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ADbstract

This paper reports on the implementation and testing, within a full non-linear multi-grid
environment, of a new pressure-based algorithm for the prediction of multiphase flow at all
speeds. The algorithm is part of the Mass Conservation Based Algorithms (MCBA) group in
which the pressure correction equation is derived from overall mass conservation. The
performance of the new method is assessed by solving a series of two-phase test problems
varying from turbulent low Mach number to supersonic flows, and from very low to high
fluids density ratios. Solutions are generated for several grid sizes using the single grid (SG),
the prolongation grid (PG), and the full non-linear multi-grid (FMG) methods. The main
outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to
tackle the added non-linearity of multiphase flows, which is manifested through the
performance jump observed when using the non-linear multi-grid approach as compared to
the SG and PG methods; (ii) the extension of the FMG method to predict turbulent
multiphase flows and multiphase flows at all speeds. The convergence history plots and
CPU-times presented, indicate that the FMG method is by far more efficient than the PG
method, accelerating the convergence rate, for the problems solved and the grids used, over

the SG method by a factor reaching a value as high as 15.
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Nomenclature

coefficients in the discretized equation for ¢ .
source term in the discretized equation for ¢ .

body force per unit volume of fluid/phase k.

coefficient equals to 1/R“TY.

specific heat of fluid/phase k.

the vector form of the D operator.
turbulence production rate of fluid/phase k.
the H operator.

the vector form of the HP operator.
inter-phase momentum transfer.

diffusion flux of ¢® across cell face ‘.
convection flux of ¢ across cell face ‘f.

turbulence kinetic energy of fluid/phase k.

mass source per unit volume.

pressure.

Pr™, Pr® laminar and turbulent Prandtl number for fluid/phase k.

heat generated per unit volume of fluid/phase k.
general source term of fluid/phase k.

volume fraction of fluid/phase k.

surface vector.

time.
temperature of fluid/phase k.
interface flux velocity (V(fk).Sf ) of fluid/phase k.

velocity vector of fluid/phase k.

. velocity components of fluid/phase k.

Cartesian coordinates.

the maximum of a and b.
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Greek Symbols

(k)

Yo,

£

r(k)
(D(k)

¢(k)

density of fluid/phase k.

turbulence dissipation rate of fluid/phase k.
diffusion coefficient of fluid/phase k.

dissipation term in energy equation of fluid/phase k.

general scalar quantity associated with fluid/phase k.

Ap [¢(k)] the A operator.

1Y, 1/ laminar and turbulent viscosity of fluid/phase k.

Q cell volume.

ot time step.

Subscripts

f refers to control volume face f.
P refers to the P grid point.

Superscripts

C
D
&)
(k) *
k)€

(k)

old

refers to convection contribution.

refers to diffusion contribution.

refers to fluid/phase k.

refers to updated value at the current iteration.

refers to values of fluid/phase k from the previous iteration.
refers to correction field of phase/fluid k.

refers to fluid/phase m.

refers to values from the previous time step.



Introduction

The numerical simulation of multiphase flows is currently one of the most challenging areas
in Computational Fluid Dynamics (CFD) and has garnered over the last decade the research
efforts of an increasingly larger segment of the CFD community (e.g. [1-10]). While this
type of flow plays a very important role in several process industries (petrochemical, food,
etc.), the use of CFD for its simulation is still restricted to a relatively small class of problems
and its full potential is yet to be realized. This situation is largely due to the inherently
complicated physics of such flows, which translates into a significant increase in numerical
difficulties that can be linked to a number of factors: (i) the extreme complexity of the
multiphase Navier-Stokes equations (presenting for n-fluids, n-continuity and n momentum
equations), (ii) the substantial increase in non-linearity due to inter-fluid mass, momentum,
energy, and continuity-volume fraction couplings (on top of the pressure-velocity coupling
present in single fluid flow algorithms), (iii) and the segregated nature of many of the
multiphase algorithms [11-16] that cannot resolve the different couplings in an implicit
manner. This has left CFD users in the industrial sector with an unenviable situation where
the simulation of large industrial-type multiphase flow problems is still a rather uncertain
proposition highly dependent on initial conditions, under-relaxation factors, model
simplification, mesh size, in addition to many other numerical parameters.

It is the authors’ view that overcoming these hurdles can be accomplished by a multi-pronged
approach whereby the development of more general multi-fluid algorithms, the extensive use
of parallelization, and the use of multi-grid techniques have to play essential roles. The first
area has been recently the subject of a number of papers by the authors [17,18], and the
reader is referred to a recent review of all-speed multiphase flow algorithms [19], that
includes several sections on robustness improvement techniques as well as a set of new

algorithms capable of resolving the pressure-velocity-density-volume fraction couplings.



A Multi-grid Algorithm for Multiphase Flow at all Speeds 5

Parallelization already plays a major role in the simulation of large single fluid flow
problems, and can play a similar role in the simulation of multiphase flows. Several methods
have been proposed to parallelize Navier-Stokes solvers (e.g. functional decomposition [20],
domain decomposition [21,22]). The standard approach is the one in which the computational
domain is decomposed into a number of smaller sub-domains that are solved in parallel with
required data exchanged at specific points during the solution and assembly procedures [23-
25]. This has the benefits of applying more processing power to the problem in addition to
subdividing the global domain into a number of sub-domains where the standard iterative
algorithms operate more efficiently.

Multi-grid techniques achieve similar feats through different means. In this case the global
domain is abstracted into a series of coarser domains, where the solution is carried out more
efficiently and the results injected into the finer computational domains, thus accelerating the
solution procedure and yielding major improvements in both speed of convergence and
robustness especially when dealing with highly non-linear problems [26-43].

This paper describes an extension of the Full Approximation Storage (FAS) [30,44] multi-
grid algorithm to a recently developed all-speed multiphase flow algorithm based on the
global Mass Conservation [18] constraint. A number of implementation issues are addressed,
such as the use of special inter-grid transfer operators to maintain the realizability of the
solution and the special treatment of the volume fraction equation during prolongation. In
order to assess the effectiveness of the FAS multiphase implementation, a series of two-phase
test problems varying from subsonic low Mach number to supersonic flows, very low to high
fluids density ratios, are compared using a series of computational domains. In each case the
problems are solved using (i) a single grid approach (SG), (ii) a prolongation only approach
(PG) whereby the solution moves in one direction starting on the coarse grid and ending on

the finest grid with the solution obtained on level n used as initial guess for the solution on
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level (n+1), and (iii) finally a Full Approximation Storage (FAS) multi-grid approach with a
V cycle. The aim being to quantify the effect of the FAS in addressing the increased non-
linearity inherent in multiphase flow problems. Convergence history and CPU time are
compared for all cases.

