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We introduce a class of FBI transforms whose phase functions may have a
degenerate Hessian and present an application of these transforms to the microlocal
analytic hypoellipticity of certain systems of vector fields.
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1. Introduction

This paper introduces a class of FBI transforms that can be used to characterize
the microlocal smoothness and microlocal analyticity of functions. The classical and
more commonly used FBI transform has the form

�u�x� �� =
∫
�m

ei�·�x−x′�−����x−x′ �2u�x′�dx′� x� � ∈ �m (1.1)

where u is a continuous function of compact support in �m or a distribution of
compact support in which case the integral is understood in the duality sense.
This transform characterizes microlocal analyticity (see [14, 18]) and microlocal
smoothness (see [10]) and has been used in numerous works to study the regularity
of solutions of linear and nonlinear partial differential equations.

A more general version of (1.1) has also been used extensively in studying
the regularity of solutions of overdetermined systems of locally integrable complex
vector fields, in particular, in the study of the holomorphic extendability of CR
functions. To describe this more general version, suppose L1� � � � � Ln is a system
of linearly independent, smooth complex vector fields in �m+n where we use the
variables �x� y� for a point in �m+n with x ∈ �m, y ∈ �n. Assume the functions
Zk�x� y� = xk + i�k�x� y�, k = 1� � � � � m are first integrals for the Lj , that is, LjZk = 0
for j = 1� � � � � n and k = 1� � � � � m and the �j are real-valued smooth functions. If
u�x� y� is a continuous function or a distribution and g�x� is a smooth function of
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compact support with g�x� ≡ 1 near 0 ∈ �m, then the more general FBI transform
has the form (see [1, 19]):

�u�z� �� =
∫
�m

ei�·�z−Z�x′�0��−����z−Z�x′�0�2g�x′�u�x′� 0�dZ� (1.2)

where z� � ∈ �m and dZ = dZ1 ∧ � � � dZm. We have used the notations Z�x� 0� =
�Z1�x� 0�� � � � � Zm�x� 0��, and for z = �z1� � � � � zm� ∈ �m, z2 =∑m

j=1 z
2
j . For � ∈ �m

near real space, ��� denotes a branch of the square root of
∑m

j=1 �
2
j .

Among the many works where the transforms (1.1) and (1.2) have been used,
we mention [2–5, 10–13, 15, 18]. In [18] (see also [10, 20]) more general FBI
transforms than (1.1) were considered where the phase function behaved much like
the quadratic phase i� · �x − x′�− ����x − x′�2 in that the real part of the Hessian was
required to be negative definite.

In this paper we introduce a class of transforms where the real part of the
Hessian of the phase function may degenerate at the point of interest. We will
demonstrate by means of a class of examples a situation where it is easier to apply
our transforms than the more classical ones. Examples of the transforms we will
introduce include, for each k = 1� 2� � � � ,

�ku�x� �� =
∫
�m

ei�·�x−x′�−����x−x′ �2ku�x′�dx′� x� � ∈ �m�

Observe that for k > 1, these transforms have a degenerate Hessian at the origin.
There are some instances where all global solutions of a system of vector fields

on a fixed domain � may enjoy certain regularity (like analyticity) at a fixed point
p ∈ � although locally defined solutions may not share that property. A classical
example of this kind is provided by the Bochner extension theorem for tube domains
in �n and its various extensions to CR manifolds as in [7–9]. Another example
is provided in the CR setting by a theorem independently proved by Joricke and
Merker [16] according to which, if a generic CR submanifold � of �n is globally
minimal at a point z ∈ �, then every continuous function u that is CR on all of
� extends to a holomorphic function in a wedge at every point in the CR orbit of
z. The application we present in Section 5 may also be viewed as an example that
applies to global solutions.

There is another definition of microlocal analyticity of a distribution u in �m in
terms of expressing it as the boundary value of holomorphic functions of tempered
growth defined on wedges in �m (see [17]). The equivalence of this definition with
the one using the FBI transform is shown in [18].

