American University of Beirut Analysis Comprehensive Exam

Fall 2018 Time allowed: 3h00

Part I: Real Analysis

We denote by \mathbb{R}^+ the set $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ of positive real numbers.

Exercise 1. Let $\mathcal{R} \subset \mathbb{R}^2$ be the region in the first quadrant bounded by the curves y=x-3 and $y=x^2$ and y=4. Consider the solid \mathcal{S} of revolution obtained by revolving the region \mathcal{R} about the axis y=4. Find its volume.

Exercise 2. Let $A = \{x \in \mathbb{R} | x = (-\frac{1}{2})^m - \frac{3}{n} \text{ for some } m, n \in \mathbb{N} \setminus \{0\}\}.$

- (a) Prove that $\inf A$ and $\sup A$ both exist.
- (b) Compute $\inf A$ and $\sup A$.

Exercise 3.

- (a) Let $f:[a,b]\to\mathbb{R}$ be a continuous function, differentiable on (a,b) and such that f(a)=f(b). Prove that there exists $c\in(a,b)$ such that f'(c)=0.
- (b) Deduce the Mean Value Theorem.

Exercise 4. Let $f:[0,1]\to\mathbb{R}$ defined by f(x)=0 if $x\in\mathbb{Q}$ and f(x)=1 if $f(x)\in\mathbb{R}\setminus\mathbb{Q}$. Show, using the definition of Riemann integral, that f is not Riemann integrable.

Exercise 5. Let $f:[0,1]\to\mathbb{R}$ be a continous function satisfying f(0)=f(1).

- (a) Let n > 0 be an integer. Prove that there exists $x_n \in [0, 1 1/n]$ such that $f(x_n) = f(x_n + 1/n)$
- (b) Prove that the conclusion of the previous question fails if 1/n is replace by $\alpha \in (0,1)$ with $1/\alpha \notin \mathbb{N}$. You may consider the function $x \to \cos\left(\frac{2\pi x}{\alpha}\right) x(\cos\left(\frac{2\pi}{\alpha}\right) 1)$.

Problem 1. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class C^{∞} . Define a sequence of real functions $\{f_n\}_{n\geq 0}$ as $f_0(x) = g(x), f_n(x) = \sin(f_{n-1}(x))$ for $n \geq 1$.

- (a) For a certain $x_0 \in \mathbb{R}$, suppose that $f_1(x_0) > 0$. Show that $f_n(x_0) > 0$ for all n > 1.
- (b) Show that $\{f_n\}$ converges pointwise on \mathbb{R} , and find the limit function.
- (c) Does $\{f_n\}$ converge uniformly?
- (d) Show that $\{f'_n\}$ converges pointwise.

Problem 2. Let $a_n(t)$ be a sequence of positive continuous functions $a_n : [0,1] \to \mathbb{R}^+$ such that $\sum_n a_n(t)$ is convergent for all t < 1.

- (a) Suppose that there exists C>0 such that $\sum_n a_n(t) \leq C$ for all t<1. Show that $\sum a_n(1)$ is convergent.
- (b) Without the assumption in (a), show by an example that $\sum a_n(1)$ might be divergent.
- (c) Suppose that each a_n is monotone increasing and $\sum_n a_n(t) \to +\infty$ as $t \to 1$. Show that $\sum a_n(1)$ is divergent.
- (d) Show that the conclusion in (c) is not valid without the monotonicity assumption.

Problem 3. Let $I \subset \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$ be a function of class C^{∞} and denote by $f^{(n)}$ its *n*-th derivative. We say that f admits an ∞ -derivative if $\{f^{(n)}\}$ converges uniformly on I to a function $f^{(\infty)}$.

- (a) Do the following functions admit or not an ∞ -derivative?
 - i. $f(x) = e^x$ on (0, 1).
 - ii. $f(x) = \sin(x)$ on $(0, 2\pi)$.
 - iii. $f(x) = \log x$ on (1, 2).
- (b) Suppose that $f: I \to \mathbb{R}$ admits an ∞ -derivative $f^{(\infty)}$. Show that $f^{(\infty)}$ is of class C^{∞} .
- (c) Suppose that $f: I \to \mathbb{R}$ admits an ∞ -derivative $f^{(\infty)}$. Show that $f^{(\infty)}(x) = Ce^x$ for some $C \in \mathbb{R}$.

Problem 4.

(a) For $\alpha, \beta \geq 1$ consider the improper integral

$$\int_{e}^{+\infty} \frac{1}{x^{\alpha} (\log x)^{\beta}} dx$$

Show that it is is divergent for $\alpha = \beta = 1$ and convergent otherwise.

(b) Show that the improper integral

$$\int_{e^2}^{+\infty} \frac{1}{x(\log x)(\log\log x)^{\gamma}} dx$$

is divergent for $\gamma = 1$ and convergent for $\gamma > 1$

Part II: Complex Analysis

We denote by $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$ the unit disc and by $\partial\mathbb{D}=\{z\in\mathbb{C}\mid |z|=1\}$ its boundary and by $\mathbb{H}=\{z\in\mathbb{C}\mid \Im mz>0\}$ the upper half plane.

Exercise 6. Let γ be the boundary of the square $[0,1] \times [0,i]$ with counterclockwise orientation. Evaluate the integrals

- (a) $\int_{\gamma} \Re ez dz$.
- (b) $\int_{\gamma}^{\gamma} \Im mz dz$.

Exercise 7.

- (a) Find the zeros of $\sin\left(\frac{1+z}{1-z}\right)$ in \mathbb{D} .
- (b) Let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic function satisfying $f(z_n) = 0$ for a sequence $\{z_n\}$ converging in $\overline{\mathbb{D}}$. Prove or disprove that f is identically equal to 0.

Exercise 8.

- (a) Show that the function $\varphi : \mathbb{H} \to \mathbb{D}$ defined by $\varphi(z) = \frac{z-i}{z+i}$ is a holomorphic bijection with holomorphic inverse (do not forget to show that $\varphi(\mathbb{H}) \subset \mathbb{D}$).
- (b) Let $f : \mathbb{D} \setminus \{0\} \to \mathbb{C}$ be a holomorphic function satisfying $\Im m f(z) > 0$ for all $z \in \mathbb{D} \setminus \{0\}$. Study the nature of its singularity at 0 (that is, removable, pole or essential).

Problem 5.

Let Ω be a connected domain in \mathbb{C} such that $\overline{\mathbb{D}} \subset \Omega$.

- (a) Let $f \in \mathcal{O}(\Omega)$ such that f(0) = 1 and |f(z)| > 1 for all $z \in \partial \mathbb{D}$. Prove that f admits a zero in \mathbb{D} .
- (b) Let $f \in \mathcal{O}(\Omega)$ be a non constant map such that |f(z) 2| < 1 for all $z \in \partial \mathbb{D}$.
 - i. Show that |f(z)| < 3 for all $z \in \mathbb{D}$.
 - ii. Let $w_0 \in \mathbb{D}$. Show that the equation $f(z) = w_0$ has no solution in \mathbb{D} .
- (c) Let $f \in \mathcal{O}(\Omega)$ be a non constant map such that |f(z)| = 1 for all $z \in \partial \mathbb{D}$. Prove that f admits a zero in \mathbb{D} .