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Abstract 

This paper reports on the implementation and testing, within a full non-linear multi-grid 

environment, of a new pressure-based algorithm for the prediction of multiphase flow at all 

speeds. The algorithm is part of the Mass Conservation Based Algorithms (MCBA) group in 

which the pressure correction equation is derived from overall mass conservation. The 

performance of the new method is assessed by solving a series of two-phase test problems 

varying from turbulent low Mach number to supersonic flows, and from very low to high 

fluids density ratios. Solutions are generated for several grid sizes using the single grid (SG), 

the prolongation grid (PG), and the full non-linear multi-grid (FMG) methods. The main 

outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to 

tackle the added non-linearity of multiphase flows, which is manifested through the 

performance jump observed when using the non-linear multi-grid approach as compared to 

the SG and PG methods; (ii) the extension of the FMG method to predict turbulent 

multiphase flows and multiphase flows at all speeds. The convergence history plots and 

CPU-times presented, indicate that the FMG method is by far more efficient than the PG 

method, accelerating the convergence rate, for the problems solved and the grids used, over 

the SG method by a factor reaching a value as high as 15. 
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Nomenclature 

AP
(k ) ,..  coefficients in the discretized equation for φ (k ) . 

BP
(k )  source term in the discretized equation for φ (k ) . 

B(k )  body force per unit volume of fluid/phase k. 

Cρ
(k )  coefficient equals to 1/ R(k )T (k ) . 

)k(
PC  specific heat of fluid/phase k. 

D P
(k )[φ (k )]  the vector form of the D operator. 

G(k) turbulence production rate of fluid/phase k. 

HP[φ
(k ) ]  the H operator. 

][ )k(uH  the vector form of the HP operator. 

I(k )  inter-phase momentum transfer. 
Dk

f
)(J   diffusion flux of  across cell face ‘f’. )(kφ

J f
(k )C  convection flux of φ (k )  across cell face ‘f’. 

k(k) turbulence kinetic energy of fluid/phase k. 
)(kM&  mass source per unit volume. 

P pressure. 
)k(

t
)k( Pr,Pr laminar and turbulent Prandtl number for fluid/phase k. 

)(kq&  heat generated per unit volume of fluid/phase k. 

Q(k )  general source term of fluid/phase k. 

r (k ) volume fraction of fluid/phase k. 

fS  surface vector. 

t time. 

T (k )  temperature of fluid/phase k. 

U f
(k )  interface flux velocity v f

(k ).S f( ) of fluid/phase k. 

u(k )  velocity vector of fluid/phase k. 

u(k),v(k),.. velocity components of fluid/phase k. 

x, y Cartesian coordinates. 

b,a  the maximum of a and b. 
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Greek Symbols 

ρ(k )  density of fluid/phase k. 

ε(k) turbulence dissipation rate of fluid/phase k. 

Γ (k )  diffusion coefficient of fluid/phase k. 

 dissipation term in energy equation of fluid/phase k. Φ (k )

φ (k )  general scalar quantity associated with fluid/phase k. 

[ ])(k
P φ∆  the ∆ operator. 

 laminar and turbulent viscosity of fluid/phase k. 

Ω cell volume. 

δt time step. 

)()( , k
t

k µµ

Subscripts 

f refers to control volume face f. 

P refers to the P grid point. 

Superscripts 

C refers to convection contribution. 

D refers to diffusion contribution. 

(k) refers to fluid/phase k. 

 refers to updated value at the current iteration. *)(k

  (k ) o refers to values of fluid/phase k from the previous iteration. 

 refers to correction field of phase/fluid k. (k ′ ) 

m refers to fluid/phase m. 

old refers to values from the previous time step. 

 



Introduction 

The numerical simulation of multiphase flows is currently one of the most challenging areas 

in Computational Fluid Dynamics (CFD) and has garnered over the last decade the research 

efforts of an increasingly larger segment of the CFD community (e.g. [1-10]).  While this 

type of flow plays a very important role in several process industries (petrochemical, food, 

etc.), the use of CFD for its simulation is still restricted to a relatively small class of problems 

and its full potential is yet to be realized.  This situation is largely due to the inherently 

complicated physics of such flows, which translates into a significant increase in numerical 

difficulties that can be linked to a number of factors: (i) the extreme complexity of the 

multiphase Navier-Stokes equations (presenting for n-fluids, n-continuity and n momentum 

equations), (ii) the substantial increase in non-linearity due to inter-fluid mass, momentum, 

energy, and continuity-volume fraction couplings (on top of the pressure-velocity coupling 

present in single fluid flow algorithms), (iii) and the segregated nature of many of the 

multiphase algorithms [11-16] that cannot resolve the different couplings in an implicit 

manner.  This has left CFD users in the industrial sector with an unenviable situation where 

the simulation of large industrial-type multiphase flow problems is still a rather uncertain 

proposition highly dependent on initial conditions, under-relaxation factors, model 

simplification, mesh size, in addition to many other numerical parameters.   

It is the authors’ view that overcoming these hurdles can be accomplished by a multi-pronged 

approach whereby the development of more general multi-fluid algorithms, the extensive use 

of parallelization, and the use of multi-grid techniques have to play essential roles.  The first 

area has been recently the subject of a number of papers by the authors [17,18], and the 

reader is referred to a recent review of all-speed multiphase flow algorithms [19], that 

includes several sections on robustness improvement techniques as well as a set of new 

algorithms capable of resolving the pressure-velocity-density-volume fraction couplings. 
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Parallelization already plays a major role in the simulation of large single fluid flow 

problems, and can play a similar role in the simulation of multiphase flows.  Several methods 

have been proposed to parallelize Navier-Stokes solvers (e.g. functional decomposition [20], 

domain decomposition [21,22]). The standard approach is the one in which the computational 

domain is decomposed into a number of smaller sub-domains that are solved in parallel with 

required data exchanged at specific points during the solution and assembly procedures [23-

25].  This has the benefits of applying more processing power to the problem in addition to 

subdividing the global domain into a number of sub-domains where the standard iterative 

algorithms operate more efficiently. 

Multi-grid techniques achieve similar feats through different means.  In this case the global 

domain is abstracted into a series of coarser domains, where the solution is carried out more 

efficiently and the results injected into the finer computational domains, thus accelerating the 

solution procedure and yielding major improvements in both speed of convergence and 

robustness especially when dealing with highly non-linear problems [26-43]. 

This paper describes an extension of the Full Approximation Storage (FAS) [30,44] multi-

grid algorithm to a recently developed all-speed multiphase flow algorithm based on the 

global Mass Conservation [18]  constraint. A number of implementation issues are addressed, 

such as the use of special inter-grid transfer operators to maintain the realizability of the 

solution and the special treatment of the volume fraction equation during prolongation.  In 

order to assess the effectiveness of the FAS multiphase implementation, a series of two-phase 

test problems varying from subsonic low Mach number to supersonic flows, very low to high 

fluids density ratios, are compared using a series of computational domains.  In each case the 

problems are solved using (i) a single grid approach (SG), (ii) a prolongation only approach 

(PG) whereby the solution moves in one direction starting on the coarse grid and ending on 

the finest grid with the solution obtained on level n used as initial guess for the solution on 
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level (n+1), and (iii) finally a Full Approximation Storage (FAS) multi-grid approach with a 

V cycle.  The aim being to quantify the effect of the FAS in addressing the increased non-

linearity inherent in multiphase flow problems.  Convergence history and CPU time are 

compared for all cases.  

