheme. '

The maximum errors in all three problems for the various convective schemes used are presented it
Table 1. From this table, it can be inferred once more than the worst results are for the upwind schem¢é
and the best ones are for the NVF SDS and the STOIC scheme. Since the employment of the NVF
bounding methodology with the SUDS is easy to implement and is not expensive computationally, itS
use is recommended in CFD applications.

8. Concluding remarks

A new bounded skew upwind scheme was presented. The newly developed high resolution convective
scheme was formulated by combining the skew upwind scheme with the NVF bounding technique. The
results of three test problems demonstrated the capability of the new scheme in eliminating oscillations
from the solution and in generating results as accurate as the ones obtained with the composite
high-resolution STOIC scheme. Moreover, the paper has shown quantitatively the importance of
minimizing cross stream false diffusion when solving numerically advection problems. Furthermore, it
has revealed the gain that could be achieved by implementing skew high resolution schemes, in which
case, both cross stream and streamwise diffusion would be greatly reduced. Finally, the implementation
of the new scheme in CFD codes is straightforward and is associated with a light increase in
computational cost as compared to the unbounded skew upwind differencing scheme.
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Table 1
Errors in tests 1, 2 and 3
Scheme % Error for test 1 % Error for test 2 % Error for test 3
UPWIND 65.54 93.06 413
SUDS 36.57 27.16 20.8
NVFSUDS 15.36 16.87 16.8
STOIC 17.93 16.23 15.1
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