The referee pointed out that for the generalized FBI transform introduced in
this work, it is possible to bring into play a semi-classical small parameter as it has
been done in the case of the classical FBI, an approach that leads to alternative
proofs of some of the results presented here thus avoiding a limiting process in the
inversion formula presented in Section 2.

Section 2 introduces a class of FBI transforms for which an inversion formula
is established. Section 3 contains a characterization of the C� wave front using the
transforms in Section 2. In Section 4 we characterize microlocal analyticity using a
subclass of the transforms in Section 2. Section 5 is devoted to applications.
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2. A General Inversion Formula

Consider a function 	 ∈ � ��m� satisfying
∫
	�x�dx = 1. For any number 
 > 0, we

define a “generalized FBI transform” (with generating function 	 and parameter 
)
of a compactly supported continuous function u�x� ∈ C0

c ��
m� by the formula

�	�
u�x� �� =
∫
�m

ei�·�x−x′�	
(���
�x − x′�

)
u�x′�dx′� x� � ∈ �m�

We also consider the FBI transform of a compactly supported distribution u�x� ∈
�′��m� by interpreting the integral as the duality bracket between smooth functions
and the distribution with compact support, i.e.,

�	�
u�x� �� =
〈
u�x′�� ei�·�x−x′�	

(���
�x − x′�
〉
� x� � ∈ �m�

The map u 	→ �	�
u is always injective, in fact, there is an explicit inversion formula.
Let � ∈ � ��m� satisfy

∫
��x�dx = 1 and set

���� = �̂���

�2
�m
�

where �̂ denotes the Fourier transform of �.

Lemma 2.1. Let u�x� ∈ �′��m� and set

u��x� =
∫
�m×�m

ei�·�x−t�������	�
u�t� �����
m dt d�� (2.1)

Then u� → u in �′��m� as � ↘ 0. If u�x� ∈ C0
c ��

m�, u� → u uniformly.

Proof. Assume first that u�x� ∈ C0
c ��

m�. Since
∫
	 = 1, a change of variables shows

that ∫
�m

	
(���
�t − x′�

)���
mdt = 1� x′� � ∈ �m� (2.2)

In the right hand side of (2.1), replace �	�
u�t� �� by its defining formula∫
�m

ei�·�t−x′�	
(���
�t − x′�

)
u�x′�dx′

so as to get a triple integral in (2.1). Since ei�·�x−t�ei�·�t−x′� = ei�·�x−x′�, performing the
integration with respect to t first and taking account of (2.2) we obtain, in view of
the inversion formula for the Fourier transform,

u��x� =
1

�2
�m

∫
ei�·�x−x′��̂����u�x′�d�dx′

=
∫

���x − x′�u�x′�dx′ = �� ∗ u�x��

with ���x� = �−m��x/��. Thus, u� is a standard regularization of u and the lemma
follows. The same proof works for u�x� ∈ �′��m� if we understand the appropriate
integrals as duality brackets. �
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Example 2.1. Choose c > 0 so that 	�x� = ce−�x�4 has integral 1. For 
 = 1/4 we
obtain the transform

�	�
u�x� �� = c
∫
�m

ei�·�x−x′�e−����x−x′ �4 u�x′�dx′� x� � ∈ �m�

analogous to the standard FBI but with a different exponential factor (i.e., e−�x�2

replaced by e−�x�4 ).

Remark 2.1. Although the inversion formula holds for any 
 > 0, we will only
obtain useful FBI transforms for 0 < 
 < 1 as will become clear in the next section.