In what follows the governing equations for a general two-phase flow system are presented
followed by a description of the discretization method and the used all-speed multiphase flow
algorithm. The test problems are then presented along with a detailed evaluation of their

performance with the three different approaches.

The Governing Equations

The equations governing multiphase flows are the conservation laws of mass, momentum,
and energy for each individual fluid. For turbulent multi-fluid flow situations, additional sets
of equations may be needed depending on the turbulence model used. These equations should
be supplemented by a set of auxiliary relations. The mass, momentum, and energy equations

are respectively given by:

(1) (k)
5(r p )+V.(r(k)p“‘)u“‘)):r(k)l‘@k) (1)
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where the superscript k refers to the k™ fluid, r the volume fraction, p the density, u the
velocity vector, p and p; the laminar and turbulent viscosities, Pr and Pr; the laminar and

turbulent Prandtl numbers, 3 the coefficient of thermal expansion, P the pressure, B the body

force term, T the temperature, M¥ the mass source, @ the viscous dissipation function, & the
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internal heat generation, c, the specific heat, and Iy and Ig the interfacial momentum and
energy transfer terms.

Several flow-dependent models have been advertised for incorporating the effect of
turbulence on interfacial mass, momentum, and energy transfer, which vary in complexity
from simple algebraic [45] models to state-of-the-art Reynolds-stress [46] models. However,
the widely used multiphase turbulence model, adopted in this work, is the two-equation k-¢
model [47], in which the fluidic conservation equations governing the turbulence kinetic

energy (k) and turbulence dissipation rate () for the k™ fluid are given by:

o+ p®K® o
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where 1”and I1represent the interfacial turbulence terms. The turbulent viscosity is

calculated as:

|k(k) [
' =C (©6)

Hoo =m0

For two-phase flows, several extensions of the k-¢ model that are based on calculating the
turbulent viscosity by solving the k and ¢ equations for the carrier or continuous phase only
have been proposed in the literature [48-53]. In a recent article, Cokljat and Ivanov [47]
presented a phase coupled k-¢ turbulence model, intended for the cases where a non-dilute
secondary phase is present, in which the k-¢ transport equations for all phases are solved.
Since the method is still not well developed, the first approach in which only the k and ¢
equations for the carrier phase are solved is adopted in this work.

The above set of differential equations has to be solved in conjunction with constraints on

certain variables represented by algebraic relations. These auxiliary relations include the
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equations of state, the geometric conservation equation, and the interfacial mass, momentum,
energy, and turbulence energy transfers.
Physically, the geometric conservation equation is a statement indicating that the sum of
volumes occupied by the different fluids, r'™, within a cell is equal to the volume of the cell
containing the fluids.
> =1 (7)

k
For a compressible multiphase flow, auxiliary equations of state relating density to pressure
and temperature are needed. For the k™ phase, such an equation can be written as:
o = p® (P,T(k)) (8)
Several models have been developed for computing the interfacial mass, momentum, energy,
and turbulence energy transfers terms. The closures used in this work will be detailed
whenever they arise while solving problems.
In order to present a complete mathematical problem, thermodynamic relations are needed

and initial and boundary conditions should supplement the above equations.

Discretization Procedure

If a typical representative variable associated with phase (k) is denoted by ¢(k), equations (1)-

(5) can be presented via the following general fluidic equation:

o p ™)
o + V. OpPuBe)= V. T OveH e Q) ©

where the expression for '™ and Q™ can be deduced from the parent equations.
Equation (9) is integrated over a finite volume to yield:

i

(K) 4 () (k)
o(r ™o dQ+”V.(r(k)p(k)u(k)¢(k)):1§2
Q

— V. (k)l"(k)v (k) @) (k) (k)dQ
[ ey [0

(10)
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Where Qis the volume of the control cell (Fig. 1). Using the divergence theorem to
transform the volume integral into a surface integral and then replacing the surface integral
by a summation of the fluxes over the sides of the control volume, equation (10) is

transformed to:

LY g)
(7070 YO 3= q (11)

at nb=e,w,n,s,t,b

where J%° and J%®° are the diffusive and convective fluxes, respectively. The

discretization of the diffusion term is second order accurate and follows the derivations
presented in [54]. For the convective terms, the High Resolution (HR) SMART [55] scheme
is employed, even for the calculation of interface densities, and applied within the context of
the NVSF methodology [56]. Substituting the face values by their functional relationship
relating to the node values of ¢, Eq. (11) is transformed after some algebraic manipulations

into the following discretized equation:

ALY =3 ALY + BY (12)

NB

where the coefficients A% and A{) depend on the selected scheme and B is the source

term of the discretized equation . In compact form, the above equation can be written as

> A+ B
k k
¢( ) — HP [¢( )]: NB A(k)
P

The discretization procedure for the momentum equation yields an algebraic equation of the

(13)

form:

u® = H,[u®]-r©p®v, (p) (14)

On the other hand, the fluidic mass-conservation equation (Eq. (1)) can either be viewed as a

phasic volume fraction equation:

r = H, [r(k)] (15)
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or as a the following fluidic continuity equation that is used in deriving the pressure

correction equation:

(rlgk)p(Pk) )_S(Eék)p(l)k) )Old 0n [r(k)p(k>u(k) .S] — OpER) (16)

where the A operator represents the following operation:

A[0]= D0, (17)

f=NB(P)

Solution Procedure

The number of equations describing an n-fluid flow situation are: n fluidic momentum
equations, n fluidic volume fraction (or mass conservation) equations, a geometric
conservation equation, and for the case of a compressible flow an additional n auxiliary
pressure-density relations. Moreover, the variables involved are the n fluidic velocity
vectors, the n fluidic volume fractions, the pressure field, and for a compressible flow an
additional n unknown fluidic density fields. In the current work, the n momentum equations
are used to calculate the n velocity fields, n-1 volume fraction (mass conservation) equations
are used to calculate n-1 volume fraction fields, and the last volume fraction field calculated

using the geometric conservation equation

r™ zl—Zr(k) (18)

k#n

The remaining volume fraction equation can be used to calculate the pressure field that is
shared by all phases. However, instead of using this last volume fraction equation, in the
class of Mass Conservation Based Algorithms (MCBA) the global conservation equation is
employed, i.e. the sum of the various fluidic mass conservation equations, to derive a

pressure correction equation as outlined next.