In what follows the governing equations for a general two-phase flow system are presented 

followed by a description of the discretization method and the used all-speed multiphase flow 

algorithm.  The test problems are then presented along with a detailed evaluation of their 

performance with the three different approaches. 

The Governing Equations 

The equations governing multiphase flows are the conservation laws of mass, momentum, 

and energy for each individual fluid. For turbulent multi-fluid flow situations, additional sets 

of equations may be needed depending on the turbulence model used. These equations should 

be supplemented by a set of auxiliary relations. The mass, momentum, and energy equations 

are respectively given by: 

( ) ( ) )k()k(k)k()k(
)k()k(

Mrr
t

r &=ρ∇+
∂

ρ∂ )(u.  (1) 
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where the superscript k refers to the kth fluid, r the volume fraction, ρ  the density, u the 

velocity vector, µ and µt  the laminar and turbulent viscosities, Pr and Prt the laminar and 

turbulent Prandtl numbers, β the coefficient of thermal expansion, P the pressure, B the body 

force term, T the temperature, M  the mass source, & Φ  the viscous dissipation function, q& the 
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internal heat generation, cp the specific heat, and IM and IE the interfacial  momentum and 

energy transfer terms. 

Several flow-dependent models have been advertised for incorporating the effect of 

turbulence on interfacial mass, momentum, and energy transfer, which vary in complexity 

from simple algebraic [45] models to state-of-the-art Reynolds-stress [46] models. However, 

the widely used multiphase turbulence model, adopted in this work, is the two-equation k-ε 

model [47], in which the fluidic conservation equations governing the turbulence kinetic 

energy (k) and turbulence dissipation rate (ε) for the kth fluid are given by:   

∂ r(k )ρ(k)k( k)( )
∂t

+ ∇. r (k)ρ(k )u(k )k(k )( )= ∇. r (k) µt
(k )

σk
(k ) ∇k( k)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + r( k)ρ(k) G(k) − ε (k)( )+ Ik

(k)  (4) 

∂ r(k )ρ(k)ε(k )( )
∂t

+ ∇. r (k)ρ(k )u(k )ε (k)( )= ∇. r (k) µ t
( k)

σε
(k) ∇ε (k)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

r (k)ρ(k ) ε (k)

k(k ) c1εG
(k) − c2εε

( k)( )+ Iε
(k )

 (5) 

where and represent the interfacial turbulence terms. The turbulent viscosity is 

calculated as: 

)k(
kI )k(I ε

µ t
(k) = Cµ

k(k )[ ]2

ε(k )  (6) 

For two-phase flows, several extensions of the k-ε model that are based on calculating the 

turbulent viscosity by solving the k and ε equations for the carrier or continuous phase only 

have been proposed in the literature [48-53]. In a recent article, Cokljat and Ivanov [47] 

presented a phase coupled k-ε turbulence model, intended for the cases where a non-dilute 

secondary phase is present, in which the k-ε transport equations for all phases are solved. 

Since the method is still not well developed, the first approach in which only the k and ε 

equations for the carrier phase are solved is adopted in this work. 

The above set of differential equations has to be solved in conjunction with constraints on 

certain variables represented by algebraic relations.  These auxiliary relations include the 
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equations of state, the geometric conservation equation, and the interfacial mass, momentum, 

energy, and turbulence energy transfers. 

Physically, the geometric conservation equation is a statement indicating that the sum of 

volumes occupied by the different fluids, r(k), within a cell is equal to the volume of the cell 

containing the fluids. 

r(k )

k
∑ = 1 (7) 

For a compressible multiphase flow, auxiliary equations of state relating density to pressure 

and temperature are needed.  For the kth phase, such an equation can be written as: 

ρ( k) = ρ(k) P,T(k)( ) (8) 

Several models have been developed for computing the interfacial mass, momentum, energy, 

and turbulence energy transfers terms. The closures used in this work will be detailed 

whenever they arise while solving problems. 

In order to present a complete mathematical problem, thermodynamic relations are needed 

and initial and boundary conditions should supplement the above equations.  

Discretization Procedure 

If a typical representative variable associated with phase (k) is denoted by φ(k), equations (1)-

(5) can be presented via the following general fluidic equation: 

∂ r(k )ρ(k)φ(k)( )
∂t

+ ∇. r (k)ρ(k)u(k)φ( k)( )= ∇. r (k)Γ (k)∇φ(k)( )+ r(k )Q(k )  (9) 

where the expression for Γ(k) and Q(k) can be deduced from the parent equations.  

Equation (9) is integrated over a finite volume to yield: 

∂ r(k )ρ(k)φ(k)( )
∂t

dΩ
Ω
∫∫ + ∇. r (k)ρ(k)u(k)φ(k)( )dΩ

Ω
∫∫

                                 = ∇. r( k)Γ ( k)∇φ(k )( )dΩ
Ω
∫∫ + r (k)Q(k)dΩ

Ω
∫∫

 (10) 
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Where Ω is the volume of the control cell (Fig. 1). Using the divergence theorem to 

transform the volume integral into a surface integral and then replacing the surface integral 

by a summation of the fluxes over the sides of the control volume, equation (10) is 

transformed to: 

∂ r(k )ρ(k)φ (k)Ω( )
∂t

+ Jnb
(k)D + Jnb

(k )C( )
nb =e ,w, n,s,t, b

∑ = r (k)Q(k)Ω (11) 

where  and  are the diffusive and convective fluxes, respectively.  The 

discretization of the diffusion term is second order accurate and follows the derivations 

presented in [54]. For the convective terms, the High Resolution (HR) SMART [55] scheme 

is employed, even for the calculation of interface densities, and applied within the context of 

the NVSF methodology [56]. Substituting the face values by their functional relationship 

relating to the node values of φ, Eq. (11) is transformed after some algebraic manipulations 

into the following discretized equation: 

Dk
nb

)(J Ck
nb

)(J

A P
(k)φP

(k) = ANB
(k)φNB

(k)

NB
∑ + BP

(k)  (12) 

where the coefficients  and A  depend on the selected scheme and  is the source 

term of the discretized equation . In compact form, the above equation can be written as 

)k(
PA NB

(k) )k(
PB

φ(k) = HP φ(k)[ ]=
A NB

(k )φNB
(k)

NB
∑ + BP

(k )

AP
(k)  (13) 

The discretization procedure for the momentum equation yields an algebraic equation of the 

form: 

[ ] ( )Pr P
k

P
)k(k

P
k

P ∇−= )()()( DuHu  (14) 
On the other hand, the fluidic mass-conservation equation (Eq. (1)) can either be viewed as a 

phasic volume fraction equation:  

rP
(k) = HP r(k)[ ] (15) 
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or as a the following fluidic continuity equation that is used in deriving the pressure 

correction equation: 

