Algebra Comprehensive Examination Time allowed: 90 minutes

Aug 2016

NAME------ID#-----

- 1. Let T: V \rightarrow W be a linear transformation from a vector space V to a vector space W. Prove that if $\{u_1, u_2, ..., u_n\}$ is a set of vectors in V such that $\{T(u_1), T(u_2), ..., T(u_n)\}$ is a linearly independent subset of W, then $\{u_1, u_2, ..., u_n\}$ is linearly independent in V. [10 points]
- 2. Prove or Disprove:
 - (a) The matrix $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ is not diagonalizable

[5 points]

- (b) An orthogonal set of vectors in an inner product space V is linearly independent in V. [5 points]
- 3. Let V be a vector space of dimension 4, and let W be a subspace of V with **basis** $\{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\}$. Show that there exists a linear operator T on V such that $T(\mathbf{w})=\mathbf{w}$ for all $\mathbf{w}\in W$ but $T(\mathbf{u})\neq \mathbf{u}$ for some \mathbf{u} in V

[10 points]

4. Let $T: V \rightarrow V$ be a linear operator on a vector space V such that

$$T^2 = T$$
 (that is $T(T(v) = T(v) \forall v \in V$)

Show that

V = N(T) + R(T), where N(T) is the Nullspace of T and R(T) is the Range of T [Hint: Use the vector (v - T(v))]

[10 points]

5. Suppose that $\varphi: R \rightarrow S$ is a ring homomorphism such that R has identity 1. Prove that if φ is surjective (onto), then $\varphi(1)$ is the identity of S.

[10 points]

6. Let H be a normal subgroup of a group G such that O(G/H) = n. Prove that $a^n \in H$ for every $a \in G$.

[10 points]

7. Let $\varphi: G \to H$ be a group homomorphism such that H is <u>abelian</u>. Prove that if N is a subgroup of G containing $\operatorname{Ker} \varphi$, then N is normal in G.

(Hint: consider
$$\varphi(gng^{-1}n^{-1})$$
, $\forall g \in G, \forall n \in N$)

[10 points].

8. Let R be a commutative ring with identity such that for every element $a \in R$, there exists $a' \in R$ such that aa'a = a. Prove that every prime ideal of R is maximal.

[10 points]

- 9. Answer TRUE or FALSE only (2 points for each correct answer):
 - 1. Let A be a 3×3 matrix such that $A^2 + A + 2I = 0$, then A is invertible.
 - 2. Similar matrices have the same determinant
 - 3. If λ is any eigenvalue of an invertible nxn matrix A, then $\frac{1}{\lambda}$ is an eigenvalue of A⁻¹
 - 4. S_{2x2} ={symmetric 2x2 matrices} is a subspace of M_{2x2} isomorphic to the vector space P_2
 - 5. If A is a 2x5 matrix with orthogonal nonzero row vectors then nullity(A)=3
 - 6. Any orthogonal set of 4 nonzero vectors in R⁴ forms a basis for R⁴
 - 7. The alternating group A_n of all even permutations in S_n (n>1) is a normal subgroup of S_n .
 - 8. If D is an integral domain such that 4a=0 for some a≠0 in D, then D has finite Characteristic=4.
 - 9. If $\varphi: Z_7 \to H$ is a nontrivial ring homomorphism, then φ is one-to-one.
 - 10. Let G be a group of order 20, then G has a normal subgroup of order 5

[20 points]