The Pressure Correction Equation

To derive the pressure-correction equation, the mass conservation equations of the various

phases are added to yield the global mass conservation equation given by:
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(rék)p;k))_sﬁr;k)p;k) )OId Q+Ap(r(k)p§>k)u(k) .S) _ zr(k)ﬁgk) —0 (19)
- k

In the predictor stage a guessed or an estimated pressure field from the previous iteration,
denoted by P°, is substituted into the momentum equations. The resulting velocity fields
denoted by u™”" which now satisfy the momentum equations will not, in general, satisfy the
mass conservation equations. Thus, corrections are needed in order to yield velocity and
pressure fields that satisfy both equations. Denoting the corrections for pressure, velocity, and

density by P’, u®’ and p'*" respectively, the corrected fields are written as:

* , © ,
P=P 1 P,u® =u® 4y p® = o p® (20)

Hence the equations solved in the predictor stage are:

Ui,k)* = HP[u(k)*]_r(k)oD(Pk)VPPo @1)

While the final solution satisfies

ut) =H,[u“1-r“p¥v,p (22)
Subtracting the two equation sets ((22) and (21)) from each other yields the following

equation involving the correction terms:

u(Pk) — Hp[u(k)]_ r(k)ODg)VPP! (23)

Moreover, the new density and velocity fields, p* and u®, will satisfy the overall mass

conservation equation if:

o old
(rp(k) p%k))_sfrék)pék)) Q+a, [r(k)op(k)u(k) .S] ~0 (24)
k

Linearizing the (p®™u®) term, one gets

(p(k>* n p(k)'Xu(k)* n u(k)’} P 4 pTy R g (07 (25)
Substituting equations (25) and (23) into equation (24), rearranging, and replacing density
correction by pressure correction, the final form of the pressure-correction equation is written

as:
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Z{% rp(k)OCFEk)PP’ + Ap[r(k)ou (k)*C;k)Pr]_AP[r(k)“p(k)*(r(k)“D(k)Vp')_S}
k

(26)

(Ko (k¥ _ (k) (k) \ld
:_Zk“{rp Pp S(trp Pp ) Q+Ap[r(k)op(k)*u(k)*]}

The corrections are then applied to the velocity, pressure, and density fields using the

following equations:

(k)*

Ul = u;k)O_ r(k)OD(Pk)VPP(’ P* — PO+ P’, p(k)* — p(k)D_I_ Cf)k)P( (27)

Numerical experiments using the above approach to simulate air-water flows have shown
poor conservation of the lighter fluid. This problem can be considerably alleviated by
normalizing the individual continuity equations, and hence the global mass conservation
equation, by means of a weighting factor such as a reference density p_(k) (which is fluid

dependent). This approach has been adopted in solving all problems presented in this work

(see [19] for details).

The MCBA-SIMPLE Algorithm

The overall solution procedure is an extension of the single-phase SIMPLE algorithm into
multiphase flows. Since the pressure correction equation is derived from overall mass
conservation, it is denoted by MCBA-SIMPLE [19]. The sequence of events in the MCBA-
SIMPLE is as follows:

1. Solve the fluidic momentum equations for velocities.

2. Solve the pressure correction equation based on global mass conservation.

3. Correct velocities, densities, and pressure.

4. Solve the fluidic mass conservation equations for volume fractions.

5. Solve the fluidic scalar equations (k, €, T, etc...).

6. Return to the first step and repeat until convergence.
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The Multi-Grid Strategy

Similar to other iterative methods, the rate of convergence of the solution method described
above does not scale linearly with the grid size, rather the convergence rate decreases more
drastically as the number of grid points increases. This behavior is attributed to the speed at
which the iterative solver transports the boundary information across the domain (i.e. with
SOR one grid point per iteration). Since information has to travel back and forth several
times to achieve convergence, acceleration of the outer iterations through the use of multigrid
methods is essential for large grids. The idea underlying the multi-grid strategy is to use
progressively coarser grids to accelerate the convergence rate. In mathematical terms the
low-frequency error components in the finest grid appear on coarser grids as high-frequency
Fourier mode that can be resolved efficiently by iterative relaxation solvers. In the present
work, this strategy is adopted to accelerate convergence and thereby reduce the overall
computational cost. The method used is the FMG-FAS method [44]. For a review of Multi-
grid methods the reader is referred, among others, to [30,44], therefore it is sufficient here to
give a general description of the method used.

The multi-grid algorithm adopted in this work can be summarized as follows. Starting with
the fine mesh, the coarser grid cells are generated through agglomeration of four finer grid
cells, two in each direction. On the other hand, if a finer grid is required, subdividing the
coarser grid control volume into four control volumes, again two in each, generates its
control volumes. With the FMG cycle, the algorithm starts at the coarsest level, where the
solution is first computed; this solution is interpolated onto the next finer mesh, where it is
used as initial guess. This stage is called the prolongation stage (see Fig. 2a). Then iterations
are performed on the fine mesh and the solution is transferred back to the coarser mesh by
applying a restriction operator. In order to obtain the same approximation on each level, a

forcing term is added to the discrete conservation equations on the coarser grid. This term
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represents the truncation error on the coarse grid with respect to the fine grid. After
performing a number of iterations on the coarse mesh, the solution is transferred back to the
finer mesh in the form of a correction and a number of iterations are performed on the finer
grid to smooth the fields. This process is continued until a converged solution on the fine
mesh is obtained (see Fig. 2b). Then the solution is extrapolated into a finer mesh and the
process repeated until convergence is reached on the desired finest mesh. This strategy has
been applied to both incompressible and compressible supersonic multiphase flows and great
savings have been realized as will be shown in the results section.

In the restriction step the coarse grid variables are computed from the fine grid values as:

AIL_A;A‘((I)R + V¢Fi 'dFic) (28)

while in the prolongation step the fine grid corrections are computed from the coarse grid

$c:

values as

d)'l-‘i :¢’C+V¢’C'dCFi (29)
where

4)'c = ¢c - $C (30)

The special character of the volume fraction and k-¢ equations necessitates modification to
the prolongation procedure as described next.