( ) ( ) [ ] )k()k(k)k()k(
P

Old)k(
P

)k(
P

)k(
P

)k(
P Mrr

t
rr &=ρ∆+Ω

δ
ρ−ρ .Su )(  (16) 

where the ∆ operator represents the following operation: 

∆ P Θ[ ]= Θ f
f= NB(P)
∑  (17) 

Solution Procedure 

The number of equations describing an n-fluid flow situation are: n fluidic momentum 

equations, n fluidic volume fraction (or mass conservation) equations, a geometric 

conservation equation, and for the case of a compressible flow an additional n auxiliary 

pressure-density relations.  Moreover, the variables involved are the n fluidic velocity 

vectors, the n fluidic volume fractions, the pressure field, and for a compressible flow an 

additional n unknown fluidic density fields.  In the current work, the n momentum equations 

are used to calculate the n velocity fields, n-1 volume fraction (mass conservation) equations 

are used to calculate n-1 volume fraction fields, and the last volume fraction field calculated 

using the geometric conservation equation  

∑
≠

−=
nk

)k()n( r1r  (18) 

The remaining volume fraction equation can be used to calculate the pressure field that is 

shared by all phases.  However, instead of using this last volume fraction equation, in the 

class of Mass Conservation Based Algorithms (MCBA) the global conservation equation is 

employed, i.e. the sum of the various fluidic mass conservation equations, to derive a 

pressure correction equation as outlined next.   

The Pressure Correction Equation 

To derive the pressure-correction equation, the mass conservation equations of the various 

phases are added to yield the global mass conservation equation given by: 
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( ) ( ) ( ) 0Mrr
t
rr

k

)k()k(

k

k)k(
P

)k(
P

Old)k(
P

)k(
P

)k(
P

)k(
P ∑∑ ==

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ρ∆+Ω
δ

ρ−ρ &.Su )(  (19) 

In the predictor stage a guessed or an estimated pressure field from the previous iteration, 

denoted by   P o, is substituted into the momentum equations. The resulting velocity fields 

denoted by u(k )*  which now satisfy the momentum equations will not, in general, satisfy the 

mass conservation equations.  Thus, corrections are needed in order to yield velocity and 

pressure fields that satisfy both equations. Denoting the corrections for pressure, velocity, and 

density by ′ P , u(k ′ ) , and ρ  respectively, the corrected fields are written as: ( k ′ ) 

  P = Po + ′ P ,u(k) = u(k )* + u(k ′ ) ,ρ(k) = ρ(k)o + ρ(k ′ )  (20) 
Hence the equations solved in the predictor stage are: 

οο Pr][ P
)k(

P
)k()*k(

P
*)k(

P ∇−= DuHu  (21) 
While the final solution satisfies 

  (22) Pr P
k

P
kk

P
k

P ∇−= )()()()( ][ DuHu
Subtracting the two equation sets ((22) and (21)) from each other yields the following 

equation involving the correction terms: 

Pr P
k

P
kk

P
k

P ′∇−= )()()()( ][ DuHu ο  (23) 

Moreover, the new density and velocity fields, ρ(k) and u(k), will satisfy the overall mass 

conservation equation if: 

( ) ( ) [ 0)()(
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⎪
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⎧
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kkk
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t
rr .Su )(ο
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Linearizing the (ρ(k)u(k)) term, one gets 

ρ(k )* + ρ(k ′ ) ( )u(k)* + u(k ′ ) ( )= ρ(k)*u(k)* + ρ(k)*u(k ′ ) + ρ(k ′ ) u(k)* +ρ(k ′ ) u(k ′ )  (25) 

Substituting equations (25) and (23) into equation (24), rearranging, and replacing density 

correction by pressure correction, the final form of the pressure-correction equation is written 

as: 
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The corrections are then applied to the velocity, pressure, and density fields using the 

following equations: 

  uP
(k )* = uP

(k)o − r( k)oDP
( k)∇P ′ P , P * = Po + ′ P , ρ(k)* = ρ(k)o + Cρ

(k) ′ P  (27) 

Numerical experiments using the above approach to simulate air-water flows have shown 

poor conservation of the lighter fluid. This problem can be considerably alleviated by 

normalizing the individual continuity equations, and hence the global mass conservation 

equation, by means of a weighting factor such as a reference density ρ(k) (which is fluid 

dependent). This approach has been adopted in solving all problems presented in this work 

(see [19] for details). 

The MCBA-SIMPLE Algorithm 

The overall solution procedure is an extension of the single-phase SIMPLE algorithm into 

multiphase flows. Since the pressure correction equation is derived from overall mass 

conservation, it is denoted by MCBA-SIMPLE [19]. The sequence of events in the MCBA-

SIMPLE is as follows: 

1. Solve the fluidic momentum equations for velocities. 

2. Solve the pressure correction equation based on global mass conservation. 

3. Correct velocities, densities, and pressure. 

4. Solve the fluidic mass conservation equations for volume fractions. 

5. Solve the fluidic scalar equations (k, ε, T, etc…). 

6. Return to the first step and repeat until convergence. 
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The Multi-Grid Strategy 

Similar to other iterative methods, the rate of convergence of the solution method described 

above does not scale linearly with the grid size, rather the convergence rate decreases more 

drastically as the number of grid points increases.  This behavior is attributed to the speed at 

which the iterative solver transports the boundary information across the domain (i.e. with 

SOR one grid point per iteration). Since information has to travel back and forth several 

times to achieve convergence, acceleration of the outer iterations through the use of multigrid 

methods is essential for large grids. The idea underlying the multi-grid strategy is to use 

progressively coarser grids to accelerate the convergence rate.  In mathematical terms the 

low-frequency error components in the finest grid appear on coarser grids as high-frequency 

Fourier mode that can be resolved efficiently by iterative relaxation solvers.  In the present 

work, this strategy is adopted to accelerate convergence and thereby reduce the overall 

computational cost. The method used is the FMG-FAS method [44].  For a review of Multi-

grid methods the reader is referred, among others, to [30,44], therefore it is sufficient here to 

give a general description of the method used. 

The multi-grid algorithm adopted in this work can be summarized as follows. Starting with 

the fine mesh, the coarser grid cells are generated through agglomeration of four finer grid 

cells, two in each direction.  On the other hand, if a finer grid is required, subdividing the 

coarser grid control volume into four control volumes, again two in each, generates its 

control volumes. With the FMG cycle, the algorithm starts at the coarsest level, where the 

solution is first computed; this solution is interpolated onto the next finer mesh, where it is 

used as initial guess.  This stage is called the prolongation stage (see Fig. 2a).  Then iterations 

are performed on the fine mesh and the solution is transferred back to the coarser mesh by 

applying a restriction operator. In order to obtain the same approximation on each level, a 

forcing term is added to the discrete conservation equations on the coarser grid. This term 
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represents the truncation error on the coarse grid with respect to the fine grid. After 

performing a number of iterations on the coarse mesh, the solution is transferred back to the 

finer mesh in the form of a correction and a number of iterations are performed on the finer 

grid to smooth the fields. This process is continued until a converged solution on the fine 

mesh is obtained (see Fig. 2b). Then the solution is extrapolated into a finer mesh and the 

process repeated until convergence is reached on the desired finest mesh. This strategy has 

been applied to both incompressible and compressible supersonic multiphase flows and great 

savings have been realized as will be shown in the results section. 

