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SUMMARY 

A universal model for studying the performance of endoreversible heat engines with heat leak is presented. By 
exploiting finite-time thermodynamics, the new model allows detailed analyses of Carnot-like engines under 
combined modes of heat supply and/or release. Many established laws and major conclusions derived in several 
references are shown to represent very special cases of the new formulation. Furthermore, as a special case of the 
general model, the performance of endoreversible heat engines under combined conduction, convection, and 
radiation heat transfer modes is studied and generated results are displayed graphically. 
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INTRODUCTION 

Several studies have reported on the efficiency of Carnot-like heat engines at maximum power conditions. 
The common feature of these investigations deals with the additional limitation on efficiency imposed by 
the rate at which heat can be exchanged between the working material and the heat reservoirs. This 
additional resistance to heat flow, was first accounted for by Curzon and Ahlborn (1975) who employed 
Newton’s law to model the heat flux across the walls of the hot and cold reservoirs. Chen and Yan (1989) 
generalized the work reported in Curzon and Ahlborn (1975) by assuming the rate of heat flowing 
through the walls of the reservoirs to be ruled by an equation of the form: 

Q = u ( T ; - T ~ )  (1) 

where n is a nonzero integer. The use of equal powers to describe the rates of heat in and out has limited 
the applicability of results to those situations where similar heat transfer modes govern the hot and cold 
sides of the engine. DeVos (1985) simplified the analysis presented in Curzon and Ahlborn (1975) and 
Chen and Yan (1989) developing an easier model. Even though this model was introduced in general 
terms, only specific cases of limited usefulness were analysed. A number of workers (Gordon, 1991; 
Gordon and Zarmi, 1989; DeVos, 1991; Nuwayhid and Moukalled, 1994) have also applied finite-time 
thermodynamics to predicting phenomena of practical interest. Gordon (1991) applied finite-time 
thermodynamics to analyse the thermoelectric generator. Gordon and Zarmi (1989) modelled the Earth 
and its envelope using a Carnot engine with its heat input being solar radiation and its work output 
representing the wind generated. From these basic considerations, they derived a theoretical upper 
bound for the annual average wind energy on Earth. DeVos (1991) developed a simplified version of 
Gordon and Zarmi’s model and applied it to studying the conversion efficiency of solar energy into wind 
energy. Nuwayhid and Moukalled (1994) added a heat leak term into the model of DeVos (1991) and 
studied the effect of a planet thermal conductance on conversion efficiency of solar energy into wind 
energy. The theoretical upper bound on conversion efficiency reported in DeVos (1991) was shown to be 
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well above the actual values predicted by the modified model. Nulton et al. (1993) and Pathria et al. 
(1993) described a set of feasible operations of a finite-time heat engine subject only to thermal losses in 
terms of an inequality similar to the second law of thermodynamics and applied it to Carnot-like 
refrigerators and heat pumps. Recently, Moukalled et al. (1995) generalized the Curzon-Ahlborn concept 
by adding a heat leak term into the DeVos model (1985). Their work was comprehensive in the sense that 
it allowed the use of different heat transfer power laws for the various heat transfer processes involved. 
The model, however, was not capable of accommodating combined modes of heat transfer. 

It is the intention of this work to generalize Moukalled et al.'s model (1995) and extend it into 
situations where the exchange of heat between the engine, heat reservoirs, and the surroundings occurs 
via combined modes of heat transfer. As will be seen, this generalization results in very complicated 
equations which, in general, have to be tackled numerically. Moreover, a variety of well-established 
formulae, such as the Curzon-Ahlborn efficiency, the Castans efficiency etc., are shown to represent very 
special cases of the general results presented in this work. 

