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A COMPARATIVE ASSESSMENT OF THE PERFORMANCE
OF MASS CONSERVATION-BASED ALGORITHMS FOR
INCOMPRESSIBLE MULTIPHASE FLOWS

F. Moukalled and M. Darwish

American University of Beirut, Faculty of Engineering & Architecture,
Mechanical Engineering Department, Riad El Solh, Beirut, Lebanon

This work is concerned with the implementation and testing, within a structured collocated
finite-volume framework, of seven incompressible-segregated multiphase flow algorithms
that belong to the mass conservation-based algorithms (MCBA) group in which the pres-
sure-correction equation is derived from overall mass conservation. The pressure-correction
schemes in these algorithms are based on SIMPLE, SIMPLEC, SIMPLEX, SIMPLEM,
SIMPLEST, PISO, and PRIME. The performance and accuracy of the multiphase algo-
rithms are assessed by solving eight one-dimensional two-phase flow problems spanning the
spectrum from dilute bubbly to dense gas—solid flows. The main outcome of this study is a
clear demonstration of the capability of all MCBA algorithms to deal with multiphase flow
situations. Moreover, results displayed in terms of convergence history plots and CPU times
indicate that the performance of the MCBA versions of SIMPLE, SIMPLEC, and SIM-
PLEX are very close. In general, the performance of SIMPLEST approaches that of
SIMPLE for diffusion-dominated flows. As expected, the PRIME algorithm is found to be
the most expensive, due to its explicit treatment of the phasic momentum equations. The
PISO algorithm is generally more expensive than SIMPLE, and its performance depends on
the type of flow and solution method used. The behavior of SIMPLEM is consistent, and in
terms of CPU effort it stands between PRIME and SIMPLE.

INTRODUCTION

The extensive developments that have taken place in computational fluid
dynamics (CFD) over the last three decades have established this still-evolving
technology as a reliable and essential tool for the simulation and optimization of a
wide variety of engineering fluid flow processes (mixing, solidification, turbulence,
etc.). Several issues that were hindering its progress have been addressed and
remedies suggested. Concerns related to accuracy were assuaged through the
development of high-resolution (HR) schemes [1-3]. Moreover, better solution
algorithms [4-8], solvers [9, 10], and multigrid techniques [11, 12] have greatly
reduced the computational cost and made it feasible to solve real-life problems.
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NOMENCLATURE
A(pk), ... coefficients in the discretized equation Q(") general source term of fluid/phase k
for d)(k) k) volume fraction of fluid /phase k
B(pk) source term in the discretized Sy surface vector
equation for ¢ t time
B body force per unit volume of U;{() interface flux velocity (v;{() : S/‘) of
fluid /phase k fluid/phase k
D(pk) [(P(k)] vector form of the D operator u® velocity vector of fluid/phase k
Hylo Yom operator r diffusion coefficient of fluid/phase k
HP, w¥]  vector form of the HP operator St time step
I(/;)) interphase momentum transfer Af[d)(k)] A operator
J,‘( b diffusion flux of ¢ ¥ across Y "),u(") kinematic and dynamic viscosity of
e cell face f w ( fluid/phase k
Jo convection flux of ¢ across 2 density of fluid/phase k
cell face f d)(k) general scalar quantity associated
MW mass source per unit volume with fluid/phase &
P pressure Q cell volume

While high-resolution schemes, solvers, multigrid techniques, etc., can be
applied to simulate both single- and multiphase flows, nearly all developments in
solution algorithms have been directed toward the simulation of single-fluid flow.
In particular, many segregated single-fluid solution algorithms have been developed,
such as the well-known SIMPLE [4], SIMPLEST [13], SIMPLEC [6], SIMPLEM
[14], PISO [5], PRIME [15], and SIMPLEX [7] algorithms, to cite a few. Addition-
ally, several techniques have been devised to improve the performance, facilitate the
implementation, and extend the capability of these algorithms. On the other hand,
developments in solution algorithms for simulating multiphase flow phenomena
have lagged behind that of single-phase flow algorithms due to the much higher
computational cost involved, the numerical difficulties that first had to be addressed
in the simulation of single-phase flow, and the increase in algorithmic complexity.
While the major difficulty in the simulation of single-phase flow stems from the
coupling between the momentum and continuity equations, in the simulation of
multiphase flow phenomena this problem is further complicated by the fact that
there are as many sets of continuity and momentum equations as there are fluids,
they are all coupled together in various ways (interchange momentum by interphase
mass and momentum transfer, etc.) and the fluids share space (the volume fractions
sum to unity, but are not known in advance).