In the restriction step the coarse grid variables are computed from the fine grid values as: 

(∑
=

⋅φ∇+φ=φ
4..1i

CFFFC iii4
1~ d )  (28) 

while in the prolongation step the fine grid corrections are computed from the coarse grid 

values as 

ii CFCCF d⋅φ ′∇+φ ′=φ ′  (29) 

where  

CCC
~
φ−φ=φ′  (30) 

The special character of the volume fraction and k-ε equations necessitates modification to 

the prolongation procedure as described next. 

While extrapolating the volume fraction field from the coarse to the fine grid, the 

prolongation operator may yield negative volume fraction values or values that are greater 

than one. Such unphysical values are detrimental to the overall convergence rate and may 

even cause divergence. To circumvent this problem, a simple yet very effective treatment is 

adopted: Once the r-values are extrapolated, a check is performed to make sure they are 

within bounds. If any of the r-values is found to be unbounded, the r-fluidic volume fraction 

equation is solved starting with the interpolated values until all of the r-values are within the 

set bounds. Typically less than 10 iterations are needed. This treatment has been found to be 
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very effective and to preserve the convergence acceleration rate. The practices of solving the 

volume fraction equations only on the fine grid or forcing the extrapolated unbounded values 

to be within the set bounds or discarding corrections that result in unbounded values [30] 

proved to be ineffective and slowed the convergence rate considerably.  

For the k-ε turbulence model, the treatment suggested by Cornelius et al. [57] is adopted. 

This approach is based on the observation that the application of wall functions to the coarse 

grids would lead to unphysical values because of the relatively large distance between the 

wall and the boundary cell center. Thus, at wall boundaries the restricted fine grid values of k 

and ε are held constant, and hence no corrections are calculated. In order to satisfy the 

realizability constraint, the restricted turbulence properties and prolongated correction values 

are modified accordingly.  

In addition to the FMG strategy, the PG approach is also tested. This approach differs from 

the FMG method in that the solution moves in one direction from the coarse to the fine grids 

with the initial guess on level n+1 obtained by interpolation from the converged solution on 

level n (Fig. 2(a)). As such, the acceleration over the SG method obtained with this approach 

is an indication of the effect of initial guess on convergence. 

Results and Discussion 

The performances of the above-described solution procedures are assessed in this section by 

presenting solutions to the following four two-dimensional two-phase flow problems: (i) 

turbulent incompressible bubbly flow in a pipe, (ii) turbulent incompressible air-particle flow 

in a pipe, (iii) compressible dilute air-particle flow over a flat plate, and (iv) inviscid 

transonic dusty flow in a converging-diverging nozzle. Results are presented in terms of the 

CPU-time needed to converge the solution to a set level and of the convergence history. 

Moreover, solutions are obtained for a number of grids in order to assess the merit of the SG, 

PG, and FMG strategies with increasing grid density. Furthermore, predictions are compared 
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against available experimental data and/or numerical/theoretical values. The residual of a 

variable φ at the end of an outer iteration is defined as: 

RESφ
k( ) = A pφp

k( ) − Anbφnb
k( ) − Bp

k( )

all  p neighbours
∑

c .v
∑  (31) 

For global mass conservation, the imbalance in mass is given by:  

( ) ( ) [ ]∑∑ −ρ∆−Ω
δ

ρ−ρ
=

  k .v.c

)k()k(k)k()k(
P

Old)k(
P

)k(
P

)k(
P

)k(
P

C Mrr
t
rrRES &.Su )(  (32) 

All residuals are normalized by their respective inlet fluxes. Computations are terminated 

when the maximum normalized residual of all variables, drops below a very small number εs 

(typically εs=10-6). For a given problem, the same value of εs is used with all methodologies. 

In all problems, the first phase represents the continuous phase (denoted by a superscript (c)), 

which must be fluid, and the second phase is the disperse phase (denoted by a superscript 

(d)), which may be solid or fluid. Unless otherwise specified the HR SMART scheme is used 

in all computations reported in this study. For a given problem, all results are generated 

starting from the same initial guess. Moreover, it should be stated that in iterative techniques, 

different initial guesses might require different computational efforts. 

Problem 1:Turbulent upward bubbly flow in a pipe 
Many experimental and numerical studies involving the prediction of radial phase 

distribution in turbulent upward air-water flow in a pipe have appeared in the literature [58-

65]. These studies indicated that the lateral forces that most strongly affect the void 

distribution are the lateral lift force and the turbulent stresses. As such, in addition to the 

usual drag force, the lift force is considered as part of the interfacial force terms in the 

momentum equations. In the present work, the interfacial drag forces per unit volume are 

given by: 

IM
x( )D

(c)
= − IM

x( )D

(d)
= 0.375

CD

rp

ρ(c)r (d)r (c)Vslip u(d) − u(c)( ) (33) 
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IM
y( )D

(c )
= − IM

y( )D

(d)
= 0.375

CD

rp

ρ(c)r (d)r (c)Vslip v(d ) − v(c )( ) (34) 

where rp is the bubble radius. The drag coefficient CD varies as a function of the bubble 

Reynolds and Weber numbers defined as: 
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where σ, the surface tension, is assigned a value of 0.072 N/m for air-water systems. The 

drag coefficient is computed using the following correlations [66,67]: 

CD = 16
Rep

            for Rep < 0.49

CD =
20

Rep
0.643       for 0.49 < Rep < 100

CD =
6.3

Rep
0.385       for Re p >> 100

CD = 8
3

              for Rep >> 100 and  We > 8

CD = We
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 (36) 

Many investigators have considered the modeling of lift forces [66-69]. Based on their work, 

the following expressions are employed for the calculation of the interfacial lift forces per 

unit volume: 

IM( )L

(c )
= − IM( )L

(d)
= C1ρ

(c )r (d ) u(d) − u(c )( )x ∇xu(c )( ) (37) 

where C1 is the interfacial lift coefficient calculated from: 

C1 = C1a 1− 2.78 0.2, r(d)( ) (38) 

where a, b denotes the minimum of a and b and C1a is an empirical constant. 