While extrapolating the volume fraction field from the coarse to the fine grid, the
prolongation operator may yield negative volume fraction values or values that are greater
than one. Such unphysical values are detrimental to the overall convergence rate and may
even cause divergence. To circumvent this problem, a simple yet very effective treatment is
adopted: Once the r-values are extrapolated, a check is performed to make sure they are
within bounds. If any of the r-values is found to be unbounded, the r-fluidic volume fraction
equation is solved starting with the interpolated values until all of the r-values are within the

set bounds. Typically less than 10 iterations are needed. This treatment has been found to be
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very effective and to preserve the convergence acceleration rate. The practices of solving the
volume fraction equations only on the fine grid or forcing the extrapolated unbounded values
to be within the set bounds or discarding corrections that result in unbounded values [30]
proved to be ineffective and slowed the convergence rate considerably.

For the k-¢ turbulence model, the treatment suggested by Cornelius et al. [57] is adopted.
This approach is based on the observation that the application of wall functions to the coarse
grids would lead to unphysical values because of the relatively large distance between the
wall and the boundary cell center. Thus, at wall boundaries the restricted fine grid values of k
and ¢ are held constant, and hence no corrections are calculated. In order to satisfy the
realizability constraint, the restricted turbulence properties and prolongated correction values
are modified accordingly.

In addition to the FMG strategy, the PG approach is also tested. This approach differs from
the FMG method in that the solution moves in one direction from the coarse to the fine grids
with the initial guess on level n+1 obtained by interpolation from the converged solution on
level n (Fig. 2(a)). As such, the acceleration over the SG method obtained with this approach

is an indication of the effect of initial guess on convergence.

Results and Discussion

The performances of the above-described solution procedures are assessed in this section by
presenting solutions to the following four two-dimensional two-phase flow problems: (i)
turbulent incompressible bubbly flow in a pipe, (ii) turbulent incompressible air-particle flow
in a pipe, (iii) compressible dilute air-particle flow over a flat plate, and (iv) inviscid
transonic dusty flow in a converging-diverging nozzle. Results are presented in terms of the
CPU-time needed to converge the solution to a set level and of the convergence history.
Moreover, solutions are obtained for a number of grids in order to assess the merit of the SG,

PG, and FMG strategies with increasing grid density. Furthermore, predictions are compared
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against available experimental data and/or numerical/theoretical values. The residual of a

variable ¢ at the end of an outer iteration is defined as:

RES{V=>1A ¢~ > A ¢% -BY 31)

c.v all p neighbours

For global mass conservation, the imbalance in mass is given by:

RES, —ZZ% (cpe) (k)pf)k)) Q= AU S]- re® (32)

All residuals are normalized by their respective inlet fluxes. Computations are terminated

when the maximum normalized residual of all variables, drops below a very small number &
(typically £=10"°). For a given problem, the same value of & is used with all methodologies.
In all problems, the first phase represents the continuous phase (denoted by a superscript (c)),
which must be fluid, and the second phase is the disperse phase (denoted by a superscript
(d)), which may be solid or fluid. Unless otherwise specified the HR SMART scheme is used
in all computations reported in this study. For a given problem, all results are generated
starting from the same initial guess. Moreover, it should be stated that in iterative techniques,
different initial guesses might require different computational efforts.

Problem 1:Turbulent upward bubbly flow in a pipe

Many experimental and numerical studies involving the prediction of radial phase
distribution in turbulent upward air-water flow in a pipe have appeared in the literature [58-
65]. These studies indicated that the lateral forces that most strongly affect the void
distribution are the lateral lift force and the turbulent stresses. As such, in addition to the
usual drag force, the lift force is considered as part of the interfacial force terms in the
momentum equations. In the present work, the interfacial drag forces per unit volume are

given by:

(I:A)E) _ _(I);A)D — 03752 S p(c) @y Sllp(u(d) (c)) (33)

P
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i, % -1, % _03B(2 pOHILOV, (VO - v) (34)

p
where r, is the bubble radius. The drag coefficient Cp varies as a function of the bubble

Reynolds and Weber numbers defined as:

I'p
RCP = 2TVS“P
1
(35)
2
We = 4p(C) p Vsllp

where o, the surface tension, is assigned a value of 0.072 N/m for air-water systems. The

drag coefficient is computed using the following correlations [66,67]:

Cp = 16 for Re, < 0.49
Re,

20
CD:@ for 0.49 <Re, <100

6.3
Cp= Re! —w  forRe >>100 (36)
C, :g for Re, >>100 and We >8
C, :% for Re, >>100 and Re, >2065.1/ We*

Many investigators have considered the modeling of lift forces [66-69]. Based on their work,
the following expressions are employed for the calculation of the interfacial lift forces per

unit volume:

(I )m (I )<d) o (d’(u(d) (C))x(qu(C)) (37)

where C; is the interfacial lift coefficient calculated from:

C,(1-2.78(02,1)) (38)
where (a, by denotes the minimum of a and b and Cj, is an empirical constant.

The effect of bubbles on the turbulent field is very important. In this work, turbulence is

assumed to be a property of the continuous liquid phase (¢) and is computed by solving the
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following modified transport equations for the turbulent kinetic energy k and its dissipation

rate ¢ that take into account the interaction between the phases:

0 r(C)p(C)k(C)
+V. I.(C) (C)U(C)k(c) - V. r(C) (¢) V(C) vk(c)
ot ( p ) p I Gk

(39)
(c)
v
r(c)p(c)(G(c)_ S(C))+V. p(c{_t kKOVE |+ 1P,
Gr
o(r*)pg® (©) g©
+V(r(°) (c) (c)g(c))zv r(c)p(c> (c) (c) Ve +T(C)C18PbT+
ot Gg | k
(40)
(><)8(c) © (© ()V(c) ()7..)
C C c C C t C C
rop W(CISG —C,.€ )+V. p o e Vr
T

where G is the well known volumetric production rate of k' by shear forces, o, the
turbulent Schmidt number for volume fractions, and Py is the production rate of k@ by drag

due to the motion of the bubbles through the liquid and is given by:

0.375C,Copr@rOv;
P, = =lip (41)

'y

In Eq. (41) Cy is an empirical constant representing the fraction of turbulence induced by
bubbles that goes into large-scale turbulence of the liquid phase. Moreover, as suggested in
[65], the flux representing the interaction between the fluctuating velocity and volume

fraction is modeled via a gradient diffusion approximation and added as a source term in the
continuity (V.(p(k)D(k)Vr(k)))and momentum (V.(p(kb(k)u(k)Vr(k))) equations with the

diffusion coefficient D given by:

DY =—— (42)
The turbulent viscosity of the dispersed air phase (d) is assumed to be a related that that of
the continuous phase through:

(©
v
v = (43)
O
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where o;i1s the turbulent Schmidt number for the interaction between the two phases. The
above described turbulence model is a modified version of the one described in [65] in which
the turbulent viscosities of both phases are allowed to be different in contrast to what is done
in [65]. This is accomplished through the introduction of the 6, parameter. As such, different
diffusion coefficients (D™) are used for the different phases. Results are compared against
the experimental data reported by Seriwaza et al [58].