Despite these complexities, successful segregated pressure-based solution
algorithms have been devised. The IPSA variants devised by the Spalding group at
Imperial College [16—18] and the set of algorithms devised by the Los Alamos Sci-
entific Laboratory (LASL) group [19-21] are examples of multiphase algorithms.
However, in contrast with the widespread information available on single-fluid
solution algorithms, little information is available on multiphase solution algo-
rithms, and even less on their relative performance.

Recently, Darwish et al. [22] extended the large number of segregated single-
fluid flow algorithms reviewed in [8] to predict multiphase flow phenomena and
showed that the pressure-correction equation can be derived either by using the
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geometric conservation equation or the overall mass conservation equation.
Depending on the chosen equation, the segregated pressure-based multiphase
flow algorithms were classified as either the geometric conservation-based family
of algorithms (GCBA) or the mass conservation-based family of algorithms (MCBA).
Many of these algorithms have neither been tested nor implemented in CFD codes.

The objective of the present work is to implement and test seven multiphase
algorithms from the MCBA group and to assess their relative performance by sol-
ving a total of eight one-dimensional incompressible two-phase flow problems
encompassing dilute and dense gas—solid flows in addition to bubbly flows on several
grid sizes.

In what follows, the equations governing incompressible multiphase flow
phenomena are first introduced, followed by a brief description of the discretization
procedure. Then the capability of MCBA to predict incompressible multiphase flow
phenomena is demonstrated, and their performance characteristics (in terms of
convergence history and speed) assessed.

THE GOVERNING EQUATIONS

In incompressible multiphase flow the various fluids/phases coexist with dif-
ferent concentrations at different locations in the flow domain and move with
unequal velocities. Thus, the equations governing multiphase flows are the following
conservation laws of mass and momentum for each individual fluid:

(k) (k)
0 .
(r af ) v - (W PRy = 0 e (1)
(k) () ()
0
(rp®u) IR R CCNCREME)
ot
=y (W Wyy®] + O (—gp+ k) + 15‘1; ()

where the superscript (k) refers to the kth phase, "% the volume fraction (Q /Q)
¥ the phasic density, u'*’ the velocity vector, P the pressure (assumed to be shared
by all fluids /phases), B(k> the body force per unit volume, um the laminar viscosity,
and I, represents the interfacial forces per unit volume due to drag, virtual mass
effects, lift, etc.
If a typical representative variable associated with phase (k) is denoted by ¢(">
the above two equations can be written using a general phasic equation as

(_w+v (0,0 W) = g (WrPyel) + Wk (3)

where the expressions for % and Q ) can be deduced from the parent equations.

The above set of differential equations has to be solved in conjunction with
constraints on certain variables represented by algebraic relations. For incom-
pressible laminar multiphase ﬂow these auxiliary relations include the geometric
conservation equation (Z ) = 1) and the interfacial mass and momentum
transfers. Several models have been developed for the interfacial mass and
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momentum transfers terms. In this work, only interfacial momentum transfer is of
interest, and its closure will be detailed later. Moreover, in order to present a closed
mathematical model, initial and boundary conditions should supplement the above
equations.

DISCRETIZATION PROCEDURE

The general conservation equation (3) is integrated over a finite volume
(Figure 1a) to yield

//—&dgw// )0y &) 4 ©)) ey

// )y gk d9+// 'oWan ()

where Q is the volume of the control cell. Using the divergence theorem to transform
the volume integral into a surface integral and then replacing the surface integral
by a summation of the fluxes over the sides of the control volume, Eq. (4) is
transformed to

() (k) 4 (k)
0 _
(r g@l ¢ )Q+Z(Ji;;>D+JLZ>C) = W oHg (s)
nb
(k)D (k)

where J,," and J,, are the diffusive and convective fluxes, respectively. The dis-
cretization of the diffusion term is second-order-accurate and follows the derivations
presented in [23]. For the convective terms, the high-resolution SMART [1] scheme is
employed and applied within the context of the NVSF methodology [3].