The effect of bubbles on the turbulent field is very important. In this work, turbulence is 

assumed to be a property of the continuous liquid phase (c) and is computed by solving the 
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following modified transport equations for the turbulent kinetic energy k and its dissipation 

rate ε that take into account the interaction between the phases:  

∂ r(c )ρ(c)k (c)( )
∂t

+ ∇. r (c)ρ(c )u(c )k (c)( )= ∇. r (c)ρ(c ) ν l
(c) +

ν t
(c )
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⎜ ⎜ 
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∂ r(c )ρ(c)ε (c)( )
∂t
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 (40) 

where G(c) is the well known volumetric production rate of k(c) by shear forces, σ r  the 

turbulent Schmidt number for volume fractions, and Pb is the production rate of k(c) by drag 

due to the motion of the bubbles through the liquid and is given by: 

p

slip
cdc

Db
b r

VrrCC
P

2)()()(375.0 ρ
=  (41) 

In Eq. (41) Cb is an empirical constant representing the fraction of turbulence induced by 

bubbles that goes into large-scale turbulence of the liquid phase. Moreover, as suggested in 

[65], the flux representing the interaction between the fluctuating velocity and volume 

fraction is modeled via a gradient diffusion approximation and added as a source term in the 

continuity ∇. ρ(k )D(k )∇r(k )(( ))and momentum ∇. ρ(k )D(k )u(k )∇r(k )( )( ) equations with the 

diffusion coefficient D given by: 

D(k ) =
ν t

(k )

σr

 (42) 

The turbulent viscosity of the dispersed air phase (d) is assumed to be a related that that of 

the continuous phase through: 

νt
(d) =

ν t
(c)

σ f

 (43) 
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where σ f is the turbulent Schmidt number for the interaction between the two phases. The 

above described turbulence model is a modified version of the one described in [65] in which 

the turbulent viscosities of both phases are allowed to be different in contrast to what is done 

in [65]. This is accomplished through the introduction of the σ f  parameter. As such, different 

diffusion coefficients (D(k)) are used for the different phases. Results are compared against 

the experimental data reported by Seriwaza et al [58]. 

In the Seriwaza et al experiment [58], the Reynolds number based on superficial liquid 

velocity and pipe diameter is 8x104, the inlet superficial gas and liquid velocities are 0.077 

and 1.36 m/s, respectively, and the inlet void fraction is 5.36x10-2 with no slip between the 

incoming phases. Moreover, the bubble diameter is taken as 3 mm [65], while the fluid 

properties are taken as ρ(c)=1000 Kg/m3, ρ(d)=1.23 Kg/m3, and νl
(c )= 10-6 m2/s. The constants 

in the model were set to: C1a=0.075, σf=0.5, σr=0.7, and Cb=0.05. Predicted radial profiles of 

the vertical liquid velocity and void fraction presented in Fig. 3 using a grid of size 96x32 

control volumes concur very well with measurements and compare favorably with numerical 

profiles reported by Boisson and Malin [65]. As shown, the void fraction profile indicates 

that gas is taken away from the pipe center towards the wall. This is caused by the lift force, 

which drives the bubbles towards the wall. 

Having established the credibility of the physical model and numerical procedure, the next 

task is to compare the effects of the grid size and solution methodology on convergence and 

CPU time. For that purpose the calculations are performed on 5 different grids of sizes 18x3, 

36x6, 72x12, 144x24, and 288x48 control volumes. On each grid, solutions are generated 

using the SG, PG, and FMG strategies. Results are displayed in the form of (i) the normalized 

residuals as a function of outer iterations (Figs. 4(a) and 4(b)), and (ii) normalized CPU time 

(Table 1(a)) needed for the maximum normalized residual of all variables and for both phases 

to drop below εs=10-6. In Figure 4(a), the residuals of the overall mass conservation equation 
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and momentum equation of the carrier phase (U(c)) are presented on the finest grid for the SG, 

PG, and FMG methodologies.  As shown, the SG method requires about 35,000 iterations to 

converge, whereas convergence with the PG grid method is achieved in about 10,000 

iterations. Thus, a reduction ratio of 3.5 (=35,000/10,000) in the number of iterations is 

achieved with what amounts to simply a better initial guess. Convergence with the FMG 

method however requires about 1600 iterations, which represents a reduction ratio of 6.25 

over the PG method and 21.9 over the SG method. The large difference between the PG and 

FMG is an indication of the effectiveness of the FMG method in dealing with the added non-

linearity in multiphase flows. The effect of grid size on convergence of the FMG method is 

depicted in Fig. 4(b). Unlike single-phase flows, the number of iterations increases with 

increasing grid size. This increase could be attributed to: (i) the additional coupling between 

the phases of the two-phase flow, which results in larger source terms (as reflected by the 

cyclic convergence behavior of the SG and PG methods and should be minimized by 

resolving the coupling in a more implicit manner (Fig. 4(a)), and (ii) the special treatment 

used for the k and ε equations which does not scale properly through the different grids. 

Nevertheless, the acceleration rate of the FMG method over the SG and PG methods 

increases with grid size, as can be inferred from Table 1(a) where the CPU time needed by 

the SG, PG, and FMG methods on all grid sizes are presented. In addition, the ratio of the 

time needed by the SG and PG methods to the one needed by the FMG method is displayed. 

This allows a direct quantitative assessment of their acceleration rate. The speed of the FMG 

method over the PG and SG methods is seen to increase with increasing grid density and to 

be about 6 and 15.7 times faster than the PG and SG methods respectively, on the finest grid. 

Problem 2:Turbulent air-particle flow in a vertical pipe 
Here, the upward flow of a dilute gas-solid mixture in a vertical pipe is simulated.  As in the 

previous problem, the axi-symmetric form of the gas and particulate transport equations are 
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employed. As reported in several studies [70-72], the effects of interfacial virtual mass and 

lift forces are small and may be neglected and the controlling interfacial force is drag 

(Harlow and Amsden [73]), which is given by:   

IM
x( )D

(c )
= − IM

x( )D

(d)
=

3
8

CD

rp

ρ(c )r (d)Vslip u(d) − u(c)( ) (44) 

IM
y( )D

(c )
= − IM

y( )D

(d)
=

3
8

CD

rp

ρ(c )r (d)Vslip v(d) − v(c )( ) (45) 

where rp represents the particle’s radius, CD the drag coefficient computed from: 

CD =
24
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CD =
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1+ 0.15Re p
0.687( )      for 1 < Rep < 1000
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and Rep the Reynolds number based on the particle size as defined in Eq.(33).  

As before, turbulence is assumed to be a property of the continuous gas phase (c) and is 

predicted using a two-phase k-ε model. Several extensions of the k-ε model for carrier-phase 

turbulence modulation have been proposed in the literature [48-53] and the one suggested by 

Chen and Wood [50], which introduces additional source terms into the turbulence transport 

equations, is adopted here. Thus, the turbulent viscosity is computed by solving the 

turbulence transport equations (Eqs. (4) and (5)) for the continuous phase with 

evaluated using the following relations [50]: Ik
(k)  and  Iε

(k)

Ik
(c) = −2ρ(d)r(c )r(d ) k(c )

τp

1 − e
−0.0825

τ p

τ e

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  (47) 

I ε
(c) = −2ρ(d)r(c )r(d ) ε (c )

τp

 (48) 

where τp and τe are timescales characterizing the particle response and large-scale turbulent 

motion, respectively, and are computed from: 
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τp = ρ(d)r (d)

FD

Vslip

τe = 0.165 k(c )

ε (c)
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with FD being the magnitude of the inter-phase drag force per unit volume. The turbulent 

eddy viscosity of the dispersed phase (d) is considered to be a function of that of the 

continuous phase and is computed using Eq. (43).  