In the Seriwaza et al experiment [58], the Reynolds number based on superficial liquid
velocity and pipe diameter is 8x10*, the inlet superficial gas and liquid velocities are 0.077
and 1.36 m/s, respectively, and the inlet void fraction is 5.36x107 with no slip between the
incoming phases. Moreover, the bubble diameter is taken as 3 mm [65], while the fluid

properties are taken as p‘©=1000 Kg/m’, p(d)=1.23 Kg/m’, and Vo= 10 m%/s. The constants

in the model were set to: C,,=0.075, 6=0.5, 5,=0.7, and C,=0.05. Predicted radial profiles of
the vertical liquid velocity and void fraction presented in Fig. 3 using a grid of size 96x32
control volumes concur very well with measurements and compare favorably with numerical
profiles reported by Boisson and Malin [65]. As shown, the void fraction profile indicates
that gas is taken away from the pipe center towards the wall. This is caused by the lift force,
which drives the bubbles towards the wall.

Having established the credibility of the physical model and numerical procedure, the next
task is to compare the effects of the grid size and solution methodology on convergence and
CPU time. For that purpose the calculations are performed on 5 different grids of sizes 18x3,
36x6, 72x12, 144x24, and 288x48 control volumes. On each grid, solutions are generated
using the SG, PG, and FMG strategies. Results are displayed in the form of (i) the normalized
residuals as a function of outer iterations (Figs. 4(a) and 4(b)), and (ii) normalized CPU time
(Table 1(a)) needed for the maximum normalized residual of all variables and for both phases

to drop below &=10". In Figure 4(a), the residuals of the overall mass conservation equation
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and momentum equation of the carrier phase (U') are presented on the finest grid for the SG,
PG, and FMG methodologies. As shown, the SG method requires about 35,000 iterations to
converge, whereas convergence with the PG grid method is achieved in about 10,000
iterations. Thus, a reduction ratio of 3.5 (=35,000/10,000) in the number of iterations is
achieved with what amounts to simply a better initial guess. Convergence with the FMG
method however requires about 1600 iterations, which represents a reduction ratio of 6.25
over the PG method and 21.9 over the SG method. The large difference between the PG and
FMG is an indication of the effectiveness of the FMG method in dealing with the added non-
linearity in multiphase flows. The effect of grid size on convergence of the FMG method is
depicted in Fig. 4(b). Unlike single-phase flows, the number of iterations increases with
increasing grid size. This increase could be attributed to: (i) the additional coupling between
the phases of the two-phase flow, which results in larger source terms (as reflected by the
cyclic convergence behavior of the SG and PG methods and should be minimized by
resolving the coupling in a more implicit manner (Fig. 4(a)), and (ii) the special treatment
used for the k and € equations which does not scale properly through the different grids.
Nevertheless, the acceleration rate of the FMG method over the SG and PG methods
increases with grid size, as can be inferred from Table 1(a) where the CPU time needed by
the SG, PG, and FMG methods on all grid sizes are presented. In addition, the ratio of the
time needed by the SG and PG methods to the one needed by the FMG method is displayed.
This allows a direct quantitative assessment of their acceleration rate. The speed of the FMG
method over the PG and SG methods is seen to increase with increasing grid density and to
be about 6 and 15.7 times faster than the PG and SG methods respectively, on the finest grid.

Problem 2:Turbulent air-particle flow in a vertical pipe

Here, the upward flow of a dilute gas-solid mixture in a vertical pipe is simulated. As in the

previous problem, the axi-symmetric form of the gas and particulate transport equations are
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employed. As reported in several studies [70-72], the effects of interfacial virtual mass and
lift forces are small and may be neglected and the controlling interfacial force is drag

(Harlow and Amsden [73]), which is given by:

@) =-@) s =2 00OV, (0 - u) ()
p
(IK/I)S) _(I ) (C) (d)Vshp(V(d) (C)) (45)

P
where 1, represents the particle’s radius, Cp the drag coefficient computed from:

24
p= for Re, <1
Re,
Cp = "*7)  for 1< Re, < 1000 (46)
C, =044 for Re, > 1000

and Re, the Reynolds number based on the particle size as defined in Eq.(33).

As before, turbulence is assumed to be a property of the continuous gas phase (c) and is
predicted using a two-phase k-& model. Several extensions of the k-¢ model for carrier-phase
turbulence modulation have been proposed in the literature [48-53] and the one suggested by
Chen and Wood [50], which introduces additional source terms into the turbulence transport
equations, is adopted here. Thus, the turbulent viscosity is computed by solving the
turbulence transport equations (Eqgs. (4) and (5)) for the continuous phase with

If(k) and I(Sk) evaluated using the following relations [50]:

(© _ @ (0 (0 X k' _0'08257:
" =-2p l-e (47)
TP

I(C) 2p(d) (c) (d) © (48)

Tp

where 1, and 1. are timescales characterizing the particle response and large-scale turbulent

motion, respectively, and are computed from:
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(d)r(d)
-l )
F slip
° o (49)
k C
T, = 0.165 T
€

with Fp being the magnitude of the inter-phase drag force per unit volume. The turbulent
eddy viscosity of the dispersed phase (d) is considered to be a function of that of the
continuous phase and is computed using Eq. (43).

