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One complex variable

Definition

f : Ω→ C on a connected open subset Ω ⊆ C is holomorphic, if it can be
developed locally in a uniformly convergent complex power series.

f(z) =

∞∑
k=0

ck · (z − a)k, a ∈ Ω, ck ∈ C

Some properties of holomorphic f

maximum principle: If |f | attains a local
maximum, then it is constant.

identity theorem: If {z ∈ Ω : f(z) = 0} has
an accumulation point in Ω, then f ≡ 0.

sum, product, composition holomorphic
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Several complex variables

Definition

f : Ω→ C on a connected open subset Ω ⊆ Cn is holomorphic, if it can be
developed locally in a uniformly convergent complex power series.

f(z1, . . . , zn) =
∑

k1,...,kn∈N0

ck1,...,kn ·(z1−a1)k1 · · · (zn−an)kn in (a1, . . . , an)

Basic properties

maximum principle

identity theorem: if f is
locally 0, then f ≡ 0.

sum, product, composition
holomorphic

Definition

A map f : Ω→ Cm with
f = (f1, . . . , fm) on an open
connected subset Ω ⊂ Cn is
holomorphic if each fj : Ω→ C is
a holomorphic function.
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Hartogs’ Phenomenon

A Reinhardt domain Ω ⊆ Cn is such that
(z1, . . . , zn) ∈ Ω =⇒ (λ1z1, . . . , λnzn) ∈ Ω for all λj ∈ C with |λj | = 1.
For n = 1, Ω is an annulus or a disk. In general, Ω is a union of tori.
Every holomorphic function on Ω has a unique Laurent series expansion.

Theorem (Hartogs 1906)

Let K ⊂ Dn be a compact subset
of the open unit polydisk. If
Dn \K is connected, then every
f ∈ O(Dn \K) extends to
F ∈ O(Dn) with F |Dn \K = f .

Proof

Every holomorphic function on Dn \ ρDn has a Laurent series expansion.
Since part of the axes intersect the domain, no negative powers occur,
hence it is a power series.
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Properties of domains

In contrast to the situation in one-variable (Riemann mapping theorem),
simply connected domains in Cn are not all equivalent under holomorphic
transformations.

Theorem (Poincaré 1907)

The ball {|z1|2 + |z2|2 < 1} and the bidisc {max{|z1|, |z2|} < 1} are not
biholomorphically equivalent in C2.

This important observation is at the origin of many of the subsequent
investigations in Several Complex Variables.



Properties of domains

One notable property of domains which is analogous in Cn and C is the
lack of “too many” automorphisms, at least in the bounded case.

Theorem (H. Cartan 1935)

Let Ω ⊂ Cn be a bounded, connected domain. Then any holomorphic
automorphism ψ : Ω→ Ω is determined by its value and its first
derivatives at one point p ∈ Ω (1-jet determination). The set of all
automorphisms of Ω is a finite dimensional Lie group.

On the other hand, the automorphism group of a generic bounded domain
of Cn (n ≥ 2) is trivial. Therefore, one needs to look at other invariants in
order to try to classify domains.



Properties of domains

Given a domain Ω ⊂ Cn and a subdomain U ⊂ Ω, we say that Û ⊂ Cn

containing U is an analytic completion of U if, for any f ∈ O(Ω), f |U
extends holomorphically to Û .

Definition

Ω is called a domain of holomorphy if, for any U ⊂ Ω, all analytic
completions Û of U are contained in Ω.

Roughly speaking, this means that holomorphic functions in Ω cannot be
all extended past any point of bΩ. In fact, one can show that Ω is a
domain of holomorphy iff it is a domain of existence for some f ∈ O(Ω).

This notion is empty in C, but not in Cn (n ≥ 2) due to the Hartogs’
phenomenon. One of the important running threads of SCV has been the
characterization and the study of domains of holomorphy.



Properties of domains

Given a function f : Cn → R of class C2, its Levi form at z is the
hermitian form

Lf(ξ, η) =

n∑
i,j=1

∂2f

∂zi∂zj
(z)ξiηj .

A domain Ω of class C2 is Levi-convex (or pseudoconvex) if the Levi form
of any defining function of bΩ, restricted to the tangent space of bΩ, is
positive semidefinite.

It was recognized by E.E. Levi in 1910 that pseudoconvexity is a necessary
condition for Ω to be a domain of holomorphy. The question of the
converse became known as the Levi problem, and was positively settled by
Oka in 1950 for domains in Cn. Thus, to understand whether Ω is a
domain of holomorphy it is in principle enough to perform a computation
at the boundary.



CR Geometry

Boundaries of domains need not be biholomorphically equivalent.

Example

In C2, the paraboloid S = {Imw = |z|2} and the hyperplane
H = {Imw = 0} are not equivalent. On H, the Levi form is identically
zero, while it never vanishes on S.