THE GENERALIZED HEAT-LEAK MODEL 

A schematic of the endoreversible engine under consideration is depicted in Figure 1. As shown, heat 
transfer is assumed to be directly proportional neither to temperature nor to temperature raised to the 
fourth power as is conventionally done. Rather, multiple powers of temperature (or combined heat 
transfer modes) are assumed to be involved in the heat transfer process. The implication of such a 
spectrum of heat transfer modes is not the subject of the paper. As such, the focus will be on the new 
model and general solution methodologoy presented. 

i=I, 

Figure 1. Schematic model of endoreversible engine with heat leak operating between hot reservoir at T,  and cold reservoir at T, 
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Irreversible heat transfer takes place between the heat source and the hot reservoir of the engine 
(Figure l), while heat transfer from the hot reservoir to the engine is considered to occur reversibly. An 
analogous situation exists between the engine and the heat sink. The friction loss within the engine and 
the heat loss between the engine and the surroundings are reversibly modelled via the heat-leak term. 
With such a model, the heat transfer from the hot reservoir into the engine Q1 is given by a heat balance 
equation as 

" 2  12 

I = " ]  r = l ,  
Q 1  = c a , (T;  - t&)  - c r,(tbl - t&)  (2) 

while the heat transfer from the engine to the cold reservoir is 

i = m ,  i = l ,  

where ai, P i ,  and yi are the appropriate coefficients of heat transfer and the superscript i (which may 
assume any value between n,  and It2, m, and m 2 ,  of I ,  and 1 2 )  designates the model power of the heat 
transfer law. Endoreversibility requires that, 

_ = _  QI Q 2  

to1 to2 
with the Carnot efficiency given by 

The work can therefore be found from the following relation: 

(4) 

Applying the reversibility condition by inserting Q, and Q2 into equation (4), the following equation for 
to, in terms of 7, T, ,  T2 ,  a,, PI, and 'y, is obtained: 

" 2  m2 12 m2 m2 c al(I - 7)tbl + c P,(1 - ~ ) ' t ; ) ~  - c 'y l [7-  ~ ( 1  - 7) ' ] t&  - c a,(l - v ) T , ' -  c P,T;=O (7) 

The above equations may be written in dimensionless forms by defining the following dimensionless 
quantities: 

I = " ,  i=ml , = I ,  i=ml i=ml 

i = n ,  i = n ,  I = " ,  

In matrix notation v, R , ,  and Si may be written as: 

From the above definition of v it is easily seen that 
" 2  c y=I/n,+I/nl+l+Kl+2+ . . . + K 2 - l + K 2 =  1 

i = n ,  

(12) 
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Using the above dimensionless quantities along with the Carnot efficiency (equation (5)), the efficiency 
and work equations (equations (7) and (6) are transformed respectively to 

" 2  m2 12 m2 c ( l - q ) K t ; +  C R , ( l - q ) ' t i -  C s j [ q - q ( l - q ) l ] t ; - ( l - q ) -  C R i p i = O  (13) 
i = n ,  i = m ,  r = l ,  i = m ,  

and 

i = m ,  i = n ,  i = m ,  c ffiTi 
i = n ,  

Since i may vary between - cfi and + cfi, analytical solutions may be obtained for some specific situations. 
In general however, solutions should be obtained numerically. 

SOLUTION METHODOLOGY 

The general equations 913) and (14) are used in this section to obtain the efficiency of the endoreversible 
heat engine at maximum power. For this purpose, the derivative of the normalized power equation 
(equation (14)) with respect to the efficiency is set to zero. This results in the following general relation: 

i = n ,  i = m l  

A second equation for the derivative of t ,  with respect to q may be obtained from 
equation, equation (131, and is given by: 

" 2  m2 12 c yr;+ c z R I ( l - q ) l - l t ; +  ~ s l [ l + ( l - q ) l - l ( q + z q - l ) ] f ~  
dt, i = n ,  i = m 3  r = l ,  

the reversibility 

- 1  
_ -  . -  (16) 

i = n l  i = m ,  i = / ,  

Equating equations (15) and (161, a relation for the efficiency at maximum power (qm) is obtained and its 
final form is written as: 

m2 c iR;(1 - qrn)l-l t;  

i = m ,  

(17) 
i = n ,  i = m l  i = l ,  - - 

" 2  m2 12 

i = n ,  i = m ,  i = l ,  
c iK(1-  qm) t l - l+  c iRi(l - qm);t i - ' -  c is;[qm - qm(l - qm) i ] t ; - '  

