American University of Beirut Analysis Comprehensive Exam

Spring 2019 Time allowed: 2h00

Part I: Real Analysis

We denote by \mathbb{R}^+ the set $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ of positive real numbers.

Exercise 1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous at a point x_0 . Using the definition, show that the product fg is also continuous at x_0 .

Exercise 2. Let $\{a_n\}$ be a real sequence.

- (a) State the Cauchy criterion for the convergence of a_n in \mathbb{R} .
- (b) Show that if a_n is convergent, then it satisfies the Cauchy criterion.

Problem 1. Let $\{a_n\}$, $\{b_n\}$ be two real sequences, and define $c_n = a_n - b_n$, $d_n = a_n^2 - b_n^2$. Which of the following statements are true? Give either a proof or a counterexample.

- (a) If $\lim_{n\to\infty}c_n=0$ then $\lim_{n\to\infty}d_n=0$. (b) If a_n is bounded and $\lim_{n\to\infty}c_n=0$ then $\lim_{n\to\infty}d_n=0$. (c) Assume a_n is increasing and b_n is decreasing. If c_n is bounded then it is convergent.
- (d) If the series $\sum_{n=0}^{\infty} c_n$ converges absolutely and a_n is bounded then the series $\sum_{n=0}^{\infty} d_n$ converges absolutely.

Problem 2.

Let $f: [-1,1] \to \mathbb{R}$ be continuous on [-1,1] and twice differentiable on (-1,1).

- (a) Suppose first that f(-1) = f(0) = f(1). Using the mean value theorem repeatedly, show that there exists $\xi \in (-1,1)$ such that $f''(\xi) = 0$.
- (b) Without the assumption of (a), find the equation $g(x) = a_2x^2 + a_1x + a_0$ of the parabola passing through (-1, f(-1)), (0, f(0)) and (1, f(1)). When does it degenerate into a straight line?
- (c) Prove the following "second order version of the mean value theorem": there exists a point $\xi \in (-1, 1)$ such that $f''(\xi) = (f(1) - f(0)) - (f(0) - f(-1))$. (You may want to consider the function h(x) = f(x) - g(x).

Problem 3.

Let $f: \mathbb{R} \to \mathbb{R}$ be a positive continuous function such that $\lim_{x \to +\infty} f(x) = 0$. For $n \in \mathbb{N}$, define $g_n(x) = f(x+n)$. Which of the following statements are true? Give either a proof or a counterexample.

- (a) $g_n \to 0$ as $n \to \infty$, pointwise on \mathbb{R} .
- (b) $g_n \to 0$ as $n \to \infty$, uniformly on \mathbb{R} .
- (c) $g_n \to 0$ as $n \to \infty$, uniformly on [-1, 1].
- (d) $\int_{-1}^{1} g_n(t)dt \to 0$ as $n \to \infty$.
- (e) $(g_n)^{1/n} \to 0$ as $n \to \infty$, pointwise on \mathbb{R} .

Part II: Complex Analysis

We denote by $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$ the unit disc and by $\partial\mathbb{D}=\{z\in\mathbb{C}\mid |z|=1\}$ its boundary. For $a\in\mathbb{C}$ and r>0, we set $D(a,r)=\{z\in\mathbb{C}\mid |z-a|< r\}$.

Exercise 3. Evaluate the following integrals

- (a) $\int_{\gamma} (12z^2 6iz)dz$ where the path γ is composed of two segments $[0,1] \cup [1,1+i]$.
- (b) $\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx$ (explain first why that integral is convergent).

Exercise 4.

- (a) Let $a \in \mathbb{C}$ and r > 0. Show that any holomorphic function $f : \mathbb{C} \to \mathbb{C} \setminus \overline{D(a,r)}$ is constant.
- (b) Let f be a nonconstant entire function (i.e. holomorphic on \mathbb{C}). Show that $f(\mathbb{C})$ is dense in \mathbb{C} .
- (c) Find a nonconstant entire function such that $f(\mathbb{C}) \neq \mathbb{C}$.

Exercise 5. Let Ω be a connected open set in $\mathbb C$ such that $\overline{\mathbb D} \subset \Omega$. Let $f \in \mathcal O(\Omega)$ such that f(0) = 1 and |f(z)| > 1 for all $z \in \partial \mathbb D$. Prove that f admits a zero in $\mathbb D$.