In fact it was Poincaré (1907) who also recognized that there are infinitely
many equivalence classes of real hypersurfaces under biholomorphic
equivalence.



CR Geometry

In general, higher codimensional submanifolds of Cn have been studied
too. Given M ⊂ Cn, p ∈M , the subspace T c

p (M) = Tp(M) ∩ iTp(M) is
called the complex tangent space of M .

Definition

We say that M is a CR submanifold if the dimension of T c
p (M) is

constant. This is automatically true in the hypersurface case.

The attempt to classify CR manifolds has been an ongoing program,
leading to many advancements in the field and to a complete solution in
certain classes.



CR Geometry

One of the most important results in this line is the local classification of
Levi non-degenerate hypersurfaces M , that is, those for which the Levi
form does not admit any vanishing eigenvalue.

Theorem (Chern–Moser 1975)

After applying a holomorphic change of coordinates, a defining function
for M can be written in normal form, which in principle solves the
equivalence problem for hypersurfaces in this class.

Several differential-geometric invariants arise as a byproduct of the
construction in Chern–Moser (such as umbilical points, Levi curvature
tensor, chains).



Mittag-Leffler interpolation

Theorem (Mittag-Leffler interpolation, 1876, 1884)

Let Ω ⊂ C be an open subset and let A := {aj}j∈N ⊂ Ω be a closed
discrete subset. Then there exist a meromorphic function f on Ω such that
f has only singularities in A and the principal part fj of f in each aj can
be prescribed.

Rephrasing it as an additive Cousin problem:
Every point aj has a neighborhood Uj with fj ∈M(Uj) such that
f − fj ∈ O(Uj). For each x ∈ Ω \A we have a neighborhood U of x
where already f − 0 ∈ O(U).

Additive Cousin problem

An additive Cousin problem on Ω ⊆ Cn is given by an open cover {Uj}j∈J
of Ω and meromorphic functions fj ∈M(Uj) s.t. fj − fk ∈ O(Uj ∩Uk). A
solution is f ∈M(Ω) s.t. f |Uj − fj ∈ O(Uj).

A meromorphic function is locally the quotient of holomorphic functions.
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Cousin problems

A meromorphic function is locally the quotient of holomorphic functions.

Problem (Poincaré)

Is every meromorphic function on Cn the quotient of two holomorphic
functions?

Theorem (Cousin, 1894)

Every Cousin problem in Cn has a solution (for n = 2).

Corollary (Cousin, 1894)

Every meromorphic function on C2 is the quotient of two holomorphic
functions.
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Stein manifolds

Definition (K. Stein, 1951)

A complex manifold X is called Stein if it is holomorphically convex and
holomorphically separable.

X is called holomorphically separable if for any two points
p, q ∈ X, p 6= q, there exists f ∈ O(X) with f(p) = 0 and f(q) = 1.

X is called holomorphically convex if for any compact K ⊂ X its
O(X)-convex hull K̂ is again compact.

Definition

K̂ = {x ∈ X : ∀f ∈ O(X) |f(x)| ≤ max
K
|f |}

Theorem (Cartan–Thullen 1932)

A domain Ω ⊆ Cn is holomorphically convex if and only if it is a domain of
holomorphy.



Stein manifolds

Definition (K. Stein, 1951)

A complex manifold X is called Stein if it is holomorphically convex and
holomorphically separable.

X is called holomorphically separable if for any two points
p, q ∈ X, p 6= q, there exists f ∈ O(X) with f(p) = 0 and f(q) = 1.

X is called holomorphically convex if for any compact K ⊂ X its
O(X)-convex hull K̂ is again compact.

Definition

K̂ = {x ∈ X : ∀f ∈ O(X) |f(x)| ≤ max
K
|f |}

Theorem (Cartan–Thullen 1932)

A domain Ω ⊆ Cn is holomorphically convex if and only if it is a domain of
holomorphy.



Stein manifolds

Definition (K. Stein, 1951)

A complex manifold X is called Stein if it is holomorphically convex and
holomorphically separable.

X is called holomorphically separable if for any two points
p, q ∈ X, p 6= q, there exists f ∈ O(X) with f(p) = 0 and f(q) = 1.

X is called holomorphically convex if for any compact K ⊂ X its
O(X)-convex hull K̂ is again compact.

Definition

K̂ = {x ∈ X : ∀f ∈ O(X) |f(x)| ≤ max
K
|f |}

Theorem (Cartan–Thullen 1932)

A domain Ω ⊆ Cn is holomorphically convex if and only if it is a domain of
holomorphy.



Stein manifolds

Definition (K. Stein, 1951)

A complex manifold X is called Stein if it is holomorphically convex and
holomorphically separable.