As the same time, the efficiency should satisfy the reversibility equation (equation (13)). This results in a 
highly nonlinear system of two equations in the two unknowns I ,  and qm. Therefore, the problem is 



CARNOT-LIKE ENGINES 207 

mathematically well defined and in general, the solution may be carried out numerically. However, for 
some special cases of practical interest, the above system may be reduced to a single equation in q,,, for 
which the solution may be found numerically, Furthermore, earlier results reported in Curzon and 
Ahlborn (1975), Chen and Yan (1989), DeVoc (1985) and Moukalled et af .  (1995) are shown to represent 
very special cases of this general formulation. 

Combined conduction, con uection, and radiation heat transfer modes 

Since it is not feasible to perform a full parametric investigation, solutions are obtained for the situation 
where exchange of heat between the engine, heat reservoirs, and surroundings occurs via a combination 
of the well known conduction, convection, and radiation heat transfer modes. Under such conditions, the 
only nonzero powers are 1 and 4. As such, y ,  R i ,  and Si assume the following forms: 

V,=[V1 001/41, v ,+1/4=1 

R j  = [ R ,  0 0 R4]  

(18) 

(19) 

S j = [ S l  O O S , ]  (20) 

Furthermore, the dimensionless work equation (equation (14)) reduces to: 

= 1 + R17 + R4r4 - V1tl - ht: - R,(1 - v)tl - R4(1 - T , I ) ~ ~ :  
W 

alT ,  + a4T; 
(21) 

and by setting the derivative of the work given by the above equation to zero, an equation for the 
derivative of t ,  with respect to 77, similar to that given by equation (15), is obtained as follows: 

R,t, + 4(1 - ~ ) ~ R , t f  
(1 - v ) R ,  + 4(1 - 77)4R4t; + V, + 4f;V4 

_ -  dt, - 
d7/ 

(22) 

Similarly, by employing the relevant values for n, ,  n, ,  m , ,  m,, I , ,  I,, y ,  R,, and S, equation (131, (161, 
and (17) are transformed respectively to 

a,t: + b , t ,  + c1 = 0 
where 

(23a) 

C, = 7 - R4r4 - R , T -  7 
and 

(23d) 

where 
D = R ,  - v2s, - V ( R ,  + v,) + v, 

+ t:[4R4 + v4(4R4 - 16S4) + v2(24R4 - 16S4) + 4$S4 

+ q3( - 16R4 + 24S4) - 77(16R4 + 4 h )  + 41/41 
and 

a2t i  + b2tf + c2t: + d, t ,  + e2 = 0 
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a ,  = [ -3277, + 1367; - 256~;  + 292~;  - 2247; + 112~: - 327; + 47:] R4S4 

+ [ -4  + 2 4 ~ ;  - 327; + 127):] R4T/4 + [ -3277, + 7 2 ~ i - 6 4 ~ ;  + 2Oq:]S4T/4 - 4v4' (25b) 

b, = [ -877, + 287; - 3677; + 20~: - 4v2]R4S1 + [ -877, + 107; - 1071 + 5v: - ~ ; ] R I S ~  

+ [ -4  + 1217, - 1 2 ~ ;  + 4 ~ ; ]  R4V1+ [ - 8 ~ ~  + 1 8 ~ ;  - 1 6 ~ ;  + 5 ~ :  S4VI 

- (3qm + l)R1V4 - 87),S,V, - 5VlI/, ( 2 5 ~ )  

(25d) 

d ,  = [ - 217, + v;] R1S1 - 27),SlV1 - R1L'l - Vf (25e) 

e,  = (1 - qm)R,  + Vl (25f) 

Equations (23) and (25) may be solved numerically to obtain the efficiency at maximum power conditions 
once the constant parameters are assigned specific values. Such a numerical solution is given here for 
several combinations of the parameters involved and results and displayed graphically in Figures 2-4. 

