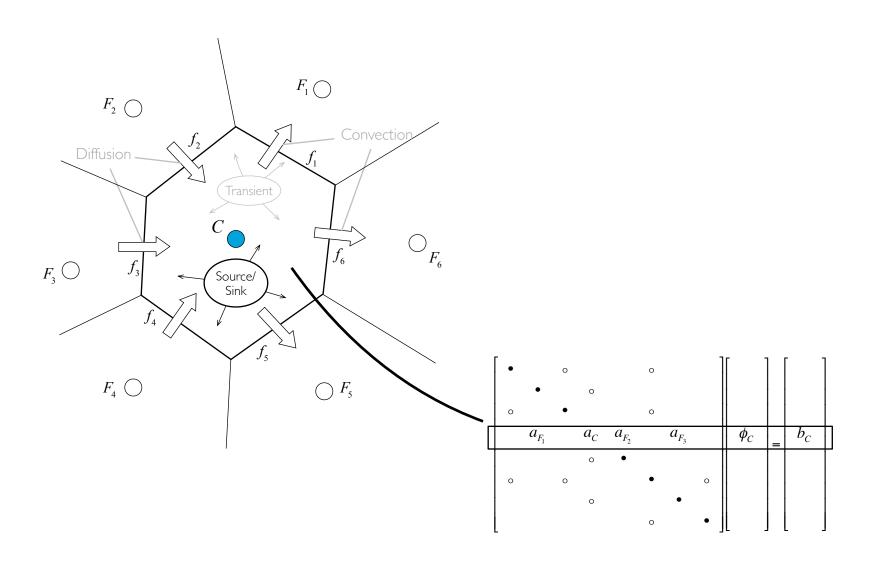


Transient, Source Terms and Relaxation

Chapter 14 to review

Source Term Discretization

Source Term



Source Term Linearization

$$a_{P}\phi_{P}^{(n+1)} + \sum_{NB(P)} a_{NB}\phi_{NB}^{(n+1)} = QV_{P}$$

$$Q = Q(\phi)$$

$$Q^{(n+1)} = Q^{(n)} + \frac{\partial Q(\phi)}{\partial \phi} (Q^{(n+1)} - Q^{(n)})$$

$$= Q^{(n)} - \frac{\partial Q(\phi)}{\partial \phi} Q^{(n)} + \frac{\partial Q(\phi)}{\partial \phi} Q^{(n+1)} - V_{P}$$
Previous iteration value Current iteration value

$$\left(a_{P} - \frac{\partial Q(\phi)}{\partial \phi} V_{P}\right) \phi_{P}^{(n+1)} + \sum_{NB(P)} a_{NB} \phi_{NB}^{(n+1)} = \left(\phi^{(n)} - \frac{\partial Q(\phi^{(n)})}{\partial \phi} \phi^{(n)}\right) V_{P}$$

Example

Solution

Consequence

Relaxation

Under-Relaxation

- For non-linear problems, a common solution procedure is Picard Iteration
 - Guess Φ
 - Find coefficients ap, and and bp
 - Use Iterative solver to find new Φ
 - Repeat until convergence
- No Guarantee to converge for strong non-linearities
- ullet Control the amount of ullet from iteration to iteration using under-relaxation

Relaxation

- At each iteration, at each cell, a new value for variable ϕ in cell P can then be calculated from that equation.
- It is common to apply relaxation as follows:

$$\phi_P^{new, used} = \phi_P^{old} + \lambda(\phi_P^{new, predicted} - \phi_P^{old})$$

- Here α is the relaxation factor:
- α < I is underrelaxation. This may slow down speed of convergence but increases the stability of the calculation, i.e. it decreases the possibility of divergence or oscillations in the solutions.
- α = I corresponds to no relaxation. One uses the predicted value of the variable.

Recommendations

- Underrelaxation factors are there to suppress oscillations in the flow solution that result from numerical errors.
- Underrelaxation factors that are too small will significantly slow down convergence, sometimes to the extent that the user thinks the solution is converged when it really is not.
- The recommendation is to always use underrelaxation factors that are as high as possible, without resulting in oscillations or divergence.
- Typically one should stay with the default factors in the solver.
- When the solution is converged but the pressure residual is still relatively high, the factors for pressure and momentum

Under-Relaxation

Consider Φ ' the correction to field Φ , from one iteration to another

$$\phi = \phi^{\bullet} + \phi'$$

We want to control the amount of change introduced

$$\phi = \phi^{\bullet} + \lambda \phi'$$

$$= \phi^{\bullet} + \lambda \left(\phi^{new \ iteration} - \phi^{\bullet} \right)$$

Where λ is some factor with $0 < \lambda < 1$

For the discrete equation
$$a_{C}\phi_{C} + \sum_{NB(C)} a_{NB}\phi_{NB} = b_{P}$$
 The updated Φ value could be written
$$\phi_{C} = \frac{\sum_{NB(P)} a_{NB}\phi_{NB}}{a_{C}}$$

$$a_{C} \leftarrow \frac{a_{C}}{\lambda}$$

$$b_{C} \leftarrow b_{C} + \frac{(1-\lambda)}{\lambda} a_{C} \phi_{C}^{*}$$

$$\phi_C = \phi_C^* + \lambda \left(\frac{b_C - \sum_{NB(C)} a_{NB} \phi_{NB}}{a_C} - \phi_C^* \right)$$

$$\phi_C = \phi_C^* + \lambda \left(\frac{b_C - \sum_{NB(C)} a_{NB} \phi_{NB}}{a_C} - \phi_C^* \right) \qquad \frac{a_C}{\lambda} \phi_C + \sum_{NB(C)} a_{NB} \phi_{NB} = b_C + \frac{(1 - \lambda)}{\lambda} a_C \phi_C^*$$

