AMERICAN UNIVERSITY OF BEIRUT DEPARTMENT OF MATHEMATICS ALGEBRA COMPREHENSIVE EXAM FALL 2014

1. (8 pts) Determine the values of k for which the system having the following augmented matrix is consistent.

$$\begin{bmatrix}
4 & 0 & k & 1 \\
0 & k-2 & 1 & 3 \\
0 & 0 & k-1 & 2 \\
0 & 0 & 0 & k^2-4
\end{bmatrix}$$

- **2.** (14 pts) Let $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - (a) Find all eigenvalues of A.
 - (b) Find a basis for each eigenspace of A.
 - (c) Deduce that A is diagonalizable.
 - (d) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- **3.** (8 pts) Show that if a system of linear equations has two distinct solutions then it has infinitely many solutions.
- **4.** (12 pts) Let $T: V \to W$ be a linear transformation between vector spaces and let $\{v_1, \ldots, v_n\}$ be a linearly independent subset of V.
 - a) Show that if T is one-to-one then $\{T(v_1), \ldots, T(v_n)\}$ is linearly independent.
 - b) Let $V = W = \mathbb{R}^3$. Give an example of a linearly independent subset $\{v_1, v_2, v_3\}$ of \mathbb{R}^3 and a nontrivial linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ for which $\{T(v_1), T(v_2), T(v_3)\}$ is linearly dependent.
- **5.** (8 pts) Let V be an inner product space and let $S = \{v_1, v_2, \dots, v_n\}$ be an orthogonal set of nonzero vectors. Show that S is linearly independent.
- **6.** (10 pts) Let G be a group and let a and b be elements of G of finite order. Show that if the orders of a and b are relatively prime then $\langle a \rangle \cap \langle b \rangle = \{e\}$.
- 7. (10 pts) Let G be a group and let $\phi: G \to G$ be given by $\phi(g) = g^{-1}$. Show that ϕ is an isomorphism if and only if G is abelian.
- **8.** (10 pts) Show that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are not isomorphic.
- **9.** (10 pts) Let R be a commutative ring with unity and let F be a field. Suppose that $f: R \to F$ is a surjective ring homomorphism. Show that $\operatorname{Ker}(f)$ is a maximal ideal of R.
- 10. (10 pts) Let D be an integral domain and let $p \in D$. Show that if p is prime then p is irreducible.