C, = [4 - 1677, + 247: - 1617; + 47):] R4 + 41/, 
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The conversion efficiency at maximum power, as given by the above equations, is function of the ratio 
of the cold to hot reservoir temperatures, 7, the relative contribution of conduction/convection and 
radiation to total heat transfer between the working fluid and the heat source (V, and V,), the 
dimensionless heat transfer coefficients between the working fluid and the heat sink ( R ,  and R,), and 
the dimensionless heat leak coefficients (S, and S,). In Figures 2-4, q,, is plotted as a function of R,  and 
R,  for different values of V,, V,, S,, and S, at a given 7. The general trend of results is similar and shows 
qm, for constant values of 7, to increase with R, and R, for given V,, V,, S, and S, and to decrease with 
increasing 7 for given values of the various parameters involved. This is to be expected since, when S,, 
S,, and T are constant, increasing R, and R, (the dimensionless heat transfer coefficients) reflects an 
increase in the heat transfer coefficients or a decrease in resistance to heat flow between the working 
fluid and the heat sink and results in a lower temperature for the cold reservoir. This, in turn, causes the 
Carnot-like engine to operate between a hot and cold reservoirs of higher temperature difference and 
consequently, results in an increase of its efficiency. Furthermore, at constant values of R,, R,, S,, and 
S,, an increase in 7 produces closer hot and cold reservoir temperatures and hence a less efficient 
engine. 

By comparing results in Figures 2-4, it can easily be inferred that, the efficiency at maximum power 
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Figure 4. Variation of the efficiency at maximum power with R ,  and R ,  for T 2 / T ,  = 0.8 

conditions of the endoreversible engine at given R, and R, increases with increasing the dimensionless 
radiation heat transfer coefficients, i.e. when V, and/or S, increase. This is so because as V, and S, 
increase, the contribution of radiation heat transfer increases implying higher hot reservoir temperature 
and thereby higher efficiency. 

Deriuation of previous reported work from the new model 
In this section, the work reported in several references is shown to represent very special cases of the 
general formulation presented here. This is done by starting with the most general formulation in the 
literature (Moukalled et al., 1995) down to the original Curzon-Ahlborn efficiency (Curzon and Ahlborn, 
1975). 

The results reported in Moukalled et al. (1995) may be generated from the current general model by 
setting n,  = n ,  = n,  m, ,  = m ,  = m, 1 ,  = 1 ,  = I ,  = 1, Ri = R, and Si = S. Performing this step, equations 
(14), (151, (131, (161, and (17) are transformed respectively to 

-- - 1 + R r m  - t ;  - 
a T; 
W R tr(1- (26) 
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m ( l - q m ) m - '  ( n ( l - l ) , ) t ; + m ~ ( l - ~ ~ ) m t ~ - S [ ~ m + ( l - ~ m )  I f  1 - ( l - v m ) ' ] l t ; )  

= [ n + m ( l -  q m ) m ]  ( t :  + m R ( 1 -  q,, , )m-'tr  +S[I  -(I+ 1 ~ 1 -  v m ) / + / ( 1  - / - I  I t ,  / - 1) 

(30) 

which are the equations presented in Moukalled et al. (1995). 
Since, based on the model presented in Moukalled et al. (1995) which is a special case of the general 

model presented here, most of the results reported in the literature were derived, it is obvious that the 
same result may be obtained here. Moreover, the derivations being reported in Monkalled et a f .  (19951, 
there is no need to elaborate on them here and only a brief description of the final results along with the 
respective values of the various parameters involved is given next. 

