American University of Beirut Analysis Comprehensive Exam Fall 2015

Part I: Real Analysis

Instructions: Solve problems 1, 2 and any two of the problems 3, 4, 5.

Problem 1. Let $f,g:\mathbb{R}\to\mathbb{R}$ be two functions differentiable at x_0 with $g(x_0)\neq 0$. Prove that $\frac{f}{g}$ is differentiable at x_0 and find an expression for $\left(\frac{f}{g}\right)'(x_0)$.

Problem 2. Let (X, d) be a metric space. Prove that the following statements are equivalent:

- i. any Cauchy sequence in X converges.
- ii. any sequence $\{x_n\}$ such that the series $\sum d(x_n, x_{n+1})$ converges is convergent.
- iii. any sequence $\{x_n\}$ such that $d(x_n, x_{n+1}) < 1/n^2, n > 1$, is convergent.

Problem 3. Let I := [0,1] and let $f: I \to I$ be an increasing function. Consider the set

$$A := \{x \in I, f(x) \le x\}.$$

- (a) Prove that $\inf A$ exists and that $0 < \inf A$. Denote $\alpha := \inf A$.
- (b) Prove that $f(\alpha) = \alpha$ (hint: notice that if $x \in A$ then $f(x) \in A$).

Problem 4.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function. Prove that there exist $a, b \geq 0$ such that $|f(x)| \leq 1$ a|x| + b for all $x \in \mathbb{R}$.
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that that there exist $a, b \ge 0$ such that $|f(x)| \le a|x| + b$ for all $x \in \mathbb{R}$. Prove or disprove (using an explicit counterexample) that f is uniformly continuous.

Problem 5. Let $f_n:[0,1]\to\mathbb{R}$ defined by

$$f_n(x) := \begin{cases} n^2 x (1 - nx) \text{ if } x \in [0, \frac{1}{n}] \\ 0 \text{ otherwise.} \end{cases}$$

- (a) Study the pointwise convergence of f_n on [0, 1].
- (b) Compute $\int_0^1 f_n(t)dt$. (c) Study the uniform convergence of f_n on [0,1].
- (d) Let 0 < a < 1. Study the uniform convergence of f_n on [a, 1].

Part II: Complex Analysis

<u>Notations:</u> Denote by $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$ the unit disc and by $\partial \Delta = \{z \in \mathbb{C} \mid |z| = 1\}$ its boundary.

Instructions: Solve the problem 6 and one of the problems 7, 8.

Problem 6.

- (a) Let R(X,Y) = P(X,Y)/Q(X,Y) be a rational function with no poles on $\partial \Delta$.
 - i. Prove that

$$\int_{0}^{2\pi} R(\cos t, \sin t) dt = 2\pi i \sum_{z_{j} \in \Delta} Res \left[\frac{1}{iz} R\left(\frac{1}{2} \left(z + \frac{1}{z} \right), \frac{1}{2i} \left(z - \frac{1}{z} \right) \right), z_{j} \right],$$

where $Res(f, z_i)$ is the residue of f at the pole z_j .

(b) Using this method, compute the integral $\int_0^{2\pi} \frac{1}{a + \sin t} dt$ for a > 1.

Problem 7. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function, i.e. f is holomorphic on \mathbb{C} .

- (a) Prove that if $\iint_{\mathbb{R}^2} |f(x+iy)|^2 dx dy < \infty$ then f(z) = 0 for all $z \in \mathbb{C}$. (b) Suppose that f is nonconstant. Prove that for all $\omega \in \mathbb{C}$ and for all $\varepsilon > 0$ there exists $z \in \mathbb{C}$ such that $|f(z)-w|<\varepsilon$ (do not just quote Picard theorem).

Problem 8. Let $f: \Delta \to \mathbb{C}$ be a holomorphic function on the unit disc.

- (a) Suppose that $|f(z)| \le 1$ for all $z \in \Delta$. Prove that for any integer $n \ge 1$, $|f^{(n)}(z)| \le n!(1-|z|)^{-n}$.
- (b) Suppose that |f(z)| < 1 for all $z \in \Delta$. Let $0 \neq a_j \in \Delta$ such that $f(a_j) = 0$ for $j = 1, \dots, n$. Prove that $|f(0)| \leq \prod_{i=1}^{n} |a_i|$. What can you conclude if the equality holds?