The above-described model is validated against the experimental results of Tsuji et al [70]. 

Results are replicated here for the case of an air Reynolds number, based on the pipe diameter 

(of value 30.5 mm), of 3.3x104 and a mean air inlet velocity of 15.6 m/s using particles of 

diameter 200 µm and density 1020 Kg/m3. In the computations, the mass-loading ratio at 

inlet is considered to be 1 with no slip between the phases, and σf and σr are set to 5 and 1010, 

respectively (i.e. the interaction terms included for bubbly flows are neglected here). Figure 5 

shows the fully developed gas and particles mean axial velocity profiles generated using a 

grid of size 96x40 C.V. It is evident that there is generally a very good agreement between 

the predicted and experimental data with the gas velocity being slightly over predicted and 

the particles velocity slightly under predicted. Moreover, close to the wall, the model 

predictions indicate that the particles have higher velocities than the gas, which is in accord 

with the experimental results of Tsuji et al. [70]. 

Having checked the correctness of the physical model and numerical procedure, the problem 

is solved over five different grids of sizes 12x5, 24x10, 48x20, 96x40, and 192x80 control 

volumes using the SG, PG, and FMG methodologies. As in the previous problem, results are 

displayed in the form of (i) residual plots as a function of outer iterations (Fig. 6), and (ii) 

normalized CPU time (Table 1(b)) needed for the maximum normalized residuals of all 

variables and for all phases to drop below εs=10-6. In figure 6(a), residuals of the carrier 

phase’s axial velocity (U(c)) over the densest grid using the SG, PG, and FMG methodologies 
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are presented. As shown  (Fig. 6(a)), the performance of the PG method is poor as compared 

to that of the FMG method with the SG method requiring 3600 iterations, the PG method 

3100 iterations (representing a reduction ratio of 1.16), and the FMG method 260 iterations (a 

reduction ratio of 13.85). This is another indication of the effectiveness of the FMG method 

in dealing with the added non-linearity of multiphase flows. The effects of grid size on 

convergence of the FMG method is depicted in Fig. 6(b). Again, the number of iterations 

needed to reach the required convergence level increases with increasing the grid size for the 

reasons stated earlier. The CPU times needed by the SG, PG, and FMG methods on all grid 

sizes in addition to the SG/FMG and PG/FMG ratios are displayed in Table 1(b). As in the 

previous problem, the speed of the FMG method over the PG and SG methods is seen to 

increase with increasing grid density and to be about 6.66 and 7.21 times faster than the PG 

and SG methods respectively, on the finest mesh. 

Problem 3:Compressible dilute air-particle flow over a flat plate 
As has been demonstrated in several studies [74-80], two-phase flow greatly changes the 

main features of the boundary layer over a flat plate. Typically, three distinct regions are 

defined in the two-phase boundary layer (Fig. 7(a)), based on the importance of the slip 

velocity between the two phases: a large-slip region close to the leading edge, a moderate-slip 

region further down, and a small-slip zone far downstream. The characteristic scale in this 

two-phase problem is the relaxation length λe [77], defined as: 

λ e =
2
9

ρ(d)rp
2u∞

µ (c)  (50) 

where u  is the free stream velocity. The three regions are defined according to the order of 

magnitude of the slip parameter x*

∞

= x/ λe . In the simulation, the viscosity of the fluid is 

considered to be a function of temperature according to [77]: 

µ (c) = µ ref
T(c)

Tref
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0.6

 (51) 
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where the reference viscosity and temperature are µref=1.86x10-5 N.s/m2 and Tref=303 °K. 

Drag is the only retained interfacial force due to its dominance over other interfacial forces 

and is computed from [77]: 

( ) ( ) ( )c()d()c()d(
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where the drag coefficient is given by: 

15.0
ppD Re

6
7Re

50
1C +=  (54) 

In the energy equation, heat transfer due to radiation is neglected and only convective heat 

transfer around an isolated particle is considered. Under such conditions, the interfacial terms 

in the gas (c) and particles (d) energy equations reduce to [77]:  

IE
(c) = Qg −p + Fg− p.u

(d)  (55) 

IE
(d) = −Qg− p  (56) 

where: 

Fg− p = IM
x( )D

(c )
i + IM

y( )D

(c)
j  (57) 

Nu = 2.0 + 0.6 Rep

1
2 Pr(c )( )

1
3  (58) 

Qg −p =
3
2

r(d)λ(c )Nu
rp

2 T(d) − T(c)( ) (59) 

In the above equations, Nu is the Nusselt number, Pr(c) the gas Prandtl number, λ(c) the gas 

thermal conductivity, T the temperature, and other parameters are as defined earlier. 

In the simulation, the particle diameter, particle Reynolds number, material density, Prandtl 

number, and mass load ratio are set to: 10 µm, 10, 1766 kg/m3, 0.75, and 1 respectively. The 

wall boundary is treated as a no-slip boundary for the gas phase (i.e. both components of the 

gas velocity are set to zero), and as a slip boundary condition for the particles phase (i.e. the 

normal fluxes are set to zero). In order to bring all quantities to the same order of magnitude, 

results are displayed using the following dimensionless variables: 
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x* =
x
λ e

, y* =
y
λ e

Re, u* =
u
u∞

, v* =
v
u∞

Re Re =
ρuλ e

µ
 (60) 

Figure 7(b) shows the results for the steady flow obtained on a rectangular domain with a 

mesh of density 104x48 C.V. stretched in the y-direction. The figure provides the 

development of gas and particles velocity profiles within the three regions mentioned earlier. 

In the near leading edge area (x*=0.1), the gas velocity is adjusted at the wall to obtain the 

no-slip condition as for the case of a pure gas boundary layer. The particles have no time to 

adjust to the local gas motion and there is a large velocity slip between the phases. In the 

transition region (x*=1), significant changes in the flow properties take place. The interaction 

between the phases cause the particles to slow down while the gas accelerates. In the far 

downstream region (x*=5), the particles have ample time to adjust to the state of the gas 

motion, the slip is very small, and the solution tends to equilibrium. These results are in 

excellent agreement with numerical solutions reported by Thevand et al. [80] (Fig. 7(b)).  

As in the previous tests, the problem is solved over five different grids of sizes 13x6, 26,12, 

52x24, 104x48, and 208x96 control volumes using the SG, PG, and FMG methods.  Results 

are displayed in the form of convergence history plots (Fig. 8) and normalized CPU time 

(Table 1(c)) with εs=10-6. In figure 8(a), reduction with iterations of the U(c)-residuals over 

the densest grid (208x96 c.v.) using the SG, PG, and FMG methodologies are presented. As 

shown, the FMG method achieves the desired level of convergence in 430 iterations, the PG 

method in 2650 iterations, and the SG method in 5400 iterations. As such the iteration 

reduction ratios of the FMG and PG methods over the SG method are ≅12.6 and 2, 

respectively. This is an additional indication of the superiority of the FMG method over the 

PG method in dealing with the added non-linearity in compressible multiphase flows. 