The general case n = m = 1 

Many of the well known formulae in the literature may be derived from the general model for the case 
when n = m = 1 whereby the same mode of heat transfer governs all heat exchange processes. In this 
situation, the above nonlinear system of equations may be reduced analytically to a single equation in 
which may always be solved numerically. However, depending on the values of R ,  S, and T ,  analytical 
solutions may sometimes be possible. Under these conditions, the solution to the above system of 
equations gives the following explicit relations for t ,  and qm: 

where 

(32) '1 

and 

R [ R + S ( I + T ' R ) ] ( I  - 7 7 m ) 2 f l + n ( ~ + ~ + ~ ~ ) ( 1 - r l m ) ' + '  

+ ( ( 1  - n ) [ ( R  + S) - + s )]  - R S ( I  + n ) ( l -  T " ) ) ( I  - 77,)'' 

- ~ T ' R [ R + R s + s I ( ~  - 7 7 m ) ' - 1 - ( ~ + ~ ~ f l + ~ ~ 7 f l ) = ~  (34) 
Having derived the general equation that vm should satisfy, the exponent n in equation (34) is assigned, 
consecutively, the values - 1, 1 and 4. These chosen exponents, describe the well-known Fourier, Newton, 
and radiative heat transfer laws. As shown next, many established formulae derived in several references 
are easily obtained here as a very special case of the general formulation. 
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Case 1: n = m = 1 = - 1: 
The heat transfer law governing all heat exchange processes in Fourier’s law used in irreversible 
thermodynamics. Substituting n by - 1, equation (34) reduces to: 

[R(1 + 7) + S ( 2 T + R +  TR)](l - 77,)’-2[R(T-R) +S(T-R’)](l  - qm)-  

R’(1 + 7) - SR(2R + 1 + 7 )  = 0 (35) 
This quadratic equation has the general solution: 

[ R(T - R )  + S(T-R’)] 
R(1 + T ) + S ( 2 T + R f T R )  7 7 , = 1 -  

This is the result obtained by Chen and Yan (1989) and DeVos (1985) when the only thermal resistance is 
between the working fluid and the high temperature source. Additionally, if S = 0 and R = 0 the 
efficiency at maximum power, as found by Chen and Yan (1989), is given by: 

1 - - 7  
lim qrn = 1+7 

R+O 
(38) 

The above equation is valid when the only thermal resistance is between the working fluid and the low 
temperature source. 

Case 2: n = m = I = 1: 
Using n = 1 in equation (1) and (34), then equation (1) expresses Newton’s law and the relation for ”r7, 
reduces to: 

- 2[ R’(1 + S T )  + R ( 1 +  S + S T )  + S]qm + R ( 1 +  R)(1-  7 )  = 0 (39) [ R2(1 + ST) + R ( 1 +  2 s )  + 
The above equation for qrn has always the following closed form solution: 

(40) 

It is interesting to note that when there is no leakage ( S  = 01, equation (40) above, irrespective of the 
value of R, reduces to: 

7 7 , = 1 - - \ r ;  (41) 

which is the Curzon-Ahlborn efficiency (Curzon and Ahlborn, 1975). Thus, equation (40) is a generalized 
form of that efficiency. 

R(1 +R)(1  - 7 )  

R2(1 + 7s) + R ( 1 + 2 S )  + S  l 2  - (1 - T ) R S  -\irl - R’(1 + TS) + R ( 1 + 2 S )  + S  

Case 3: n = m = I = 4: 
For this case, all heat transfer processes including the heat leak, take place through a radiative heat 
transfer mode. Upon inserting the respective powers into equations (31) and (34), the following relations 
for t ,  and qrn are obtained: 
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and 

R [ S + R + T ~ S R ] ( ~  - ~ m , , ) 8 + 4 [ R S + R + S 1 ( 1 - 7 7 , ) 5  
4 

- [3S + 5RS + 3R - 3 S R 2 ~ 4  - ~ R S T ~  - 3 R 2 ~ 4 ] ( 1  - 77,) 

- 4R[ RS + R + S ] T ~ (  1 - 77,)3 - S - R T ~  - R S T ~  = 0 (43) 

The highest possible efficiency is attained when there is no leakage and when T =  0. If this is the case, 
then equation (43) may be written as: 

4 R(1-  vm)  + 4(1-  77,) - 3 = 0 

This equation reduces to that of DeVos (1991) when R + 1, i.e., 

(44) 

T$, - 4 ~ :  + 6 ~ :  - 877, + 2 = 0 (45) 

and the solution gives v,,, = 0.307. Equation (44), is, however, the more general one in that the variation 
of efficiency at maximum power with R is shown. 