The above-described model is validated against the experimental results of Tsuji et al [70].
Results are replicated here for the case of an air Reynolds number, based on the pipe diameter
(of value 30.5 mm), of 3.3x10* and a mean air inlet velocity of 15.6 m/s using particles of
diameter 200 um and density 1020 Kg/m’. In the computations, the mass-loading ratio at
inlet is considered to be 1 with no slip between the phases, and or and o, are set to 5 and 1010,
respectively (i.e. the interaction terms included for bubbly flows are neglected here). Figure 5
shows the fully developed gas and particles mean axial velocity profiles generated using a
grid of size 96x40 C.V. It is evident that there is generally a very good agreement between
the predicted and experimental data with the gas velocity being slightly over predicted and
the particles velocity slightly under predicted. Moreover, close to the wall, the model
predictions indicate that the particles have higher velocities than the gas, which is in accord
with the experimental results of Tsuji et al. [70].

Having checked the correctness of the physical model and numerical procedure, the problem
is solved over five different grids of sizes 12x5, 24x10, 48x20, 96x40, and 192x80 control
volumes using the SG, PG, and FMG methodologies. As in the previous problem, results are
displayed in the form of (i) residual plots as a function of outer iterations (Fig. 6), and (ii)
normalized CPU time (Table 1(b)) needed for the maximum normalized residuals of all
variables and for all phases to drop below £=10°. In figure 6(a), residuals of the carrier

phase’s axial velocity (U®) over the densest grid using the SG, PG, and FMG methodologies
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are presented. As shown (Fig. 6(a)), the performance of the PG method is poor as compared
to that of the FMG method with the SG method requiring 3600 iterations, the PG method
3100 iterations (representing a reduction ratio of 1.16), and the FMG method 260 iterations (a
reduction ratio of 13.85). This is another indication of the effectiveness of the FMG method
in dealing with the added non-linearity of multiphase flows. The effects of grid size on
convergence of the FMG method is depicted in Fig. 6(b). Again, the number of iterations
needed to reach the required convergence level increases with increasing the grid size for the
reasons stated earlier. The CPU times needed by the SG, PG, and FMG methods on all grid
sizes in addition to the SG/FMG and PG/FMG ratios are displayed in Table 1(b). As in the
previous problem, the speed of the FMG method over the PG and SG methods is seen to
increase with increasing grid density and to be about 6.66 and 7.21 times faster than the PG
and SG methods respectively, on the finest mesh.

Problem 3:Compressible dilute air-particle flow over a flat plate

As has been demonstrated in several studies [74-80], two-phase flow greatly changes the
main features of the boundary layer over a flat plate. Typically, three distinct regions are
defined in the two-phase boundary layer (Fig. 7(a)), based on the importance of the slip
velocity between the two phases: a large-slip region close to the leading edge, a moderate-slip
region further down, and a small-slip zone far downstream. The characteristic scale in this

two-phase problem is the relaxation length A, [77], defined as:

D) p(d)rzu
A ==—%—= (50)
9 nu

where u_ is the free stream velocity. The three regions are defined according to the order of
magnitude of the slip parameter x* = x/A,. In the simulation, the viscosity of the fluid is

considered to be a function of temperature according to [77]:

() T(C) b
”’ :Mref T (51)

ref
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where the reference viscosity and temperature are uref=1.86x10'5 N.s/m? and T.=303 °K.
Drag is the only retained interfacial force due to its dominance over other interfacial forces

and is computed from [77]:

() =, )" = z%rw)u@ (0@ —u®) (52)
p

() = (i, ) = zc rOp© (v —y©) (33)
T

p
where the drag coefficient is given by:
1 7
C, =—Re, +—Re " 54
50 "6 T 9
In the energy equation, heat transfer due to radiation is neglected and only convective heat

transfer around an isolated particle is considered. Under such conditions, the interfacial terms

in the gas (c) and particles (d) energy equations reduce to [77]:

1Y =Q, , +F,_,.u? (55)
I"=-Q,., (56)
where:

= (IM)D |+(1 )D j (57)

1 1
Nu=2.0+0.6 Re2 2 (pr) (58)
3rOANU L @) o

Qg - Zr_(T -T ) (59)

p

In the above equations, Nu is the Nusselt number, Pr'® the gas Prandtl number, 1 the gas
thermal conductivity, T the temperature, and other parameters are as defined earlier.

In the simulation, the particle diameter, particle Reynolds number, material density, Prandtl
number, and mass load ratio are set to: 10 um, 10, 1766 kg/m3, 0.75, and 1 respectively. The
wall boundary is treated as a no-slip boundary for the gas phase (i.e. both components of the
gas velocity are set to zero), and as a slip boundary condition for the particles phase (i.e. the
normal fluxes are set to zero). In order to bring all quantities to the same order of magnitude,

results are displayed using the following dimensionless variables:
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X*:%,y*:% Re,u*=—, v¢=—+Re  Re=t—= (60)
uoo u(x)

€ €

Figure 7(b) shows the results for the steady flow obtained on a rectangular domain with a
mesh of density 104x48 C.V. stretched in the y-direction. The figure provides the
development of gas and particles velocity profiles within the three regions mentioned earlier.
In the near leading edge area (x*=0.1), the gas velocity is adjusted at the wall to obtain the
no-slip condition as for the case of a pure gas boundary layer. The particles have no time to
adjust to the local gas motion and there is a large velocity slip between the phases. In the
transition region (x*=1), significant changes in the flow properties take place. The interaction
between the phases cause the particles to slow down while the gas accelerates. In the far
downstream region (x*=5), the particles have ample time to adjust to the state of the gas
motion, the slip is very small, and the solution tends to equilibrium. These results are in
excellent agreement with numerical solutions reported by Thevand et al. [80] (Fig. 7(b)).

As in the previous tests, the problem is solved over five different grids of sizes 13x6, 26,12,
52x24, 104x48, and 208x96 control volumes using the SG, PG, and FMG methods. Results
are displayed in the form of convergence history plots (Fig. 8) and normalized CPU time
(Table 1(c)) with £=10°. In figure 8(a), reduction with iterations of the U“-residuals over
the densest grid (208x96 c.v.) using the SG, PG, and FMG methodologies are presented. As
shown, the FMG method achieves the desired level of convergence in 430 iterations, the PG
method in 2650 iterations, and the SG method in 5400 iterations. As such the iteration
reduction ratios of the FMG and PG methods over the SG method are =12.6 and 2,
respectively. This is an additional indication of the superiority of the FMG method over the
PG method in dealing with the added non-linearity in compressible multiphase flows.
Increasing the grid size has the same effects on the performance of the FMG method as in the
previous two test problems (Fig. 8(b)). This is attributed, in addition to the added non-

linearity in multiphase flows, to the large number of parameters affecting the computations,
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which are difficult to control, such as: under-relaxation factors, number of internal restriction
and prolongation iterations at each level, number of algebraic solver sweeps for each
dependent variable, etc.