3. Characterization of the C� Wave Front Set

Let u ∈ �′��m�. We recall that �x0� �
0� 
 WF�u� if there exist � ∈ C�

c ��
m� and an

open cone �0 ∈ � ⊂ �m such that ��x0� �= 0 and

sup
�

���k∣∣��u�̂ ���∣∣ < �� k = 1� 2� � � � (3.1)

We fix 0 < 
 < 1 and 	 ∈ � ��m� and set

�u�t� �� = �	�
u�t� �� =
〈
u�x′�� ei�·�t−x′�	

(���
�t − x′�
)〉
� t� � ∈ �m�

which is a continuous function of t and �, smooth for � �= 0. Note that �u�t� �� may
be regarded, for fixed � ∈ �m, as the convolution of u�x� with the function x 	→
e�·ix	����
x� which is smooth and belongs to the Schwartz space � ��m� if � �= 0.
Furthermore, denoting by N the order of u and recalling that 0 < 
 < 1 we have an
estimate

��u�t� ��� ≤ C
∑
���≤N

sup
x′

∣∣D�
x′
(
ei�·�t−x′�	

(���
�t − x′�
))∣∣

≤ C ′�1+ ����N � t� � ∈ �m�

If u�x� ∈ C0
c ��

m� we have N = 0 in the above estimate, so �u�t� �� is bounded. If
u�x� ∈ C�

c ��
m�, the formula

���u�t� �� = 〈
D�

x′
[
	
(���
�t − x′�

)
u�x′�

]
� ei�·�t−x′�〉 � t� � ∈ �m�

may be used to show that �u�t� �� decreases rapidly as � → �, uniformly in t, since
the right hand side is bounded by C��1+ ����
��� and 0 < 
 < 1.

For t away from the support of u we get better estimates. More precisely, if the
support of u is contained in BR = B�0� R� we have �t − x′� ≥ �t�/2 for �t� ≥ 2R, while
�t − x′� ≥ � for x′ ∈ supp u if dist�t� supp u� ≥ �. It follows that for some constant
c� > 0, �t − x′� ≥ c��1+ �t�� if x′ ∈ supp u and dist�t� supp u� ≥ �. Hence, using the
fact that 	 decreases rapidly at infinity, we obtain for some constants Ck�� > 0,

��u�t� ��� ≤ Ck���1+ ����N (1+ ���
�1+ �t��)−k
�

if dist�t� supp u� ≥ �� � ∈ �m� k = 1� 2� � � � � (3.2)
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showing that �u�t� �� decreases rapidly in �t� �� off supp u×�m. The obvious
commutation formula Dx�u = �Dxu shows that estimates like (3.2) also hold for
the derivatives of �u of any order with respect x.

Let’s now look at the inversion formula, which is obtained as the limit as � ↘ 0
of the functions

u��x� =
∫
�m×�m

ei�·�x−t�������u�t� �����
m dt d� (3.3)

and is valid for u ∈ �′��m�. Fix x0 in the support of u and consider a
smooth partition of unity 1 = �1�t − x0�+ �2�t − x0�+ �3�t − x0�, t ∈ �m, satisfying
0 ≤ �j ≤ 1 and

supp �1 ⊂ ��t� ≤ 2a��

supp �2 ⊂ �a ≤ �t� ≤ A+ 1��

supp �3 ⊂ �A ≤ �t���

for constants 0 < a < A to be chosen later. This partition of unity may be used to
decompose the integral (3.3) into three integrals, so as to obtain

u��x� = u1���x�+ u2���x�+ u3���x� where for j = 1� 2� 3�

uj���x� =
∫
�m×�m

ei�·�x−t�������j�t − x0��u�t� �����
m dt d��

If we take A large enough, �3�t − x0� will be supported away from the support of u
where (3.2) holds. Therefore, for k large enough,

�u3���x�� ≤ Ck

∫
�m

�1+ ����Nd�
∫
�t�≥2R

�1+ ���
�t��−k���
mdt

≤ Ck

∫
�m

�1+ ����N �1+ ���
�m−k+1d� ≤ C ′
k�

showing that u3���x�, 0 < � ≤ 1, is uniformly bounded. Similarly, we may prove that
�D�

xu3���x�� ≤ C�, � ∈ �m
+, 0 < � ≤ 1.

