American University of Beirut Analysis Comprehensive Exam Fall 2019-2020

Time allowed: 2 hours

Part I: Real Analysis

Exercise 1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at a point x_0 and $f(x_0) \neq 0$. Show that g = 1/f is differentiable at x_0 , and find (with proof) the formula for $g'(x_0)$.

Exercise 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a real valued function.

- (a) Show that if f is continuous at $x_0 \in \mathbb{R}$ then for every real sequence $\{x_n\}$, $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0) \text{ as } n \to \infty.$
- (b) Suppose that f is not continuous at x_0 . Show that there is a real sequence $\{x_n\}$ such that $x_n \to x_0$ as $n \to \infty$ but $f(x_n)$ does not converge to $f(x_0)$.

Exercise 3. Let $\{I_n\}$ be a sequence of intervals of \mathbb{R} with the property that $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$.

- (a) Suppose that each I_n is closed and bounded. Show that there exists a point $p \in \mathbb{R}$ such that $p \in I_n$ for all $n \in \mathbb{N}$.
- (b) Is the same conclusion as in (a) valid if each I_n is an open interval? What about if each I_n is an unbounded interval of the form $[a, +\infty)$.

- **Problem 1.** Define $f_n: [1, +\infty) \to \mathbb{R}$ as $f_n(x) = \left(\frac{e}{n}\right)^n \frac{(\log(x))^n}{x}$. (a) Show that the sequence $\{f_n\}_{n\geq 1}$ converges pointwise to a function f: $[1, +\infty) \to \mathbb{R}$, and find f.
 - (b) Show that f_n admits a unique point of maximum on $[1, +\infty)$.
 - (c) Does $\{f_n\}$ converge uniformly (i) on [1,1000]? (ii) on $[1,+\infty)$?

Problem 2. Denote by X the set of non negative C^{∞} functions $f: \mathbb{R} \to \mathbb{R}$.

- (a) Suppose that f and f' are both in X. Show that either f is strictly positive, identically zero or there exists $a \in \mathbb{R}$ such that $f(x) = 0 \Leftrightarrow x \leq a$.
 - (b) Let f be as in (a). Show that $\lim_{x\to-\infty} f(x)$ exists.
- (c) (unrelated to (a), (b)) Suppose that $f, \sqrt{f} \in X$ and f(0) = 0. Find f'(0)and f''(0).

Problem 3. Let $f:[0,1]\to\mathbb{R}$ be Riemann integrable. Given $x\in[0,1]$, we

$$G(x) = \sup_{t \in [0,1-x]} \int_t^{t+x} f(s)ds;$$

in other words G(x) is the supremum of the integrals of f taken over intervals

- (a) Show that the supremum is actually a maximum, that is, given $x \in [0,1]$ there exists $t \in [0,1]$ such that $G(x) = \int_t^{t+x} f(s) ds$.
 - (b) Suppose that f is decreasing. Show that $G(x) = \int_0^x f(s)ds$.

Part II: Complex Analysis

- **Exercise 4.** (a) Let $\gamma = [1,0] \cup [0,i]$ be the path in \mathbb{C} joining the points 1 and i through the oriented segments [1,0] and [0,i]. Compute (directly via a convenient parametrization of γ) the integral $\int_{\gamma} e^{z} dz$.
- (b) Use (a) to compute $\int_0^{\pi/2} e^{\cos(\theta)} \sin(\theta + \sin(\theta)) d\theta$. (Consider the curve $\lambda \subset \mathbb{C}$ parametrized as $\lambda(\theta) = e^{i\theta}$, $0 \le \theta \le \pi/2$).

In the following, we employ the standard O notation: p(x) = O(q(x)) if there exists a constant C > 0 such that $|p(x)| \le C|q(x)|$.

Exercise 5. Let f,g be two holomorphic functions defined on a bounded neighborhood of 0. Suppose that the Taylor expansions of f,g can be written around 0 as follows: $f(z) = z + az^k + P(z)$, $g(z) = z + bz^k + Q(z)$ for certain $k \ge 2$, $a,b \in \mathbb{C}$ and $P(z),Q(z) = O(z^{k+1})$. Show that $f \circ g(z) = z + cz^k + R(z)$ with $R(z) = O(z^{k+1})$, and find c.

Given a function ψ , we denote by $\psi^{\circ j}$ the composition of ψ with itself performed j times: $\psi^{\circ 2} = \psi \circ \psi$, $\psi^{\circ (j+1)} = \psi \circ \psi^{\circ j}$ for $j \geq 2$.

- **Problem 4.** Let $D \subset \mathbb{C}$ be an open set, $0 \in D$, and let $\phi : D \to \mathbb{C}$ be holomorphic. We assume that $j \in \mathbb{N}$ is chosen in such a way that $\phi^{\circ j}$ is defined on D.
- (a) Suppose that $\phi(z)=z+az^k+O(z^{k+1})$ for certain $k\geq 2,\ a\in\mathbb{C}$. Find $\frac{d^k\phi^{\circ j}}{dz^k}(0)$. (You can use Ex. 5).
- (b) Let $\Delta_r \subset D$ be a disc of radius r and center 0, and let $M_j = \sup_{\Delta_r} |\phi^{\circ j}|$. Show that $M_j \geq jr^k|a|$. (Hint: take the k-th derivative with respect to z of the Cauchy formula $\phi^{\circ j}(z) = \frac{1}{2\pi i} \int_{\Delta_r} \frac{\phi^{\circ j}(\zeta)}{\zeta z} d\zeta$).

 (c) Assume now that D is bounded and $\phi: D \to D$ is bijective. Use (b) to
- (c) Assume now that D is bounded and $\phi: D \to D$ is bijective. Use (b) to prove the following: if $\phi(0) = 0$ and $\phi'(0) = 1$ then $\phi(z) = z$. (Hint: if $\phi(z) \neq z$, consider the first non-zero term in its Taylor expansion after z. What can be said about M_j ?).