After substituting the face values by their functional relationship relating to the
node values of ¢, Eq. (5) is transformed after some algebraic manipulations into the
following discretized equation:

W0 _ N~ W), )
Ay by =D ApoNy * By (6)
NB

where the coefficients Al(,k> and Ag\% depend on the selected scheme and Bl(,w is the
source term of the discretized equation . In compact form, the above equation can be

written as

Z A(k) (k) + B(k)
(])(k) — Hp[d)(k)] _ ZZNR NR((]?)\[R p (7)
AP

The discretization procedure for the momentum equation yields an algebraic
equation of the form:

o = Hp ] - VD, (p) (8)
Moreover, the phasic mass conservation equation [Eq. (1)] can be viewed as a
phasic volume fraction equation, which can be written as

rf,f) = Hp[r(k>] (9)
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Figure 1. («) Control volume. () Physical domain for the gas—particle transport problem.

or as a phasic continuity equation to be used in deriving the pressure-correction
equation:

(r(,f>p(,f>) _ (r(,f>p(,f>)01d
ot

o+ Ap[r(k)p(k)u(k) -] = r(k)M(k) (10)

where the A operator represents the following operation:

Arlel= D o (11)

f:ub(P)
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THE MASS CONSERVATION-BASED ALGORITHMS

The numbers of equations describing an n-fluid /phase flow situation are: n
phasic momentum equations, #n phasic volume fraction (or mass conservation)
equations, and a geometric conservation equation. Moreover, the variables involved
are the n phasic velocity vectors, the n phasic volume fractions, and the pressure field.
In all MCBA algorithms, the » momentum equations are used to calculate the n
velocity fields; n — 1 volume fraction (mass conservation) equations are used to
calculate n — 1 volume fraction fields, and the last volume fraction field is calculated
using the geometric conservation equation

P =1 =)W (12)

k#n

The remaining volume fraction equation can be used to calculate the pressure
field. However, instead of using this last volume fraction equation, the global con-
servation equation is employed, i.e., the sum of the individual mass conservation
equations, to derive a pressure-correction equation. The sequence of events in the
MCBA is as follows:

Solve the phasic momentum equations for velocities.

Solve the pressure-correction equation based on global mass conservation.
Correct velocities and pressure.

Solve the phasic mass conservation equations for volume fractions.
Return to the first step and repeat until convergence.

RANEIR el B

THE MCBA PRESSURE-CORRECTION EQUATION

To derive the pressure-correction equation, the mass conservation equations of
the various fluids are added to yield the global mass conservation equation given by

(r(k)p(k)) _ (r(k)p(k))OId ®
D R AW WY - s) =0 (13)
k

In the predictor stage a guessed or an estimated pressure field from the previous
iteration, denoted by P’ is substituted into the momentum equations. The resulting
velocity fields denoted by u(k)*, which now satisfy the momentum equations will not,
in general, satisfy the mass conservation equations. Thus, corrections are needed in
order to yield velocity and pressure fields that satisfy both equations. Denoting the
corrections for pressure and velocity by P "and u(w, respectively, the corrected fields
are written as

p=p+p uld = u(k>* + (14)

Hence the equations solved in the predictor stage are

o = 1Pl ] = Hp Wy, p (15)
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while the final solutions satisfy

o = 1P u®] - WpWy ,p (16)

Subtracting the two equation sets [(15) and (16)] from each other yields the following
equation involving the correction terms:

o = ] - WpWy, p (17)

Moreover, substituting Eqs. (14) and (17) into Eq. (13) and rearranging, the
final form of the pressure-correction equation is written as

S anh o (W Dy ) - g}
k

r(/\)'p(/\)x7£r(/\)p(/\)201d , A )
= Z o Q + Apl W W]

k JFAp[r(k)Ip(k)x (HP[u(ky]) -S|

(18)

If the HPW*'] term in the above equation is retained, there will result a
pressure-correction equation relating the pressure-correction value at a point to all
values in the domain. To facilitate implementation and reduce cost, simplifying
assumptions related to this term have been introduced. Depending on these
assumptions, different algorithms are obtained. These algorithms were accorded a
full-length article [22] of discussion, to which interested readers are referred. The
corrections are then applied to the velocity and pressure fields using the following
equations:

u;]() = uﬂ? - W DEPVPP, Pr=p+p (19)

Numerical experiments using the above approach to simulate two-fluid flow

with large difference in densities have shown poor conservation of the lighter fluid.

This problem can be considerably alleviated by normalizing the individual continuity

equations (see [22] for details) by means of a weighting factor such as a reference

density p(k) (which is fluid dependent). This approach has been adopted in solving all
problems presented in this work.