False Time-Step

$$\frac{\partial(\rho\phi)}{\partial t} + \nabla \cdot (\rho \mathbf{v}\phi) = \nabla \cdot (\Gamma \nabla \phi) + S(\phi, ...)$$

$$\frac{\rho V}{\Delta t} (\phi_P - \phi_P^{old}) \to \frac{\rho V}{\Delta t} (\phi_P - \phi_P^{\bullet})$$

$$(a_P + a_P^{\circ}) \phi_P + \sum_{NB(P)} a_{NB} \phi_{NB} = b_P + a_P^{\circ} \phi_P^{\bullet}$$

$$a_P^{\circ} = \frac{\rho V}{\Delta t}$$

Relation between Transient and URF Factor

$$a_{P}\phi_{P} = \lambda \left(b_{P} - \sum_{NB(P)} a_{NB}\phi_{NB}\right) + (1 - \lambda)a_{P}\phi_{P}^{\bullet}$$

$$\lambda = \frac{E}{E + 1}$$

$$a_P \phi_P = \frac{E}{1+E} \left(b_P - \sum_{NB(P)} a_{NB} \phi_{NB} \right) + \left(1 - \frac{E}{1+E} \right) a_P \phi_P^{\bullet}$$

$$a_{P}\left(1+\frac{1}{E}\right)\phi_{P} + \sum_{NB(P)} a_{NB}\phi_{NB} = b_{P} + \frac{1}{E}a_{P}\phi_{P}^{\bullet}$$

$$\Delta t = E \Delta t^{\bullet}$$

$$\Delta t^{\bullet} = \frac{\rho \Delta V}{\Delta t}$$

Implicit Relaxation

$$\begin{split} a_{P}\phi_{P} + \sum_{NB(P)} a_{NB}\phi_{NB} &= \alpha b_{P} + \left(1 - \alpha\right)b_{P}^{\bullet} \\ a_{P}\phi_{P} + \sum_{NB(P)} a_{NB}\phi_{NB} &= \alpha b_{P} + \left(1 - \alpha\right)\left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right) \\ a_{P}\phi_{P} + \sum_{NB(P)} a_{NB}\phi_{NB} &= \alpha b_{P} + \left(1 - \alpha\right)\left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right) \\ a_{P}\left(\phi_{P}^{\bullet} + \phi_{P}^{\prime}\right) + \sum_{NB(P)} a_{NB}\left(\phi_{NB}^{\bullet} + \phi_{NB}^{\prime}\right) &= b_{P} \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \sum_{NB(P)} a_{NB}\left(\phi_{NB}^{\bullet} + \phi_{NB}^{\prime}\right)\right) + \left(1 - \alpha\right)a_{P}\phi_{P}^{\bullet} - a_{P}\phi_{P}^{\bullet} \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= a\left(b_{P} - \sum_{NB(P)} a_{NB}\left(\phi_{NB}^{\bullet} + \phi_{NB}^{\prime}\right)\right) + \left(1 - \alpha\right)a_{P}\phi_{P}^{\bullet} - a_{P}\phi_{P}^{\bullet} \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= a\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= RES \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha b_{P} + \left(1 - \alpha\right)\left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right) - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime}\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b_{P} - \left(a_{P}\phi_{P}^{\bullet} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\bullet}\right)\right) \\ a_{P}\phi_{P}^{\prime} + \sum_{NB(P)} a_{NB}\phi_{NB}^{\prime} &= \alpha\left(b$$

Convergence Criteria

Convergence

- The iterative process is repeated until the change in the variable from one iteration to the next becomes so small that the solution can be considered converged.
- At convergence:
 - All discrete conservation equations (momentum, energy, etc.) are obeyed in all cells to a specified tolerance.
 - The solution no longer changes with additional iterations.
 - Mass, momentum, energy and scalar balances are obtained.
- Residuals measure imbalance (or error) in conservation equations.
- The absolute residual at point P is defined as:

$$R_P = \left| a_P \phi_P - \sum_{nb} a_{nb} \phi_{nb} - b \right|$$

• Residuals are usually scaled relative to the local value of the property ϕ in order to obtain a relative error:

$$R_{C,scaled} = \frac{\left| a_C \phi_C + \sum a_N \phi_N - b_C \right|}{\left| a_C \phi^{\otimes} \right|}$$

- They can also be normalized, by dividing them by the maximum residual that was found at any time during the iterative process.
- An overall measure of the residual in the domain is:

$$R = \sum_{all\ cells} \frac{\left| a_C \phi_C + \sum a_N \phi_N - b_C \right|}{\left| a_C \phi^{\otimes} \right|}$$

Recommendations

- Always ensure proper convergence before using a solution: unconverged solutions can be misleading!!
- Solutions are converged when the flow field and scalar fields are no longer changing.
- Determining when this is the case can be difficult.
- It is most common to monitor the residuals.

Conclusion