- 1. Let T: V \rightarrow W be a linear transformation such that T is one-to-one. Prove that if $\{u_1, u_2, ..., u_n\}$ is a linearly independent set of vectors in V, then $\{T(u_1), T(u_2), ..., T(u_n)\}$ is a linearly independent subset of W.
- 2. (a) Let A be a 3×3 matrix such that $AA^{T} + A^{2} + 2I = 0$. Show that A is invertible and Find A^{-1} .
 - (b) Show that similar n×n matrices have the same determinant.
- 3. Let V be a vector space of dimension 4, and let \mathbf{u} be a nonzero vector of V. Show that there exists a subspace W of \mathbf{V} such that dim W=3 and $\mathbf{u} \notin W$.
- 4. Show that an orthogonal set of nonzero vectors in an inner product space is linearly independent.
- 5. Let G be a group of order 75. Show that G has a normal subgroup of order 25.
- 6. Prove that every subgroup of a cyclic group is cyclic.
- 7. Prove or Disprove:
 - (a) If $\varphi: R \rightarrow S$ is a ring homomorphism such that R has identity 1, then $\varphi(1)$ is the identity of S.
 - (b) If G is a group such that G has only one automorphism (the identity automorphism), then G is abelian.
- 8. Let R be a commutative ring with identity such that for every element $a \in R$, there exists a unique element $b \in R$ such that aba = a. Prove that
 - (a) R has no zero divisors
 - (b) R is a field.