RESULTS AND DISCUSSION

Due to the large number of parameters affecting the performance of the var-
ious multiphase mass conservation-based algorithms and to allow a thorough testing
of these algorithms, eight one-dimensional two-phase problems are considered.
These problems can be broadly classified as: (1) horizontal particle transport, and (2)
vertical particle transport. Results are presented in terms of the convergence history
and the CPU time needed to converge the solution to a set level. Predictions are
compared against available numerical /theoretical values. The residual of a variable
¢ at the end of an outer iteration is defined as

( (
RESY =D (4,0 = D Awol - BY (20)
cy all p neighbors
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For global mass conservation, the imbalance in mass is defined as

(k) (k))Old

RES :Zz‘(r(zpp(;f))— (rp pp
‘ k c.v.‘ o1

All residuals are normalized by their respective inlet fluxes. Computations are
terminated when the maximum normalized residual of all variables drops below a
very small number €;. For a given problem, the same value of g is used with all
algorithms. In general, it is found that requiring the overall mass residuals to be
satisfied to within &, is a very stringent and sufficient requirement. This is why these
residuals are the ones presented here and used to compare the performance of the
various algorithms. In all problems, the first phase represents the continuous phase
[denoted by a superscript (¢)], which must be fluid, and the second phase is the
disperse phase [denoted by a superscript (d )], which may be solid or fluid. Unless
otherwise specified, the HR SMART scheme is used in all computations reported in
this study. For a given problem, all solutions are obtained starting from the same
initial guess. Moreover, it should be stated that in iterative techniques, different
initial guesses might require different computational efforts.

Despite its geometric simplicity, the one-dimensional particle transport pro-
blem can represent a wide range of physical conditions. The effects of grid refinement
on accuracy and convergence are studied by solving the problems on four grid systems
of sizes 20, 40, 80, and 160 control volumes, with &, assigned the value of 10 8

Many runs were performed so as to set the control parameters of each algorithm
near optimum values. To allow a comparative assessment of performance, the CPU
times are reported in the form of graphs. Moreover, all CPU times are normalized by
the time needed by MCBA-SIMPLE to reach the set residuals on the coarsest grid.

Q- AP[r(k)p(k)u(k) -g] — r(k)M(k) (21)

Horizontal Particle Transport

The physical situation is depicted in Figure 15. Depending on the set densities,
it represents either the steady flow of solid particles suspended in a free stream of air
or the steady flow of air bubbles in a stream of water. The slip between the phases
determines the drag, which is the sole driving force for the particle-bubble /air-water
motion (g =0). In the suspension, the interparticle/bubble forces are neglected.
Diffusion within both phases is set to zero while the interphase drag force is calcu-
lated as

@ _3Cp ) ()

IM =~ rp Vslip(u(d> - M(J) (22)
8 rp
a 3 C a C a c
]Ek,):_gr_DV(DPUVslip(U(D_u(>) (23)
)4
Vaip = la@ — a9 (24)

The drag coefficient, Cp, is set to 0.44. Since phasic diffusion is neglected, the
MCBA-SIMPLEST and MCBA-PRIME become identical and reference will be
made to MCBA-SIMPLEST only. The task is to calculate the particle/bubble-
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velocity distribution as a function of position. If the flow field is extended far enough
(here computations are performed over a length of L= 2m), the particle/bubble and
fluid phases are expected to approach an equilibrium velocity given by

_ () (e) (d) (d)
Uequilibrium ~ Tinlet Vinlet + Tinlet Vinlet (25 )

Problem 1: Dilute gas-solid flow. The steady flow of dilute particles
suspended in a free stream of air is studied first. At the inlet, the air and particle
velocities are 5 and 1m/s, respectiv(e}y. The physical properties of the two phases
are p(d)/p(") =2,000, r, = I mm, rirﬁel =10"". Due to the dilute concentration of
the particles, the free-stream velocity is more or less unaffected by their presence
and the equilibrium velocity is nearly equal to the inlet free-stream velocity. Based
on this observation, Morsi and Alexander [24] obtained the following analytical
solution for the particle velocity u'? as a function of the position x and the
properties of the two phases:

(c) (c)

(c)
. Vi 309 ¢ . . %
ln[Vi(r11>et — u(d)] + (_>mlal_ =2 P(_{) _Dx + ln[Vi(nllt — Vi(nﬁt] 4 (_>mlal(_{> (26)
Vintet ~ uld 8 rp Vintet ~ Vinlet