Increasing the grid size has the same effects on the performance of the FMG method as in the 

previous two test problems (Fig. 8(b)). This is attributed, in addition to the added non-

linearity in multiphase flows, to the large number of parameters affecting the computations, 
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which are difficult to control, such as: under-relaxation factors, number of internal restriction 

and prolongation iterations at each level, number of algebraic solver sweeps for each 

dependent variable, etc. 

The CPU-times for all cases considered are presented in Table 1(c). The general trend is 

similar to the previous cases with the SG requiring the highest CPU effort and the FMG 

being the most efficient on all grids. Nevertheless, the PG method is always cheaper than the 

SG method indicating the importance of the initial guess in iterative solvers. In fact, the use 

of the PG method on the dense grid accelerates the convergence rate by 513% whereas an 

acceleration of 949% is realized with the FMG method. Moreover, the virtues of both the 

FMG and PG methods increase as the grid size increases (Table 1(c)). 

Problem 4:Inviscid transonic dusty flow in a converging-diverging nozzle 
The last test considered deals with the prediction of supersonic dilute air-particle flow in an 

axi-symmetric converging-diverging rocket nozzle. Several researchers have analyzed the 

problem and data is available for comparison [81-90]. In most of the reported studies, a 

shorter diverging section, in comparison with the one considered here, has been used when 

predicting the two-phase flow. Two-phase flow results for the long configuration have only 

been reported by Chang et.al. [85]. The flow is assumed to be inviscid and the single-phase 

results are used as an initial guess for solving the two-phase problem. The physical 

configuration (Fig. 9(a)) is the one described in [85]. The viscosity of the fluid varies with the 

temperature according to Sutherland’s law for air:  

µ (c) = 1.458x10−6 T(c ) T(c )

T(c) +110.4
 (61) 

The coupling between gas and particle phases is through the interfacial momentum and 

energy terms. The force exerted on a single particle moving through a gas is given as [86]  

fx = 6πrpfDµ(c ) u (d) − u(c )( ) (62) 

fy = 6πrpfDµ (c) v(d ) − v(c )( ) (63) 
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so that for N particles in a unit volume the effective drag force is 

IM
x( )D

(c )
= − IM

x( )D

(d)
=

9
2

r(d)

rP
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where fD is the ratio of the drag coefficient CD to the stokes drag CD0=24/ReP and is given by 

[85] 

fD = 1 + 0.15Rep
0.687 +

0.0175Rep

1 + 4.25x104 Rep
−1.16 Rep < 3x105  (66) 

The heat transferred from gas to particle phase per unit volume is given as [86] 

Qg −p =
3
2

r(d)

rP

λ(c )Nu T(d) − T(c )( ) (67) 

Where λ(c) is the thermal conductivity of the gas and Nu the Nusselt number, which is written 

as [86] 

Nu = 2 + 0.459 ReP
0.55 Prc

0.33  (68) 
The gas-particle inter-phase energy term is given by 
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where the first two terms on the right-hand side of equation (69) represent the energy 

exchange due to momentum transfer.   

The physical quantities employed are similar to those used in [85]. The gas stagnation 

temperature and pressure at inlet to the nozzle are 555 ºK and 10.34x105 N/m2, respectively. 

The specific heat for the gas and particles are 1.07x103 J/KgºK and 1.38x103 J/KgºK, 

respectively, and the particle density is 4004.62 kg/m3. With a zero inflow velocity angle, the 

fluid is accelerated from subsonic to supersonic speed in the nozzle. The inlet velocity and 

temperature of the particles are taken to be the same as those of the gas phase. Results for a 

particle of radius 10 µm with a mass fraction φ=0.3 are presented using a grid of size 188x40 
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c.v. Figure 9(b) shows the particle volume fraction contours while Figure 9(c) displays the 

velocity distribution. As shown, a large particle-free zone appears due to the inability of the 

particles to turn around the throat corner. These findings are in excellent agreement with 

published results reported in [85] and others using different methodologies. A quantitative 

comparison of current predictions with published experimental and numerical data is 

presented in Fig. 10 through gas Mach number distributions along the wall (Fig. 10(a)) and 

centerline (Fig. 10(b)) of the nozzle for the one-phase and two-phase flow situations. As can 

be seen, the one-phase predictions fall on top of experimental data reported in [88-90]. Since 

the nozzle contour has a rapid contraction followed by a throat with a small radius of 

curvature, the flow near the throat wall is overturned and inclined to the downstream wall. A 

weak shock is thus formed to turn the flow parallel to the wall. This results in a sudden drop 

in the Mach number value and as depicted in Fig. 10(b), this sudden drop is correctly 

envisaged by the solution algorithm with the value after the shock being slightly over 

predicted.  

Due to the unavailability of experimental data, two-phase flow predictions are compared 

against the numerical results reported in [85]. As displayed in Figs. 10(a) and 10(b), both 

solutions are in good agreement with each other indicating once more the correctness of the 

calculation procedures. The lower gas Mach number values in the two-phase flow is caused 

by the heavier particles (ρ(d)>>ρ(c)), which reduce the gas velocity. Moreover, owing to the 

particle-free zone, the Mach number difference between the one- and two-phase flows along 

the wall is smaller than that at the centerline.  

To compare the relative performance of the SG, PG, and FMG methodologies, the problem is 

solved over three different grids of sizes 47x20, 94x40, and 188x80 c.v. As before, results are 

displayed in the form of residual history plots (Fig. 11) and CPU times (Table 1(d)) with εs 

set to 10-6.   
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As shown in Fig. 11(a), the number of iterations required by the PG and FMG methods is 

relatively close with the one required by the SG method being much higher. To promote 

convergence with the SG method on the 188x80 grid, it was necessary to start the 

computations with very low under-relaxation factors. It was not possible to increase these 

factors until the residuals have dropped to the level shown in Fig. 11(a). Beyond that point, 

the higher under-relaxation factor values resulted in a fast convergence rate. In fact, the slope 

of the SG residual curve beyond that point, is nearly equal to the one obtained by the PG and 

FMG methods (Fig. 11(a)), which is a clear indication of the importance of the initial guess 

in supersonic flows. The proximity of performance of the PG and FMG method is due to: (i) 

the higher importance of initial guess in supersonic flows (as explained above), and (ii) the 

degradation in performance of the Multi-grid approach as the governing equations become 

more hyperbolic (i.e. as Mach number becomes much higher than 1, in this case it reaches a 

value close to 3.6) since it is best suited for elliptic equations. As in the previous problems, 

Fig. 11(b) indicates that the number of iterations required by the FMG method increases with 

increasing grid density for the reasons stated earlier.  

The CPU-times presented in Table 1(d) confirm these conclusions and reveal the close 

performance of the PG and FMG approaches with the CPU-time needed by the FMG method 

being always lower. On the 94x40 grid, the FMG method is 1.31 times faster than the PG 

method, while it is 1.14 times faster on the densest grid. In comparison with the SG method, 

the FMG approach is 9 times faster on the finest mesh. 

