American University of Beirut Algebra Comprehensive Exam

Fall 2018

Time allowed: 2h

Problem 1. Let G be a group. We do NOT assume that G is Abelian.

- (a) Let $Z(G) = \{g \in G \mid \forall h \in G, gh = hg\}$. Prove that Z(G) is a subgroup of G.
- (b) An example: determine Z(G) when G is the symmetric group S_n $(n \in \mathbb{N})$. Hint: treat the cases $n \leq 2$ and $n \geq 3$ separately.
- (c) We now denote by Aut(G) the set of automorphisms of G (recall that an automorphism of G is an isomorphism from G to itself). Prove that Aut(G) is a group under composition.
- (d) Let $g \in G$, and consider the map

$$\begin{array}{ccc} \varphi_g: G & \longrightarrow & G \\ h & \longmapsto & ghg^{-1} \end{array}.$$

Prove that $\varphi_q \in \operatorname{Aut}(G)$ for all $g \in G$.

(e) Prove that the map

$$\varphi: G \longrightarrow \operatorname{Aut}(G)$$
 $q \longmapsto \varphi_q$

is a homomorphism. What is its kernel?

(f) Give an example of group G such that φ is not surjective.

Problem 2.

Let $a, b, c, d \in \mathbb{R}$, and let

$$M = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & d \end{array}\right).$$

- (a) Find necessary and sufficient conditions on a, b, c, d for M to be invertible.
- (b) Find necessary and sufficient conditions on a, b, c, d for M to be diagonalizable.
- (c) Find necessary and sufficient conditions on a, b, c, d for M to be nilpotent.

Remark: parts (a), (b), and (c) are independent from each other. You must justify your answers.

Problem 3. Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation whose matrix with respect to the usual basis of \mathbb{R}^3 is

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

- (a) Determine the rank of f and the determinant of f.
- (b) Find a basis for $\operatorname{Im} f$ and for $\operatorname{Ker} f$.
- (c) Find a basis of \mathbb{R}^3 in which the matrix of f has only one non-zero coefficient.
- (d) Compute M^n in terms of $n \in \mathbb{N}$.

Problem 4. Let R be a *commutative* ring with unit.

- (a) Let I and J be ideals of R, and let $I + J = \{i + j \mid i \in I, j \in J\}$. Prove that I + J is an ideal of R.
- (b) Let I and J be ideals of R, and let IJ be the subset of R consisting in the elements of the form

$$\sum_{k=1}^{n} i_k j_k$$

where $n \in \mathbb{N}$ and $i_k \in I$, $j_k \in J$ for all k. In other words, IJ is the set of finite sums of products of an element of I by an element of J. Prove that IJ is an ideal of R.

- (c) Let I and J be ideals of R. Order the ideals I, I+J, $I\cap J$, and IJ by inclusion. Give an example where all the inclusions are strict.
- (d) Let I be an ideal of R. We define

$$rad(I) = \{ x \in R \mid \exists n \in \mathbb{N} : x^n \in I \}.$$

Prove that rad(I) is an ideal of R.

Hint: Use the formula with binomial coefficients for $(x + y)^m$.

- (e) An example: in this question only, we take $R = \mathbb{Z}$ and $I = 12\mathbb{Z}$. What is rad(I)?
- (f) Let I be an ideal of R. Prove that rad(rad(I)) = rad(I).
- (g) Let I be an ideal of R. Prove that if I is a prime ideal, then rad(I) = I. Is the converse true?
- (h) Let I and J be ideals of R. Prove that $rad(IJ) = rad(I \cap J) = rad(I) \cap rad(J)$.
- (i) Recall that an element $x \in R$ is called *nilpotent* if there exists $n \in \mathbb{N}$ such that $x^n = 0$; in particular 0 is nilpotent. Let Nil(R) be the set of nilpotent elements in R. Prove that Nil(R) is an ideal of R. *Hint: Use question (d).*
- (j) Prove that $R/\operatorname{Nil}(R)$ has no nonzero nilpotent element.

End