This case is of particular importance since the flow situation has an exact
solution. As shown in Figure 2a the predicted particle velocity distribution falls on
top of the analytical solution given by Eq. (26), which is an indication of the
accuracy of the numerical procedure. The convergence histories of the various
MCBA over the four grid networks used are displayed in Figures 2b-2h. For all
algorithms, the required number of iterations increases as the grid size increases, with
PISO (Figure 2b) requiring the minimum and SIMPLEST /PRIME (Figure 2f') the
maximum number of iterations on all grids. The convergence histories of SIMPLE,
SIMPLEC, and SIMPLEX (Figures 2¢, 2d, and 2g, respectively) are very similar,
requiring nearly the same number of iterations on all grids. The convergence path of
SIMPLEM (Figure 2¢) is not as smooth as that of SIMPLE, due to the fact that at
the end of an outer iteration, the velocity field is momentum satisfying rather than
continuity satisfying. The convergence paths of the various algorithms over a grid of
size 80 control volumes (C.V.) are compared in Figure 2/, and the above observa-
tions are easily inferred from the figure.

Problem 2: Dense gas-solid flow. The only difference between t1}i§ case and
the previous one is in the concentration of particles, which is set to rirﬁel =102
Despite the low value of the inlet disperse-phase volume fraction, the ratio of
disperse-phase and continuous-phase mass loadings is large: pld p(d) /r("> p("> = 20.
Thus the disperse phase carries most of the inertia of the mixture. The equilibrium
velocity in this case, as obtained from Eq. (25), is 4.96m/s, as compared to
4.99996 m/s in the previous case. Due to this slight difference between the inlet air
velocity and the final equilibrium velocity, the free-stream velocity may be
assumed to be nearly constant and the variation in particle velocity can be
obtained again from Eq. (26). The predicted air and particle velocity distributions
are displayed in Figure 3a. The numerical and analytical particle velocity profiles
are indistinguishable and fall on top of each other (denoted solid in the figure).
Moreover, the slight decrease in the air velocity can be easily depicted. The
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convergence paths for all algorithms and over all grid systems used are displayed in
Figures 3b6-3h. In general, a larger number of iterations is required to reach the
desired level of convergence on a given grid as compared to the dilute case, due to
the increased importance of the interphase term. The general convergence trend is
similar to that of the dilute problem, with PISO requiring the minimum and
SIMPLEST the maximum number of iterations. The SIMPLEX algorithm (Figure 3g)
is seen to require a slightly lower number of iterations on the finest grid as compared
to SIMPLE (Figure 3c¢), SIMPLEC (Figure 3d ), and SIMPLEM (Figure 3¢). The
smoothest convergence paths are for SIMPLEX and SIMPLEC. As depicted in
Figures 3f and 3h, the performance of SIMPLEST/PRIME is poor as compared
to other algorithms for the same reasons stated above.

Problem 3: Dilute bubbly flow. For the same configuration displayed in
Figure 1b, the continuous phase is considered to be water and the disperse phase
to be air. The resulting flow is denoted in }1}6 literature by bubbly flow. With the
exception of p(d) / p("> =10 and at inlet rirﬁel = 0.1, other physical properties and
inlet conditions are the same as those considered earlier. This is a strongly
coupled problem and represents a good test for the numerical procedure and
performance of the algorithms. The correct physical solution is that the bubble
and continuous-phase velocities both reach the equilibrium velocity of 4.6m/s
[Eq. (25)] in a distance too small to be correctly resolved by any of the grid
networks used. Results for this case are presented in Figure 4. Axial velocity
distribution for both water and air are displayed in Figure 4a. As expected, both
phases reach the equilibrium velocity of 4.6m/s over a very short distance from
the inlet section and remain constant afterward. The relative convergence
characteristics of the various algorithms remain the same. However, all algorithms
require a larger number of iterations as compared to the dilute gas—solid flow
case, due to the stronger coupling between the phases. Consistently, the PISO
(Figure 4b) and SIMPLEST/PRIME (Figure 4f) algorithms need the lowest and
highest number of iterations, respectively. As in the previous two cases, the
convergence attributes of SIMPLE (Figure 4c¢), SIMPLEC (Figure 4d), and
SIMPLEX (Figure 4g) are very similar, and those of SIMPLEM (Figure 4¢) are
close to them. The large difference in performance between SIMPLEST/PRIME
and the remaining algorithms is clearly demonstrated in Figure 44.