The CPU-times for all cases considered are presented in Table 1(c). The general trend is
similar to the previous cases with the SG requiring the highest CPU effort and the FMG
being the most efficient on all grids. Nevertheless, the PG method is always cheaper than the
SG method indicating the importance of the initial guess in iterative solvers. In fact, the use
of the PG method on the dense grid accelerates the convergence rate by 513% whereas an
acceleration of 949% is realized with the FMG method. Moreover, the virtues of both the
FMG and PG methods increase as the grid size increases (Table 1(c)).

Problem 4:1nviscid transonic dusty flow in a converging-diverging nozzle

The last test considered deals with the prediction of supersonic dilute air-particle flow in an
axi-symmetric converging-diverging rocket nozzle. Several researchers have analyzed the
problem and data is available for comparison [81-90]. In most of the reported studies, a
shorter diverging section, in comparison with the one considered here, has been used when
predicting the two-phase flow. Two-phase flow results for the long configuration have only
been reported by Chang et.al. [85]. The flow is assumed to be inviscid and the single-phase
results are used as an initial guess for solving the two-phase problem. The physical
configuration (Fig. 9(a)) is the one described in [85]. The viscosity of the fluid varies with the

temperature according to Sutherland’s law for air:

T(c)wlT(C)
(c) (61)
T +110.4
The coupling between gas and particle phases is through the interfacial momentum and

n'@=1458x10"°

energy terms. The force exerted on a single particle moving through a gas is given as [86]

f = 6nrpru(°)(u<d) —u(c)) (62)

f = 6TEI'pr],l(C) (V(d) — V(C)) (63)
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so that for N particles in a unit volume the effective drag force is
¢ 9
(I );) —(IM = r fou' (u(d) — u(c)) (64)

(I )D = —(I " = Du(c) (V(d) - V(c)) (65)
where fp is the ratio of the drag coefficient Cp, to the stokes drag Cpo=24/Rep and is given by

[85]

. 0.0175Re, .
f,=1+0.15Re’+ ——=  Re, <3x10 (66)
1+4.25x10° Re,

The heat transferred from gas to particle phase per unit volume is given as [86]

3170 @ _ )
Q,, = 2—Px Nu(T -T) (67)
Where A is the thermal conductivity of the gas and Nu the Nusselt number, which is written
as [86]

Nu =2+ 0.459 Rey™ Pr* (68)

The gas-particle inter-phase energy term is given by

Ig) %I‘_f (C)(u(d) (C))1 + DM(C)(V(d) (C))V +——7\,(C)N (T(d) T(C)) (69)
P

3 r'¢
1O = 3 - X(C)N (T(c) T(d)) (70)
where the first two terms on the right-hand side of equation (69) represent the energy
exchange due to momentum transfer.

The physical quantities employed are similar to those used in [85]. The gas stagnation
temperature and pressure at inlet to the nozzle are 555 °K and 10.34x10° N/m?, respectively.
The specific heat for the gas and particles are 1.07x10° J/Kg°K and 1.38x10° J/Kg’K,
respectively, and the particle density is 4004.62 kg/m’. With a zero inflow velocity angle, the
fluid is accelerated from subsonic to supersonic speed in the nozzle. The inlet velocity and

temperature of the particles are taken to be the same as those of the gas phase. Results for a

particle of radius 10 um with a mass fraction $=0.3 are presented using a grid of size 188x40
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c.v. Figure 9(b) shows the particle volume fraction contours while Figure 9(c) displays the
velocity distribution. As shown, a large particle-free zone appears due to the inability of the
particles to turn around the throat corner. These findings are in excellent agreement with
published results reported in [85] and others using different methodologies. A quantitative
comparison of current predictions with published experimental and numerical data is
presented in Fig. 10 through gas Mach number distributions along the wall (Fig. 10(a)) and
centerline (Fig. 10(b)) of the nozzle for the one-phase and two-phase flow situations. As can
be seen, the one-phase predictions fall on top of experimental data reported in [88-90]. Since
the nozzle contour has a rapid contraction followed by a throat with a small radius of
curvature, the flow near the throat wall is overturned and inclined to the downstream wall. A
weak shock is thus formed to turn the flow parallel to the wall. This results in a sudden drop
in the Mach number value and as depicted in Fig. 10(b), this sudden drop is correctly
envisaged by the solution algorithm with the value after the shock being slightly over
predicted.

Due to the unavailability of experimental data, two-phase flow predictions are compared
against the numerical results reported in [85]. As displayed in Figs. 10(a) and 10(b), both
solutions are in good agreement with each other indicating once more the correctness of the
calculation procedures. The lower gas Mach number values in the two-phase flow is caused
by the heavier particles (p'“>>p'®), which reduce the gas velocity. Moreover, owing to the
particle-free zone, the Mach number difference between the one- and two-phase flows along
the wall is smaller than that at the centerline.

To compare the relative performance of the SG, PG, and FMG methodologies, the problem is
solved over three different grids of sizes 47x20, 94x40, and 188x80 c.v. As before, results are
displayed in the form of residual history plots (Fig. 11) and CPU times (Table 1(d)) with &

set to 107
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As shown in Fig. 11(a), the number of iterations required by the PG and FMG methods is
relatively close with the one required by the SG method being much higher. To promote
convergence with the SG method on the 188x80 grid, it was necessary to start the
computations with very low under-relaxation factors. It was not possible to increase these
factors until the residuals have dropped to the level shown in Fig. 11(a). Beyond that point,
the higher under-relaxation factor values resulted in a fast convergence rate. In fact, the slope
of the SG residual curve beyond that point, is nearly equal to the one obtained by the PG and
FMG methods (Fig. 11(a)), which is a clear indication of the importance of the initial guess
in supersonic flows. The proximity of performance of the PG and FMG method is due to: (i)
the higher importance of initial guess in supersonic flows (as explained above), and (ii) the
degradation in performance of the Multi-grid approach as the governing equations become
more hyperbolic (i.e. as Mach number becomes much higher than 1, in this case it reaches a
value close to 3.6) since it is best suited for elliptic equations. As in the previous problems,
Fig. 11(b) indicates that the number of iterations required by the FMG method increases with
increasing grid density for the reasons stated earlier.

