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Part I: Real Analysis

We denote by R+ the set R+ = {x ∈ R : x > 0} of positive real numbers.

Exercise 1. LetR ⊂ R2 be the region in the first quadrant bounded by the curves y = x− 3 and y = x2

and y = 4. Consider the solid S of revolution obtained by revolving the regionR about the axis y = 4.
Find its volume.

Exercise 2. Let A =
{
x ∈ R| x = (−1

2)m − 3
n for some m,n ∈ N \ {0}

}
.

(a) Prove that inf A and supA both exist.
(b) Compute inf A and supA.

Exercise 3.
(a) Let f : [a, b]→ R be a continuous function, differentiable on (a, b) and such that f(a) = f(b). Prove

that there exists c ∈ (a, b) such that f ′(c) = 0.
(b) Deduce the Mean Value Theorem.

Exercise 4. Let f : [0, 1]→ R defined by f(x) = 0 if x ∈ Q and f(x) = 1 if f(x) ∈ R \Q. Show, using
the definition of Riemann integral, that f is not Riemann integrable.

Exercise 5. Let f : [0, 1]→ R be a continous function satisfying f(0) = f(1).
(a) Let n > 0 be an integer. Prove that there exists xn ∈ [0, 1− 1/n] such that f(xn) = f(xn + 1/n)
(b) Prove that the conclusion of the previous question fails if 1/n is replace by α ∈ (0, 1) with 1/α /∈ N.

You may consider the function x→ cos
(
2πx
α

)
− x(cos

(
2π
α

)
− 1).

Problem 1. Let g : R→ R be a function of class C∞. Define a sequence of real functions {fn}n≥0 as
f0(x) = g(x), fn(x) = sin(fn−1(x)) for n ≥ 1.
(a) For a certain x0 ∈ R, suppose that f1(x0) > 0. Show that fn(x0) > 0 for all n > 1.
(b) Show that {fn} converges pointwise on R, and find the limit function.
(c) Does {fn} converge uniformly?
(d) Show that {f ′n} converges pointwise.

Problem 2. Let an(t) be a sequence of positive continuous functions an : [0, 1]→ R+ such that
∑

n an(t)
is convergent for all t < 1.
(a) Suppose that there exists C > 0 such that

∑
n an(t) ≤ C for all t < 1. Show that

∑
an(1) is

convergent.
(b) Without the assumption in (a), show by an example that

∑
an(1) might be divergent.

(c) Suppose that each an is monotone increasing and
∑

n an(t)→ +∞ as t→ 1. Show that
∑
an(1) is

divergent.
(d) Show that the conclusion in (c) is not valid without the monotonicity assumption.
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Problem 3. Let I ⊂ R be an interval, let f : I → R be a function of class C∞ and denote by f (n) its n-th
derivative. We say that f admits an∞-derivative if {f (n)} converges uniformly on I to a function f (∞).
(a) Do the following functions admit or not an∞-derivative?

i. f(x) = ex on (0, 1).
ii. f(x) = sin(x) on (0, 2π).

iii. f(x) = log x on (1, 2).
(b) Suppose that f : I → R admits an∞-derivative f (∞). Show that f (∞) is of class C∞.
(c) Suppose that f : I → R admits an∞-derivative f (∞). Show that f (∞)(x) = Cex for some C ∈ R.

Problem 4.
(a) For α, β ≥ 1 consider the improper integral∫ +∞

e

1

xα(log x)β
dx

Show that it is is divergent for α = β = 1 and convergent otherwise.
(b) Show that the improper integral ∫ +∞

e2

1

x(log x)(log log x)γ
dx

is divergent for γ = 1 and convergent for γ > 1.

Part II: Complex Analysis

We denote by D = {z ∈ C | |z| < 1} the unit disc and by ∂D = {z ∈ C | |z| = 1} its boundary and by
H = {z ∈ C | =mz > 0} the upper half plane.

Exercise 6. Let γ be the boundary of the square [0, 1]× [0, i] with counterclockwise orientation. Evaluate
the integrals
(a)
∫
γ <ezdz.

(b)
∫
γ =mzdz.

Exercise 7.
(a) Find the zeros of sin

(
1+z
1−z

)
in D.

(b) Let f : D→ C be a holomorphic function satisfying f(zn) = 0 for a sequence {zn} converging in D.
Prove or disprove that f is identically equal to 0.

Exercise 8.

(a) Show that the function ϕ : H→ D defined by ϕ(z) =
z − i
z + i

is a holomorphic bijection with

holomorphic inverse (do not forget to show that ϕ(H) ⊂ D).
(b) Let f : D \ {0} → C be a holomorphic function satisfying =mf(z) > 0 for all z ∈ D \ {0}. Study the

nature of its singularity at 0 (that is, removable, pole or essential).

Problem 5.
Let Ω be a connected domain in C such that D ⊂ Ω.
(a) Let f ∈ O(Ω) such that f(0) = 1 and |f(z)| > 1 for all z ∈ ∂D. Prove that f admits a zero in D.
(b) Let f ∈ O(Ω) be a non constant map such that |f(z)− 2| < 1 for all z ∈ ∂D.

i. Show that |f(z)| < 3 for all z ∈ D.
ii. Let w0 ∈ D. Show that the equation f(z) = w0 has no solution in D.

(c) Let f ∈ O(Ω) be a non constant map such that |f(z)| = 1 for all z ∈ ∂D. Prove that f admits a zero in
D.