Problem 4: Dense bubbly flow. The only difference between this case and
the previous one is in the concentration of bubbles, which is set to ri(rﬁel =0.5.
With such a high value of void fraction, bubble coalescence may occur. However,
this is not accounted for here. The analytical solution is the same as in the
previous case, with the equilibrium velocity, as computed from Eq. (25), being
3m/s. As depicted in Figure 5a, the equilibrium velocity obtained numerically is
exact. Moreover, the performance of the various algorithms (Figures 5b6—5h) vary
relatively in a manner similar to what was previously discussed, and it is deemed

redundant to be repeated.

CPU time: Horizontal particle transport. The normalized CPU efforts

required by the various algorithms over all grids are depicted in Figure 6. The
charts clearly show that the CPU time increases with increasing grid density. For
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the dilute gas—solid problem (Figure 6a), it is hard to see any noticeable difference in
the CPU times for SIMPLE, SIMPLEC, SIMPLEX, and PISO. The SIMPLEM
algorithm requires slightly higher computational effort as compared to SIMPLE.
The worst performance is for SIMPLEST, which degenerates to PRIME in the
absence of diffusion and results in a fully explicit solution scheme. For the dense
gas—solid flow (Figure 6b), PISO requires the lowest computational effort (10%
less than SIMPLE on the finest mesh). Moreover, the performance of SIMPLE,
SIMPLEC, and SIMPLEX is more or less identical, while that of SIMPLEM is of
lower quality, necessitating increasingly higher computational effort with denser
meshes, and requiring about 40% more effort than SIMPLE on the fine grids (80
and 160 control volumes). The computational effort needed by SIMPLEST/
PRIME is, however, the most extensive, and is nearly 623% the one needed by
SIMPLE on the finest mesh.

The normalized CPU time of SIMPLEST/PRIME for the bubbly flow pro-
blems (Figures 6¢ and 6d ) is lower than in the previous two problems due to a higher
rate of increase in the time needed by other algorithms (the computational time of all
algorithms has increased). The relative performance of the various algorithms is
nearly as described earlier, with the time required by PISO, SIMPLE, SIMPLEC,
and SIMPLEX being on average the same. The SIMPLEST/PRIME algorithm,
however, requires nearly threefold the time needed by SIMPLE, which represents a
noticeable improvement.

Vertical Particle Transport

Here, the flow is in the vertical direction (Figure 1b), the gravitational accel-
eration is assigned the constant value of g=10m/ s%, and the flow field is extended
over a length of L =20 m. For this situation, the velocities of the two phases do not
reach an equilibrium value. Rather, the disperse phase equilibrates to a finite settling
velocity relative to the continuous phase, at which the gravitational force balances
the drag force [24]. As for the horizontal transport problems, the interparticle/
bubble forces are neglected. However, unlike the previous situation, diffusion in the
continuous phase is retained. Moreover, the interphase drag force is calculated using
Egs. (22)—(24) and the drag coefficient, Cp, is considered to be particle Reynolds
number dependent and is calculated as

24 21, Vit
Cp="2"+044  Re, =20 (27)
Re, 9

Since diffusion in the continuous phase is not neglected, MCBA-SIMPLEST and
MCBA-PRIME are expected to behave differently.

Problem 5: Dilute gas-solid flow. The material properties and boundary
conditions considered for this case are given by

(@)
Ps=100 $9=107 5, =1mm (28)
p

(d)

=100m/s V% @ = 1976 (29)

inlet

V(c)

inlet

= 10m/s r
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Dilute gas-solid flow Dense gas-solid flow
@
s £
3 i
E ]
: §
(@) (b)
Dilute bubbly flow Dense bubbly flow
3 o
g g
© (d

Figure 6. Normalized CPU times for the horizontal (a) dilute gas—solid, (») dense gas—solid, (c¢) dilute
bubbly, and (d) dense bubbly flow problem.