Closing Remarks 

This work addressed the effectiveness of the Multi-grid approach in dealing with the added 

non-linearity of Multiphase flows at all speeds. For that purpose the performance of the FMG 

method was compared against that of the SG and PG methods by solving four two-phase flow 

problems representing a wide variety of physical situations. Results clearly demonstrated the 
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robustness of the FMG method and its ability to tackle the added non-linearity of multiphase 

flows. Moreover, even though the rate of convergence is complex, the FMG method achieved 

very good reduction factors over the PG and SG methods reaching a value as high as 15. 
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Figure Captions 

Fig. 1 Control volume. 

Fig. 2 (a) the prolongation only  and (b) FMG strategies  

Fig. 3  Comparison of fully developed liquid velocity and void fraction profiles for  

 Turbulent upward bubbly flow in a pipe against Seriwaza et al. data. 

Fig. 4  (a) Mass and U(c) residual history plots for the FMG, PG, and SG methods on  

the finest mesh for turbulent bubbly flow in a pipe; (b) U(c) residual history plots  

for the FMG method on the various levels for turbulent bubbly flow in a pipe. 

Fig. 5   Comparison of fully developed gas and particle velocity profiles for turbulent  

air-particle flow in a pipe. 

Fig. 6   (a) U(c) residual history plots for the FMG, PG, and SG methods on  

the finest mesh for turbulent air-particle flow in a pipe; (b) Mass residual  

history plots for the FMG method on the various levels for turbulent air-particle  

flow in a pipe. 

Fig. 7  (a) The three different regions within the boundary layer of dusty flow over a  

flat plate; (b) Comparison of fully developed gas and particle velocity profiles  

inside the boundary layer at different axial locations for dilute two-phase flow  

over a flat plate. 

Fig. 8   (a) U(c) residual history plots for the FMG, PG, and SG methods on  

the finest mesh for compressible dusty flow over a flat plate; (b) U(c) residual  

history plots for the FMG method on the various levels for compressible dusty  

flow over a flat plate. 

Fig. 9 (a) Physical domain for the dusty gas flow in a converging-diverging nozzle; 

 (b) Volume Fraction contours and (c) particle velocity vectors for dusty gas  

flow in a converging-diverging nozzle. 
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Fig. 10  Comparison of one-phase and two-phase gas Mach number distributions along the 

(a) wall and (b) centerline of dusty flow in a converging-diverging nozzle. 

Fig. 11 (a) Mass residual history plots for the FMG, PG, and SG methods on  

the finest mesh for compressible dusty flow in a converging-diverging nozzle;  

(b) Mass residual history plots for the FMG method on the various levels for  

compressible dusty in a converging-diverging nozzle. 
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Table 1(a) CPU-times for: (a) turbulent bubbly flow in a pipe; (b) turbulent air- 

       particle flow in a pipe; (c) compressible dusty flow over a flat plate; 

       (d) compressible dusty flow in a converging-diverging nozzle. 

 
(a) 

 
Grid (c.v.) SG Levels PG FMG PG/FMG SG/FMG 
18x3 0.73 1 0.73 0.73 1.00 1.00 
36x6 4.77 2  3.82  3.63 1.05 1.31  
72x12 72.75 3  34.23 25.29 1.35 2.88 
144x24 876.48 4 398.33 149.52 2.66 5.86 
288x48 38840.37 5 14975.97 2480.34 6.04 15.66 
 

(b) 
 
Grid (c.v.) SG Levels PG FMG PG/FMG SG/FMG 
12x5 0.56 1 0.56  0.56 1.00 1.00 
24x10 3.78 2  3.26  2.78 1.17 1.36  
48x20  41.14 3  33.27  16.96 1.96 2.43 
96x40 464.55 4 368.12 92.35 3.99 5.03 
192x80 5232.38 5 4833.98 725.40 6.66 7.21 
 

(c) 
 
Grid (c.v.) SG Levels PG FMG PG/FMG SG/FMG 
13x6  1.34 1  1.34  1.34 1.00 1.00 
26x12  5.44 2  5.05  3.75  1.35 1.45  
52x24  41.02 3  36.47  18.13  2.01 2.26 
104x48 500.05 4 376.12 101.49 3.71 4.93 
208x96 7738.08 5 4181.42 815.38 5.13 9.49 
 

(d) 
 
Grid (c.v.) SG Levels PG FMG PG/FMG SG/FMG 
47x20 28.20 1 28.20 28.20 1.00 1.00 
94x40 470.82 2 334.15 255.30 1.31 1.84 
188x80 23168.56 3 2912.77 2558.71 1.14 9.05 
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Fig. 1 Control volume. 
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(a)       (b) 

 

Fig. 2 (a) the prolongation only  and (b) FMG strategies  
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Fig. 3  Comparison of fully developed liquid velocity and void fraction profiles for  

Turbulent upward bubbly flow in a pipe against Seriwaza et al. data. 
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(b) 
Fig. 4  (a) Mass and U(c) residual history plots for the FMG, PG, and SG methods on  

the finest mesh for turbulent bubbly flow in a pipe; (b) U(c) residual history plots  

for the FMG method on the various levels for turbulent bubbly flow in a pipe. 



A Multi-grid Algorithm for Multiphase Flow at all Speeds  44 

r/R

u/
U

c

0 0.25 0.5 0.75 1
0.5

0.6

0.7

0.8

0.9

1

Gas, Data of Tsuji et al [66]

Particles, Data of Tsuji et al [66]

Gas, Current predictions

Particles, Current predictions

 

Fig. 5   Comparison of fully developed gas and particle velocity profiles for turbulent  

air-particle flow in a pipe. 
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(b) 
Fig. 6  (a) U(c) residual history plots for the FMG, PG, and SG methods on the finest mesh  

for turbulent air-particle flow in a pipe; (b) Mass residual history plots for the FMG 

method on the various levels for turbulent air-particle flow in a pipe. 
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(b) 

Fig. 7  (a) The three different regions within the boundary layer of dusty flow over a  

flat plate; (b) Comparison of fully developed gas and particle velocity profiles  

inside the boundary layer at different axial locations for dilute two-phase flow  

over a flat plate. 
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(b) 
Fig. 8   (a) U(c) residual history plots for the FMG, PG, and SG methods on  

the finest mesh for compressible dusty flow over a flat plate; (b) U(c) residual  

history plots for the FMG method on the various levels for compressible dusty  

flow over a flat plate. 
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(c) 

Fig. 9 (a) Physical domain for the dusty gas flow in a converging-diverging nozzle; 

 (b) Volume Fraction contours and (c) particle velocity vectors for dusty gas  

flow in a converging-diverging nozzle. 
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(b) 
Fig. 10  Comparison of one-phase and two-phase gas Mach number distributions along the 

(a) wall and (b) centerline of dusty flow in a converging-diverging nozzle. 
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(b) 
Fig. 11 (a) Mass residual history plots for the FMG, PG, and SG methods on  

the finest mesh for compressible dusty flow in a converging-diverging nozzle;  

(b) Mass residual history plots for the FMG method on the various levels for  

compressible dusty in a converging-diverging nozzle. 