Finally, of interest is the case for which S = 0 and R + m. Substitution of these values into equations 
(42), and (43) results in the following equations for the efficiency at maximum power and tol: 

(46) T2 q m = 1 - -  
to1 

The last equation, known as the Castans relation (Chen and Yan, 1989), is a practical formula in solar 
energy conversion systems and shows again that the results of this paper are the most general. 

CONCLUSION 

A new generalized mathematical model for studying the performance of endoreversible heat engines with 
heat leak was presented. The model was employed for performance of Carnot-like engines under 
combined modes of heat supply, release, and leak. Several new equations were presented and many 
well-known ones, developed in several references, were found to represent very special cases of the 
general formulation. The model can be applied to predicting the performance of a variety of energy 
conversion systems of practical interest. 
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a13 a2 
bl, b2 
c1, c2 
d2 
e2 
1, 11, 1, 
m, m,, m2 
4 n1, n2 

= coefficients in algebraic equation 
= coefficients in algebraic equation 
= coefficients in algebraic equation 
= coefficient in algebraic equation 
= coefficient in algebraic equation 
= integers representing the heat transfer mode 
= integers representing the heat transfer mode 
= integers representing the heat transfer mode 
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= heat entering the endoreversible heat engine 
= heat leaving the endoreversible heat engine 
= dimensionless parameters 
= dimensionless parameters 
= dimensional temperature of the working material entering the engine 
= dimensional temperature of the working material leaving the engine 
= dimensional temperature of hot reservoir 
= dimensional temperature of the working material entering the engine 
= dimensional temperature of cold reservoir 
= dimensionless parameters 
= power output 
= heat transfer coefficients 
= efficiency 
= efficiency at maximum power 
= ratio of cold to hot reservoir temperatures 

REFERENCES 

Chen, L. and Yan, Z. (1989). ‘The effect of heat-transfer law on performance of a two heat-source endoreversible cycle’, J.  Chem. 

Curzon, F. L. and Ahlborn, B. (1975). ‘Efficiency of a Carnot engine at maximum power output’, Am. J. Phys., 43 22-24. 
DeVos, A. (1985). ‘Efficiency of some heat engines at maximum-power conditions’, Am J. Phys., 53 (6). 570-573. 
DeVos, A. (1991). ‘The maximum efficiency of the conversion of solar energy into wind energy’, Am. J. Phys., 59 (81, 751-754. 
Gordon, J. M. (1991). ‘Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an 

Gordon, J. M. and Zarmi, Y. (1989). ‘Wind energy as a solar-driven heat engine: A thermodynamic approach’, Am. J. Phys., 57 (111, 

Moukalled, F., Nuwayhid, R. and Nouehed, N. (1995). ‘The efficiency of endoreversible heat engines with heat leak‘, International 

Nulton, J. D., Salamon, P. and Pathria, R. K. (1993). ‘Carnot-like processes in finite time. I. Theoretical limits’, Am. J.  Phys., 61 (lo), 

Nuwayhid, R. and Moukalled, F. (1994). ‘The effect of planet thermal conductance on conversion efficiency of solar energy into 

Pathria, R. K., Nulton, J. D. and Salamon, P. (1993). ‘Carnot-like processes in finite time. 11. Applications to model cycles’, Am. J. 

Phys., 90 (7), 3740-3743. 

instructive illustration’, Am. J. Phys., 59 (6), 551-555. 

995-998. 

Journal of Energy Research, 19 (S), 377-389. 

911-916. 

wind energy’, Renewable Energy, 4 (11, 53-58. 

Phys., 61 (lo), 916-924. 


