Algebra Comprehensive Examination Time allowed: 90 minutes

November 26, 2020

1. Show that If T: $R^2 \longrightarrow R$ is a linear transformation with $T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = T \begin{pmatrix} 2 \\ 1 \end{pmatrix} = T \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, then T is the zero linear transformation. (that is show T(v)=0 for any $v \in R^2$)

[10 points]

2. Show that if $\langle u, v \rangle = \langle u, w \rangle$ for all vectors **u** in an inner product space V, then $\mathbf{v} = \mathbf{w}$.

[10 points]

3. Let V be a vector space of dimension 3, and let W be a <u>subspace</u> of V with **basis** {w₁, w₂}. Show that there exists a linear operator T on V such that T(w)=0 for all w∈W and T(u)≠ 0 for some vector u in V.

[10 points]

4. Let H be a normal subgroup of a group G such that O(G/H) = n. Prove that $a^n \in H$ for every $a \in G$.

[10 points]

5. Let $\varphi: G \to H$ be a group homomorphism such that H is <u>abelian</u>. Prove that if N is a subgroup of G <u>containing</u> $\operatorname{Ker} \varphi$, then N is <u>normal</u> in G. (Hint: consider $\varphi(gng^{-1}n^{-1})$, $\forall g \in G, \forall n \in N$)

[10 points].

6. Let R be a commutative ring with identity such that for every element $a \in R$, there exists $a' \in R$ such that aa'a = a. Prove that every <u>prime</u> ideal of R <u>maximal</u>.

[12 points]

7. Let R and S be rings with identity elements 1_R and 1_S respectively. Let $\varphi: R \to S$ be a ring homomorphism. Suppose that there is an invertible element a in R such that $\varphi(a)$ is invertible in S. Prove that $\varphi(1_R) = 1_S$.

[12 points]

Answer TRUE or FALSE only [2 points for each correct answer, NO PENALTY]

- 1. If A and B are two nxn matrices such that AB = 3I, then the column space $Col(A) = R^{n}$.
- 2. A <u>subspace</u> W of a vector space V is linearly independent.
- 3. Let A be an nxn matrix such that $A^2 = I$, then 0 is an eigenvalue of A.
- 4. Let A be a 3x3 matrix with <u>eigenvalues</u> 1, 2, and 3, then rank(A)<3
- 5. $S = \{All \text{ symmetric } 2x2 \text{ matrices} \}$ is a subspace of $M_{2x2} \underline{Isomorphic}$ to the vector space P_2
- 6. Any orthogonal set of 4 vectors in P₃ forms a basis for P₃
- 7. If A is a 4x6 matrix with rank A = 3 then dim N(A)=1 (N(A) denotes the Nullspace of A)
- 8. Let V be a finite-dimensional vector space and let T: V→V be a linear operator on V. If T is one-to-one, then T is onto.
- 9. If $\varphi: \mathbb{Z}_5 \to H$ is a <u>nontrivial group homomorphism</u>, then $\ker \varphi = \{e\}$.
- 10. The matrices $A = \begin{pmatrix} -1 & 0 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} -2 & 1 \\ 0 & 2 \end{pmatrix}$ are similar.
- 11. Let G be a group of $\underline{\text{order}}$ m, and let $a \in G$. Then $a^m = e$.
- 12. The permutation group S₃ has a subgroup of order 4
- 13. If G is a group such that a^2 =e for all a \in G. then G is abelian

[26 points]