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  F. Moukalled · L. Mangani · M. Darwish  
  The Finite Volume Method in Computational Fluid Dynamics  
  An Advanced Introduction with OpenFOAM® and Matlab ®

This textbook explores both the theoretical foundation of the Finite Volume Method 
(FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will 
discover a thorough explanation of the FVM numerics and algorithms used in the 
simulation of incompressible and compressible fluid flows, along with a detailed 
examination of the components needed for the development of a collocated 
unstructured pressure-based CFD solver. Two particular CFD codes are explored. The 
first is uFVM, a three-dimensional unstructured pressure-based finite volume academic 
CFD code, implemented within Matlab®. The second is OpenFOAM®, an open source 
framework used in the development of a range of CFD programs for the simulation of 
industrial scale flow problems. 

With over 220 figures, numerous examples and more than one hundred exercises on 
FVM numerics, programming, and applications, this textbook is suitable for use in an 
introductory course on the FVM, in an advanced course on CFD algorithms, and as a 
reference for CFD programmers and researchers.
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Transient, Source Terms 
and Relaxation 

Chapter 14 to review
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Source Term Linearization
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Relaxation



Under-Relaxation

• For non-linear problems, a common solution procedure is 
Picard Iteration
‣ Guess Φ
‣ Find coefficients ap, anb and bp
‣ Use Iterative solver to find new Φ
‣ Repeat until convergence

• No Guarantee to converge for strong non-linearities

• Control the amount of Φ from iteration to iteration using 
under-relaxation



Relaxation
• At each iteration, at each cell, a new value for variableφ in cell P 

can then be calculated from that equation.

• It is common to apply relaxation as follows:

• Here α is the relaxation factor :

• α < 1 is underrelaxation. This may slow down speed of 
convergence but increases the stability of the calculation, i.e. it 
decreases the possibility of divergence or oscillations in the 
solutions.

• α = 1 corresponds to no relaxation. One uses the predicted value 
of the variable.

φP
new, used = φP

old + λ(φP
new, predicted −φP

old )



Recommendations
• Underrelaxation factors are there to suppress oscillations in 

the flow solution that result from numerical errors. 

• Underrelaxation factors that are too small will significantly 
slow down convergence, sometimes to the extent that the 
user thinks the solution is converged when it really is not.

• The recommendation is to always use underrelaxation 
factors that are as high as possible, without resulting in 
oscillations or divergence.

• Typically one should stay with the default factors in the solver.

• When the solution is converged but the pressure residual is 
still relatively high, the factors for pressure and momentum 



Under-Relaxation
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Consider Φ’ the correction to field Φ, from one iteration to another

We want to control the amount of change introduced

Where λ is some factor with 0<λ<1

For the discrete equation
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False Time-Step
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Relation between
Transient and URF Factor
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Implicit Relaxation
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Convergence Criteria



Convergence

• The iterative process is repeated until the change in the 
variable from one iteration to the next becomes so small 
that the solution can be considered converged.

• At convergence:
‣ All discrete conservation equations (momentum, energy, etc.) are obeyed in 

all cells to a specified tolerance.
‣ The solution no longer changes with additional iterations.
‣ Mass, momentum, energy and scalar balances are obtained.

• Residuals measure imbalance (or error) in conservation 
equations.

• The absolute residual at point P is defined as:

RP = aPφP − anbφnbnb∑ − b



• Residuals are usually scaled relative to the local value of the property 
φ in order to obtain a relative error:

• They can also be normalized, by dividing them by the maximum 
residual that was found at any time during the iterative process.

• An overall measure of the residual in the domain is:

R =
aCφC + aNφN∑ − bC

aCφ
⊗
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∑
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aCφ
⊗



Recommendations

• Always ensure proper convergence before using a solution: 
unconverged solutions can be misleading!!

• Solutions are converged when the flow field and scalar fields 
are no longer changing.

• Determining when this is the case can be difficult.

• It is most common to monitor the residuals.



Conclusion