The large velocity boundary condition is used to ensure that the solid phase
does not exit the inlet. The predicted air and particle velocity distributions depicted
in Figure 7a are in excellent agreement with similar predictions reported in [25]. As
shown in Figures 76—7h, the decrease in the mass residuals is highly nonmonotonic,
showing a cyclic decaying behavior. The PISO algorithm (Figure 7b) seems to be the
least affected, its convergence path showing little cycling as compared to other
algorithms, and requiring the least number of iterations over all grids. It should be
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mentioned here that decreasing the underrelaxation factors could have smoothed
this cycling behavior out. This, however, would have been accomplished at the
expense of increasing the computational time. Even though the convergence is not
monotonic, the number of iterations needed to converge the solution to the desired
level is very close to that needed in the similar horizontal transport case. The con-
vergence of the SIMPLEC algorithm over the dense grid system (Figure 7d ) shows
cycles of large amplitudes due to the fact that pressure is not underrelaxed. The
performance of SIMPLEST (Figure 7f) and PRIME (Figure 7g) is very close, with
SIMPLEST requiring slightly fewer iterations due to the small implicitness intro-
duced by the diffusion of the continuous phase. However, both require on the finest
mesh almost 1,300% the number of iterations needed by SIMPLE. The number of
outer iterations needed by SIMPLEX, SIMPLEC, and SIMPLEM is very close to
that of SIMPLE, with SIMPLEM requiring the highest number of iterations.

Problem 6: Dense gas-solid flow. The material properties and boundary
conditions are similar to the previ(%us case with the exception of the particles’
volume fraction, which is set to ryy., = 10 2. Predicted air and particle velocity
profiles are displayed in Figure 8a, while mass residuals are presented in Figures
8b—8h. The convergence paths are smoother in comparison with the dilute case
due to the higher volume fraction of the disperse phase, which makes the
computations less sensitive to the intermediate level of convergence. However,
more iterations are needed in comparison with the dilute case due to the higher
mass-loading ratio. Otherwise, the convergence behavior is similar to the previous
cases, with SIMPLEST (Figure 8f) and PRIME (Figure 8¢) requiring the highest
number of iterations (SIMPLEST needs slightly fewer iterations, for the reason
stated above). The number of iterations needed by PISO, SIMPLEC, and
SIMPLEX (compare Figures 8b, 84, and 8h) is very close. The SIMPLEM
algorithm (Figure 8¢) requires a slightly higher number of iterations than
SIMPLE (Figure 8c¢).

Problem 7: Dilute bubbly flow. [n this problem, the continuous phase is
wg}er and tl&g disperse phas(% is air. With the exception of p(d)/p(") set to 107,
Viger and Vi to 1, and ry, to 0.1 at the inlet, other physical properties and
inlet conditions are the same as those considered earlier. This is a very difficult
problem to get convergence to unless the proper underrelaxation is used. It was
possible to get feasible solutions (i.e., with reasonable computational time) when
underrelaxing by inertia (i.e., through the use of false time steps). For the results
presented in Figure 9, a time step (A7) of value 10 *s is used for the velocity field
of the dispersed gas phase, Az = I's for the volume fractions, and A7 = 0.01s for
the velocity field of the liquid phase (this last value is employed with all
algorithms except PISO and PRIME, for which a value of 0.1s is used). Also, to
accelerate convergence, it is found advantageous not to underrelax the pressure
field. As expected, the correct velocity fields are predicted (Figure 9a). All
algorithms require more iterations compared to the previous problems. Moreover,
convergence flattens after a certain level because of the large underrelaxation used
for the bubble-phase momentum equations. The performance of PISO (Figure 9b)
is totally unexpected, requiring more iterations than SIMPLE (Figure 9c¢),
SIMPLEC (Figure 94), SIMPLEM (Figure 9¢), and SIMPLEX (Figure 9/4). The
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decrease in the rate of convergence as the residuals are decreased is very clear, with
SIMPLE, SIMPLEC, and SIMPLEX, which show a sudden change in their
convergence slopes. The convergence histories of these algorithms are nearly
identical. The explicitness introduced in PISO (Figure 9b), SIMPLEST (Figure
91), and PRIME (Figure 9¢) causes an increase in the number of iterations and a
highly nonmonotonic convergence behavior and seems to be undesirable in
laminar bubbly flows. The rate of convergence of the SIMPLEM algorithm
(Figure 9e¢) is nearly constant and does not show any change in slope as the
computations progress.

