American University of Beirut Analysis Comprehensive Exam April 2015, Duration: 90 min.

Part I: Real Analysis

Instructions: Solve any two of the problems 1, 2, 3 and any two of the problems 4,5,6,7.

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$. Prove that there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \leq f(x)$ for all $x \in \mathbb{R}$.

Problem 2. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions differentiable at x_0 . Prove that fg is differentiable at x_0 and that $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.

Problem 3. Compute the volume of the solid region in \mathbb{R}^3 bounded by the surface S defined by $z=2\sqrt{x^2+y^2}, x\geq 0, y\geq 0, 0\leq z\leq 1.$

Problem 4. Let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{C} . We define a sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ by

$$\sigma_n := \frac{1}{n+1} \sum_{k=0}^n a_k.$$

- (a) Assume that $\{a_k\}_{k\in\mathbb{N}}$ converges to a limit ℓ . Prove that $\{\sigma_n\}_{n\in\mathbb{N}}$ converges to ℓ (<u>hint:</u> start by considering the case $\ell=0$).
- (b) Assume that $\{\sigma_n\}_{n\in\mathbb{N}}$ converges to ℓ . Prove or disprove (via a counterexample) that $\{a_k\}_{k\in\mathbb{N}}$ must converge to ℓ .

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function.

(a) Supose that f is twice differentiable at x_0 . Prove that

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0).$$

(b) Assume that the limit of $\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}$ as $h\to 0$ exists. Prove or disprove (via a counterexample) that f is twice differentiable at x_0 .

Problem 6. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of functions defined by $f_n(x)=\frac{nx^2}{1+nx}$ if $x\geq 0$ and by $f_n(x)=\frac{nx^3}{1+nx^2}$ if x<0.

- (a) Prove that f_n is of class C^1 for all $n \in \mathbb{N}$.
- (b) Study the pointwise and uniform convergence of $\{f_n\}_{n\in\mathbb{N}}$ on \mathbb{R} .
- (c) Study the pointwise and uniform convergence of $\{f'_n\}_{n\in\mathbb{N}}$ on \mathbb{R} and $\mathbb{R}\setminus\{0\}$.

Problem 7.

(a) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x,y) = (x^2 - y^2, 2xy)$. By direct parametrization, compute the following line integral

$$\int_{\mathbb{S}^1} (x^2 - y^2) \mathrm{d}x - 2xy \mathrm{d}y,$$

where $\mathbb{S}^1=\{(x,y)\in\mathbb{R}^2; x^2+y^2=1\}$ is the unit circle in \mathbb{R}^2 .

(b) Let $f = (u, v) : D \to \mathbb{R}^2$ be a function of class \mathcal{C}^1 defined on an open set $D \subset \mathbb{R}^2$. Assume that f satisfies $\frac{\partial u}{\partial u} = -\frac{\partial v}{\partial x}$. Compute the following line integral by using Green's theorem

$$\int_{\partial K} u \mathrm{d}x - v \mathrm{d}y,$$

where $K \subset D$ is a compact subset with smooth boundary.

Part II: Complex Analysis

<u>Instructions:</u> Solve the problem 8 and one of the problems 9,10.

Problem 8.

- (a) Let P(x)/Q(x) be a rational function with $d = \deg P \deg Q \ge 2$ and with no poles on $(-\infty, +\infty)$.
 - i. Prove that the improper integral $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$ exists.
 - ii. Prove that

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{\Im z_j > 0} Res(P/Q, z_j),$$

where $Res(P/Q, z_j)$ is the residue of P/Q at the pole z_j .

(b) Compute the integral $\int_{-\infty}^{+\infty} \frac{1}{1+x^4} dx$.

Problem 9.

- (a) Let f be a holomorphic function on a nonempty open connected set $D \subset \mathbb{C}$. Let $z_0 \in D$ be a local minimum of |f|. Prove that either $f(z_0) = 0$ or f is constant on D.
- (b) Let c be a positive real number. Prove or disprove that there exists a holomorphic function f on the unit disc $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}$ such that $|f(z)|^2 = |z|^2 + c$ for all $z \in \mathbb{D}$.

Problem 10.

- (a) Let N>0 be an integer. Find all the entire (holomorphic on $\mathbb C$) functions f satisfying $|f(z)|\leq 1+|z|^N$ for all $z\in\mathbb C$.
- (b) Find all the entire functions f satisfying $|f(z)| = |z|^2$ for all $z \in \mathbb{C}$.