American University of Beirut

Analysis Comprehensive Exam

Spring 2018 Time allowed: 3h00

Part I: Real Analysis

We denote by \mathbb{R}^+ the set $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ of positive real numbers.

Exercise 1. Prove using the $\varepsilon - \delta$ defintion of continuity that the function f defined on \mathbb{R} by $f(x) = x^2$ is continuous on \mathbb{R} .

Exercise 2. Let $K \subset \mathbb{R}$ be a compact subset and let $f: K \to \mathbb{R}$ be a continuous function. Prove that f is uniformly continuous.

Exercise 3.

- (a) Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Assume that $f\left(\frac{3}{4}\right)>0$. Prove that there is $\delta>0$ such that $\int_{\frac{3}{4}-\delta}^{\frac{3}{4}+\delta}f(x)dx>0$.
- (b) Is the previous statement still true in case f is only assumed to be Riemann integrable?

Exercise 4. Let f be a differentiable function on [1,3] satisfying $-1 \le f'(x) \le 2$ for all $x \in [1,3]$ and f(3) = 0. Can we have f(1) = -8?

Exercise 5. Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Prove that f([a,b]) is a compact interval.

Problem 1. Recall that \mathbb{R}^+ is the set $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ of positive real numbers. For any subset $A \subset \mathbb{R}^+$ we define

$$A' = \{ |x - y| : x, y \in A, x \neq y \}.$$

Note that by definition $A' \subset \mathbb{R}^+$.

- (a) If $\sup A$ is finite, show that $\sup A' \leq \sup A$.
- (b) If $\sup A$ is finite, show that $\sup A' = \sup A$ if and only if $\inf A = 0$.
- (c) Find a set $A \subseteq \mathbb{R}^+$ such that A' = A.
- (d) Suppose that $\inf A = 0$, $\sup A = +\infty$ and A' = A. Does it follow that $A = \mathbb{R}^+$?

Problem 2. Recall that when (X,d) is a metric space, a map $f:X\to X$ is a *contraction* if there exists a constant $0\le c<1$ such that $d(f(x),f(y))\le cd(x,y)$ for all $x,y\in X$.

Let S be the set of all continuous functions $f:[0,1]\to[0,1]$. Given $f\in S$, define a new function Tf as

$$(Tf)(x) = \int_0^{f(x)} f(t)dt.$$

- (a) Show that $Tf \in S$ for all $f \in S$.
- (b) Let $f_0 \in S$ and define $f_1 = Tf_0, f_2 = Tf_1, \dots, f_{n+1} = Tf_n$. Show that the sequence $\{f_n\}$ converges uniformly to either (the constant function) 1 or 0.
- (c) Find the function(s) $f \in S$ such that Tf = f. Is T a contraction on S endowed with the distance $d(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$?

Problem 3. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a continuous function, and suppose that $|f(x)| \leq \frac{1}{1+|x|}$ for all $x \in \mathbb{R}^+$.

- (a) Show that the series $\sum_{n\geq 0} f(2^n x)$ converges to a function g(x).
- (b) Show that g is continuous.
- (c) Show that f(x) = g(x) g(2x).

Problem 4. Let $f:(0,\infty)\to\mathbb{R}$ be a differentiable function. Define

$$g(x) = \int_{1}^{x} x f(t) dt$$

and

$$h(x) = \int_{1}^{\frac{1}{x}} f(t)dt.$$

Prove that the derivative of g is decreasing if and only the one of h is.

Part II: Complex Analysis

We denote by $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$ the unit disc and by $\partial\mathbb{D}=\{z\in\mathbb{C}\mid |z|=1\}$ its boundary.

Exercise 6. Evaluate the following integrals

(a)
$$\int_{\partial \mathbb{D}} \frac{\cos(z)}{z(z-2)^2} dz$$

(a) $\int_{\partial\mathbb{D}} \frac{\cos(z)}{z(z-2)^2} dz$ (b) $\int_{\partial D(0,2)} \frac{2\cos(z)}{z(z-1)} dz \text{ where } \partial D(0,2) \text{ denotes the boundary of the disc centered at } 0 \text{ and of radius } 2.$

(c)
$$\int_{\partial \mathbb{D}} \frac{(1+z-e^z)\cos z}{z^2} dz$$

Exercise 7. Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function satisfying $f(\frac{1}{n}) = \frac{1}{n^2}$ for all positive interger n. Determine f.

Exercise 8.

By integrating the function $e^{\frac{1}{z}}$ over the boundary of the unit disc find the values of the following two integrals:

$$\int_{0}^{2\pi} e^{\cos t} cos(t-\sin t) dt \text{ and } \int_{0}^{2\pi} e^{\cos t} sin(t-\sin t) dt$$