Problem 8: Dense bubbly flow. with the exception of setting ri(n‘fil to 0.5, the

physical situation, material properties, and boundary conditions are the same as in
the previous problem. Results for the problem are presented in Figure 10. The
predicted liquid and gas velocity distributions, which are in excellent accord with
published data, are depicted in Figure 10a. The trend of convergence (Figures
106—-10A) is very similar to the dilute case with the following differences. With
PISO and PRIME, in order to drive residuals to the desired level of convergence,
the SMART scheme had to be blended with the UPWIND scheme. The
percentage increased from 15% on the coarsest grid to 50% on the finest grid.
Moreover, mass residuals reached the desired convergence level long before the
momentum residuals. Thus, the numbers of iterations needed by PISO and
PRIME are much greater than the ones presented in Figures 106 and 10g. In
addition, to stabilize SIMPLEST on the finest grid, the SMART scheme had to
be blended with 20% of the upwind value. The difficulties faced by PISO,
PRIME, and SIMPLEST are attributed to the additional explicitness introduced
as a result of using a HR scheme implemented via a deferred-correction strategy
[26]. This deferred-correction technique has less influence on the performance of
the remaining algorithms, due to their higher implicitness.

CPU time: Vertical particle transport. The normalized CPU times for the
vertical particle transport problems are displayed in Figure 11. As in the
horizontal case, the CPU time increases with increasing grid density. For the gas—
solid flow problems (Figures 11a and 11b), the relative performance of the various
algorithms is similar for both dilute and dense concentration of particles. For the
dilute case (Figure 1la), the efficiency of SIMPLEST is slightly better than
PRIME; both, however, are about five times more expensive than all other
algorithms, whose performance is very comparable. For the dense case (Figure
116), SIMPLEX requires the least computational time, followed by SIMPLEC
and SIMPLE. Again, the computational effort needed by SIMPLEST and
PRIME is much higher (about 700% the time needed by SIMPLEX on the finest
grid). For the vertical bubbly flows, a noticeable change in the normalized time
chart (Figures 11c¢ and 11d) is depicted, with the performance of SIMPLEST
showing a good improvement and that of PISO deteriorating. For the dilute
bubbly case (Figure 1lc¢), the CPU times needed by SIMPLE, SIMPLEC, and
SIMPLEX are consistently very close. For a given grid, however, the largest CPU
time consumed is only double the lowest CPU time needed. For the dense bubbly
case (Figure 11d), even with the blending strategy, PISO and PRIME still need
high computational time to decrease the residuals to the desired level. The
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SIMPLEST algorithm requires the least computational effort among the three
algorithms on the finest grid when blended with the upwind scheme. The CPU
times consumed by SIMPLE, SIMPLEC, and SIMPLEX are consistently very
close to each other.

By comparing the behavior of the various algorithms in all problems, it is clear
that the performance of SIMPLE, SIMPLEC, and SIMPLEX is consistent and
requires, on average, the least computational effort. Even though in some cases PISO

Vertical dilute gas-solid flow Vertical dense gas-solid flow
i
® o
£ ] £
K i ©
g ] g
£ ] E
S | £
z | Il 5
v 2
(@ (b)
Vertical dilute bubbly flow Vertical dense bubbly flow
g g
= =
H ]
w ®
;
2 2

© (d)

Figure 11. Normalized CPU times for the vertical (a) dilute gas—solid, (b) dense gas—solid, (c¢) dilute
bubbly, and (d) dense bubbly flow problem.
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consumes less CPU time, its performance for upward bubbly flows is not satisfac-
tory. The performance of SIMPLEM is consistent, but demands more CPU time
than SIMPLE, SIMPLEC, and SIMPLEX. The performance of the SIMPLEST
algorithm was comparable to SIMPLE for upward bubbly flows only. The PRIME
algorithm is the most expensive to use on all grids and for all physical situations
presented here. Most important, however, is the fact that all these algorithms can be
used to predict multiphase (in this case two-phase) flows.

CLOSING REMARKS

Seven MCBA algorithms for the simulation of incompressible multiphase flows
were implemented, tested, and their relative performance assessed by solving a
variety of one-dimensional two-phase flow problems. For each test problem, solu-
tions were generated on a number of grid systems. With all algorithms, the nor-
malization procedure was essential to improve the convergence behavior. Results
obtained demonstrated that all MCBA multiphase algorithms are capable of dealing
with a wide variety of incompressible multiphase flow problems. The convergence
history plots and CPU times presented indicated similar performances for SIMPLE,
SIMPLEC, and SIMPLEX. The PISO, SIMPLEM, and SIMPLEST algorithms
were in general more expensive than SIMPLE. In general, the PRIME algorithm was
the most expensive to use.
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