X is called holomorphically separable if for any two points
p, q ∈ X, p 6= q, there exists f ∈ O(X) with f(p) = 0 and f(q) = 1.

X is called holomorphically convex if for any compact K ⊂ X its
O(X)-convex hull K̂ is again compact.

Definition

K̂ = {x ∈ X : ∀f ∈ O(X) |f(x)| ≤ max
K
|f |}

Theorem (Cartan–Thullen 1932)

A domain Ω ⊆ Cn is holomorphically convex if and only if it is a domain of
holomorphy.



Cartan’s Theorems

Theorem (Theorem B, H. Cartan 1951, Serre 1953)

Let S be a coherent sheaf on a Stein manifold X. Then

Hp(X,S) = 0 for p ≥ 1

Example

holomorphic functions O (Oka 1950)

holomorphic functions OY vanishing on a subvariety Y

holomorphic vector bundles

Every short exact sequence of sheaves 0→ F → G → H → 0 induces a
long exact sequence in cohomology

0→ F(X)→ G(X)→ H(X)→ H1(X,F)→ H1(X,G)→ H1(X,H)→

In particular, H1(X,F) = 0 implies that G(X)→ H(X) is surjective.
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Properties of Stein manifolds

Theorem

Every additive Cousin problem on a Stein manifold has a solution.

Proof.

0→ O →M→M/O → 0 leads to

0→ O(X)→M(X)→M/O(X)→ H1(X,O) = 0

Theorem (Weil 1935, Oka 1937, Stein 1951)

Let X be a Stein manifold. Let K ⊂ X with K = K̂. Then every function
holomorphic in a neighborhood of K can be approximated by F ∈ O(X)
uniformly on K.

Theorem (Remmert 1956)

Every Stein manifold can be properly embedded in some CN .
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Oka manifolds

X Stein: many X → Ck

X Oka: many Ck → X

Definition

A complex manifold X is called Oka if is satisfies the Basic Oka Principle
with Interpolation:

Let Y be a Stein manifold and let f : Y → X be a continuous map.
There exists a homotopy of continuous maps ft : Y → X such that
f0 = f and f1 is holomorphic.

Let A ⊂ Y be an analytic subset and let f be holomorphic in a
neighborhood of A. Then we can choose the homotopy ft|A = f |A
for all t ∈ [0, 1].

An analytic subset is a closed subset which is locally the common zero
locus of some holomorphic functions.
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Elliptic manifolds

Gromov introduced the notion of an elliptic complex manifold using
dominating sprays. This condition is much easier to verify.

Theorem (Gromov 1989, Forstnerič–Prezelj 2000)

An elliptic complex manifold is Oka.

Example

1 complex-affine space Cn

2 Complex Lie groups

3 homogeneous spaces of complex Lie groups

4 complex-projective space CPn

5 direct products of Oka manifolds
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Partial differential equations

The antiholomorphic differential ∂f =
∑

j
∂f
∂zj

dzj can be naturally

extended to an operator between forms

∂ : Ω(r,s)(U)→ Ω(r,s+1)(U).

As it turns out, the study of the ∂-equation ∂α = β is deeply
interconnected with the study of the complex geometric properties of
U ⊂ Cn.

Many classical problems can be reformulated in terms of the solvability of
∂, such as the Cousin problems and the existence of a global defining
equation for a complex submanifold.



Partial differential equations

The study of the ∂-equation is often carried out in the space of
functions/forms on U ⊂ Cn which are in L2 with respect to the Lebesgue
measure, or certain special weighted measures (cf. Hörmander 1966)

The space L2O(U) of L2 holomorphic functions on U is called the
Bergman space. Because of the Cauchy formula, the evaluation functionals

L2O(U) 3 f → f(z) ∈ C

are continuous.

The kernel K(z, ·) representing these functionals, called the Bergman
kernel (Bergman 1922), has been extensively studied (see e.g. Fefferman
1974) and used to define an invariant metric on the domain. Its behaviour
is linked to the properties of the boundary of U .



Partial differential equations

One of the fundamental results of the theory is the solvability of ∂ on
pseudoconvex domains:

Theorem

Let U be a pseudoconvex domain, and β be a ∂-closed smooth form on U .
Then there exists a smooth form α on U such that ∂α = β.

One of the consequences of the solvability of ∂ is the equivalence of
domain of holomorphy and pseudoconvex domains (the Levi problem
mentioned earlier).
The Dolbeault Lemma says that the sheaf cohomology of O is the
cohomology of the following sequence:

0→ O → E0,0 ∂→E0,1 ∂→E0,2 ∂→ . . .

hence Hq,p

∂
(X) ∼= Hp(X,O) which vanishes by Cartan’s Theorem B if X

is Stein.
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