American University of Beirut Analysis Comprehensive Exam Fall 2020-2021

Time allowed: 2h30

Part I: Real Analysis

Exercise 1. Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that

$$\int_0^x f(t)dt = \int_x^1 f(t)dt$$

for all $x \in [0, 1]$. Show that f is identically zero.

Exercise 2. Let $\{a_n\}$ be a non-negative sequence. Assume that $\limsup n^2 a_n$ is finite. Show that $\sum_{n=1}^{\infty} a_n$ converges.

Remark: If you are not familiar with limsup, show that if the sequence n^2a_n converges then $\sum a_n$ converges for partial credits.

Exercise 3. Let $f:[a,b]\to\mathbb{R}$ be a continuous function.

- (1) Suppose that for all $x \in [a, b]$ there exists $y \in [a, b]$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$. Show that there exists $c \in [a, b]$ such that f(c) = 0.
- (2) Is the same result true if we replace [a, b] with (a, b)? Prove it if it is true, or give a counterexample if false.

Problem 1.

- (1) Suppose that $\{f_n\}$ is a sequence of bounded real functions converging uni-
- formly on a set $A \subset \mathbb{R}$ to $f: A \to \mathbb{R}$. Show that f is bounded. (2) Let $g_n(x) = \frac{x^n}{1+x^n}$. Show that the series $\sum_{n=0}^{\infty} g_n$ converges pointwise on
- (3) For all 0 < a < 1, show that $\sum_{n=0}^{\infty} g_n$ converges uniformly on [0, a]. (4) Let $g(x) = \sum_{n=0}^{\infty} g_n(x)$. Show that $g(x) \to +\infty$ as $x \to 1^-$. (*Hint*: compare to a geometric series).
 - (5) Deduce whether the series $\sum_{n=0}^{\infty} g_n$ converges uniformly on [0,1).
- (6)* Assume that a sequence of continuous functions $h_n:[a,b]\to\mathbb{R}$ converges uniformly on (a,b) to a function h. Does it follow that h extends continuously to

Problem 2. Let $\{a_n\}, \{b_n\}$ be two real sequences and define

$$\sigma_n = \frac{1}{n+1} \sum_{j=0}^n a_j b_{n-j}.$$

- (1) Suppose b_n is bounded and $\lim_{n\to\infty} a_n = 0$. Show that $\lim_{n\to\infty} \sigma_n = 0$. (2) Give an example of sequences a_n and b_n such that $\lim_{n\to\infty} a_n = 0$, b_n is unbounded, and σ_n does not converge to 0.
- (3) Suppose $\lim_{n\to\infty} a_n = \alpha \in \mathbb{R}$, $\lim_{n\to\infty} b_n = \beta \in \mathbb{R}$. Show that $\lim_{n\to\infty} \sigma_n = \alpha\beta$. (*Hint*: define $a'_j = a_j \alpha$ and replace a_j by $a'_j + \alpha$).

Problem 3.

(1) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0, and let m = f'(0). Show that for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$(m - \epsilon)x < f(x) < (m + \epsilon)x$$
 for $0 < x < \delta$ and $(m + \epsilon)x < f(x) < (m - \epsilon)x$ for $-\delta < x < 0$

(that is, the graph of f locally lies between the lines of slope $m - \epsilon$ and $m + \epsilon$).

Given two real functions f, g, their join $f \wedge g$ is defined as $(f \wedge g)(x) = \max\{f(x), g(x)\}$. In what follows, $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable functions with f(0) = g(0) = 0.

- (2) Suppose f'(0) > g'(0). Show that there exists $\eta > 0$ such that $(f \wedge g)(x) = f(x)$ for $0 < x < \eta$, $(f \wedge g)(x) = g(x)$ for $-\eta < x < 0$.
- (3) Suppose $f \wedge g$ is differentiable at 0. Show that f'(0) = g'(0).
- (4) Suppose f'(0) = g'(0). Show that $f \wedge g$ is differentiable at 0.
- (5) Find two non-differentiable functions $h, k : \mathbb{R} \to \mathbb{R}$ such that $h \wedge k$ is differentiable.

Part II: Complex Analysis

Exercise 4. We will denote by $\Delta_r \subset \mathbb{C}$ the (open) disc of center 0 and radius r > 0, and by $b\Delta_r$ its boundary.

- (1) Assume that f is holomorphic on a neighborhood of the closed annulus $\overline{\Delta}_2 \setminus \Delta_1$, and suppose that $|f(z)| \leq 2$ for $z \in b\Delta_2$, |f(z)| = 1 for $z \in b\Delta_1$. Show that $|f(z)| \leq |z|$ for $z \in \overline{\Delta}_2 \setminus \Delta_1$. (Hint: consider the function g(z) = f(z)/z).
- (2) Suppose that the function f from part (1) is actually holomorphic on a neighborhood of $\overline{\Delta}_2$, and f(0) = 0. Show that $f(z) = e^{i\theta}z$ for a fixed $\theta \in \mathbb{R}$.

Problem 4.

- (1) Show that $|e^w| = e^{\operatorname{Re} w}$ for all $w \in \mathbb{C}$.
- (2) Consider the meromorphic function $f(z) = \frac{e^{iz}}{z^2+1}$, and for R > 0 let C_R be the upper half of the circle of center 0 and radius R > 1. Show that $|f(z)| \le 1/(R^2-1)$ for all $z \in C_R$.
 - (3) Apply the residue theorem to the function f in part (1) to compute

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} dx.$$