The CPU-times presented in Table 1(d) confirm these conclusions and reveal the close
performance of the PG and FMG approaches with the CPU-time needed by the FMG method
being always lower. On the 94x40 grid, the FMG method is 1.31 times faster than the PG
method, while it is 1.14 times faster on the densest grid. In comparison with the SG method,

the FMG approach is 9 times faster on the finest mesh.

Closing Remarks

This work addressed the effectiveness of the Multi-grid approach in dealing with the added
non-linearity of Multiphase flows at all speeds. For that purpose the performance of the FMG
method was compared against that of the SG and PG methods by solving four two-phase flow

problems representing a wide variety of physical situations. Results clearly demonstrated the
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robustness of the FMG method and its ability to tackle the added non-linearity of multiphase
flows. Moreover, even though the rate of convergence is complex, the FMG method achieved

very good reduction factors over the PG and SG methods reaching a value as high as 15.
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6 (a) U residual history plots for the FMG, PG, and SG methods on
the finest mesh for turbulent air-particle flow in a pipe; (b) Mass residual
history plots for the FMG method on the various levels for turbulent air-particle
flow in a pipe.

7 (a) The three different regions within the boundary layer of dusty flow over a
flat plate; (b) Comparison of fully developed gas and particle velocity profiles
inside the boundary layer at different axial locations for dilute two-phase flow
over a flat plate.

8 (a) U residual history plots for the FMG, PG, and SG methods on
the finest mesh for compressible dusty flow over a flat plate; (b) U residual
history plots for the FMG method on the various levels for compressible dusty
flow over a flat plate.

9 (a) Physical domain for the dusty gas flow in a converging-diverging nozzle;
(b) Volume Fraction contours and (c) particle velocity vectors for dusty gas

flow in a converging-diverging nozzle.
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Fig. 10 Comparison of one-phase and two-phase gas Mach number distributions along the
(a) wall and (b) centerline of dusty flow in a converging-diverging nozzle.

Fig. 11 (a) Mass residual history plots for the FMG, PG, and SG methods on
the finest mesh for compressible dusty flow in a converging-diverging nozzle;
(b) Mass residual history plots for the FMG method on the various levels for

compressible dusty in a converging-diverging nozzle.



A Multi-grid Algorithm for Multiphase Flow at all Speeds

39

Table 1(a) CPU-times for: (a) turbulent bubbly flow in a pipe; (b) turbulent air-

(d) compressible dusty flow in a converging-diverging nozzle.

particle flow in a pipe; (c) compressible dusty flow over a flat plate;

(a)
Grid (c.v.) | SG Levels PG FMG PG/FMG | SG/FMG
18x3 0.73 1 0.73 0.73 1.00 1.00
36x6 4.77 2 3.82 3.63 1.05 1.31
72x12 72.75 3 34.23 25.29 1.35 2.88
144x24 876.48 4 398.33 149.52 2.66 5.86
288x48 38840.37 |5 14975.97 | 2480.34 6.04 15.66

(b)
Grid (c.v.) | SG Levels PG FMG PG/FMG | SG/FMG
12x5 0.56 1 0.56 0.56 1.00 1.00
24x10 3.78 2 3.26 2.78 1.17 1.36
48x20 41.14 3 33.27 16.96 1.96 2.43
96x40 464.55 4 368.12 92.35 3.99 5.03
192x80 5232.38 5 4833.98 725.40 6.66 7.21

(©)
Grid (c.v.) | SG Levels PG FMG PG/FMG | SG/FMG
13x6 1.34 1 1.34 1.34 1.00 1.00
26x12 5.44 2 5.05 3.75 1.35 1.45
52x24 41.02 3 36.47 18.13 2.01 2.26
104x48 500.05 4 376.12 101.49 3.71 4.93
208x96 7738.08 5 4181.42 815.38 5.13 9.49

(d
Grid (c.v.) | SG Levels PG FMG PG/FMG | SG/FMG
47x20 28.20 1 28.20 28.20 1.00 1.00
94x40 470.82 2 334.15 255.30 1.31 1.84
188x80 23168.56 |3 2912.77 2558.71 1.14 9.05
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Fig. 1 Control volume.
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(@) (b)

Fig. 2 (a) the prolongation only and (b) FMG strategies
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Fig. 3 Comparison of fully developed liquid velocity and void fraction profiles for

A
i Liquid velocity, Data of Seriwaza et al [52]
N v Gas volume fraction, Data of Seriwaza et al [52] Il
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Turbulent upward bubbly flow in a pipe against Seriwaza et al. data.
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Residuals

Fig. 4 (a) Mass and U residual history plots for the FMG, PG, and SG methods on
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the finest mesh for turbulent bubbly flow in a pipe; (b) U'® residual history plots

for the FMG method on the various levels for turbulent bubbly flow in a pipe.
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Fig. 5 Comparison of fully developed gas and particle velocity profiles for turbulent

air-particle flow in a pipe.
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Fig. 6 (a) U residual history plots for the FMG, PG, and SG methods on the finest mesh
for turbulent air-particle flow in a pipe; (b) Mass residual history plots for the FMG

method on the various levels for turbulent air-particle flow in a pipe.
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Fig. 7 (a) The three different regions within the boundary layer of dusty flow over a
flat plate; (b) Comparison of fully developed gas and particle velocity profiles
inside the boundary layer at different axial locations for dilute two-phase flow

over a flat plate.
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Fig. 8 (a) U residual history plots for the FMG, PG, and SG methods on
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the finest mesh for compressible dusty flow over a flat plate; (b) U
history plots for the FMG method on the various levels for compressible dusty

flow over a flat plate.
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Fig. 9 (a) Physical domain for the dusty gas flow in a converging-diverging nozzle;
flow in a converging-diverging nozzle.
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Fig. 10 Comparison of one-phase and two-phase gas Mach number distributions along the

(a) wall and (b) centerline of dusty flow in a converging-diverging nozzle.
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Fig. 11 (a) Mass residual history plots for the FMG, PG, and SG methods on

the finest mesh for compressible dusty flow in a converging-diverging nozzle;
(b) Mass residual history plots for the FMG method on the various levels for

compressible dusty in a converging-diverging nozzle.
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