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Part I: Real Analysis

Exercise 1. Suppose that f : R → R is differentiable at a point x0 and
f(x0) 6= 0. Show that g = 1/f is differentiable at x0, and find (with proof) the
formula for g′(x0).

Exercise 2. Let f : R→ R be a real valued function.
(a) Show that if f is continuous at x0 ∈ R then for every real sequence {xn},

xn → x0 ⇒ f(xn)→ f(x0) as n→∞.
(b) Suppose that f is not continuous at x0. Show that there is a real sequence

{xn} such that xn → x0 as n→∞ but f(xn) does not converge to f(x0).

Exercise 3. Let {In} be a sequence of intervals of R with the property that
In+1 ⊂ In for all n ∈ N.

(a) Suppose that each In is closed and bounded. Show that there exists a
point p ∈ R such that p ∈ In for all n ∈ N.

(b) Is the same conclusion as in (a) valid if each In is an open interval?
What about if each In is an unbounded interval of the form [a,+∞).

Problem 1. Define fn : [1,+∞)→ R as fn(x) =
(
e
n

)n (log(x))n

x .
(a) Show that the sequence {fn}n≥1 converges pointwise to a function f :

[1,+∞)→ R, and find f .
(b) Show that fn admits a unique point of maximum on [1,+∞).
(c) Does {fn} converge uniformly (i) on [1, 1000]? (ii) on [1,+∞)?

Problem 2. Denote by X the set of non negative C∞ functions f : R→ R.
(a) Suppose that f and f ′ are both in X. Show that either f is strictly

positive, identically zero or there exists a ∈ R such that f(x) = 0⇔ x ≤ a.
(b) Let f be as in (a). Show that limx→−∞ f(x) exists.
(c) (unrelated to (a), (b)) Suppose that f,

√
f ∈ X and f(0) = 0. Find f ′(0)

and f ′′(0).

Problem 3. Let f : [0, 1] → R be Riemann integrable. Given x ∈ [0, 1], we
define

G(x) = sup
t∈[0,1−x]

∫ t+x

t

f(s)ds;

in other words G(x) is the supremum of the integrals of f taken over intervals
of length x.

(a) Show that the supremum is actually a maximum, that is, given x ∈ [0, 1]

there exists t ∈ [0, 1] such that G(x) =
∫ t+x
t

f(s)ds.

(b) Suppose that f is decreasing. Show that G(x) =
∫ x

0
f(s)ds.



Part II: Complex Analysis

Exercise 4. (a) Let γ = [1, 0] ∪ [0, i] be the path in C joining the points 1
and i through the oriented segments [1, 0] and [0, i]. Compute (directly via a
convenient parametrization of γ) the integral

∫
γ
ezdz.

(b) Use (a) to compute
∫ π/2

0
ecos(θ) sin(θ + sin(θ))dθ. (Consider the curve

λ ⊂ C parametrized as λ(θ) = eiθ, 0 ≤ θ ≤ π/2).

In the following, we employ the standard O notation: p(x) = O(q(x)) if
there exists a constant C > 0 such that |p(x)| ≤ C|q(x)|.

Exercise 5. Let f, g be two holomorphic functions defined on a bounded neigh-
borhood of 0. Suppose that the Taylor expansions of f, g can be written around
0 as follows: f(z) = z + azk + P (z), g(z) = z + bzk + Q(z) for certain k ≥ 2,
a, b ∈ C and P (z), Q(z) = O(zk+1). Show that f ◦ g(z) = z + czk + R(z) with
R(z) = O(zk+1), and find c.

Given a function ψ, we denote by ψ◦j the composition of ψ with itself per-
formed j times: ψ◦2 = ψ ◦ ψ, ψ◦(j+1) = ψ ◦ ψ◦j for j ≥ 2.

Problem 4. Let D ⊂ C be an open set, 0 ∈ D, and let φ : D → C be
holomorphic. We assume that j ∈ N is chosen in such a way that φ◦j is defined
on D.

(a) Suppose that φ(z) = z + azk + O(zk+1) for certain k ≥ 2, a ∈ C. Find
dkφ◦j

dzk
(0). (You can use Ex. 5).

(b) Let ∆r ⊂ D be a disc of radius r and center 0, and let Mj = sup∆r
|φ◦j |.

Show that Mj ≥ jrk|a|. (Hint : take the k-th derivative with respect to z of the

Cauchy formula φ◦j(z) = 1
2πi

∫
∆r

φ◦j(ζ)
ζ−z dζ).

(c) Assume now that D is bounded and φ : D → D is bijective. Use (b) to
prove the following: if φ(0) = 0 and φ′(0) = 1 then φ(z) = z. (Hint : if φ(z) 6= z,
consider the first non-zero term in its Taylor expansion after z. What can be
said about Mj?).