In order to bound u2���x� we write

u2���x� =
〈
u�x′��

∫
�m×�m

�2�t − x0�e
i�·�x−x′������	

(���
�t − x′�
)���
md� dt〉

and are led to consider the function

x′ 	→ v��x
′� x� t� = �2�t − x0�

∫
�m

ei�·�x−x′� �����	
(���
�t − x′�

)���
m d��

On the support of �2�t − x0�, the parameter t is restricted to a ≤ �t − x0� ≤ A+ 1,
and we will further restrict x by imposing that �x − x0� < a/2. Thus, for those values
of x and t, we have

a

2
≤ �x − t� ≤ �x′ − t� + �x − x′� ≤ 2max��x′ − t�� �x − x′��� x′ ∈ �n� (3.4)
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Fix x and t and let’s find a bound for v��x
′� x� t� that does not depend on �. It is

enough to majorize ∫
�m

ei�·�x−x′����������	
(���
�t − x′�

)���
m d� (3.5)

with ���� smooth, supported in ��� ≥ 1 such that ���� ≡ 1 for ��� ≥ 2. If �x′ −
t� ≥ a/4, we have �	(���
�t − x′�

)� ≤ Ck�1+ a���
/4�−k, k ∈ �+, so choosing k large
we get, �v��x′� x� t�� ≤ C�2�t − x0�, with C independent of �. If, on the other
hand, �x′ − t� ≤ a/4, (3.4) shows that �x − x′� ≥ a/4 so writing ei�·�x−x′� = �x −
x′�−2k�−���

kei�·�x−x′� and integrating by parts (here �� denotes the Laplace operator
in the variables �1� � � � � �m) we may bound the integrand in (3.5) by C���
m+2k�
−1�,
with C independent of 0 < � ≤ 1, which is integrable for large k (here we use once
again that 
 < 1). Summing up, we have shown that

�v��x′� x� t�� ≤ C�2�t − x0�� x′ ∈ �m� �x − x0� < a/2�

and a similar reasoning shows that

�D�
x′v��x

′� x� t�� ≤ C��2�t − x0�� x′ ∈ �m� �x − x0� < a/2�

Integrating this with respect to t we see that u2���x� is defined through the action of
u�x′� on a family of functions depending on some parameters x and �. Furthermore,
this family is bounded in C���m� if �x − x0� < a/2 and 0 < � ≤ 1, showing that
�u2���x�� ≤ C, �x − x0� < a/2, 0 < � ≤ 1. Similarly, �D�

xu2���x�� ≤ C�, �x − x0� < a/2,
0 < � ≤ 1. We may now pick up a sequence �k ↘ 0 such that u2��k

�x�+ u3��k
�x� →

w�x� in C� for �x − x0� < a/2. This shows that

u�x� = lim
�→0

u� = lim
�k→0

u1��k
+ w�x�

�= u1�x�+ w�x�� �x − x0� < a/2�

in particular, �x0� �
0� ∈ WF�u� if and only if �x0� �

0� ∈ WF�u1�.

Theorem 3.1. Let u ∈ �′��m�, x0 ∈ �m, �0 ∈ �m and ��0� = 1.

i) Assume that there is a ball B� = B�x0� �� ⊂ �m and an open cone � ⊂ �m\�0�
containing �0 such that

sup
B×�

���k ��u�t� ��� < �� k = 1� 2� � � � � (3.6)

holds. Then �x0� �
0� 
 WF�u�.

ii) Conversely, if �x0� �
0� 
 WF�u� then (3.6) holds for some B� = B�x0� �� and some

open cone � � �0.

Proof. In the proof of i), we will assume without loss of generality that x0 = 0.
According to the considerations above, to prove i) we need only show that �0� �0� 

WF�u1�. Note that by the choice of �1�t�

u1���x� =
∫
��t�≤2a�×�m

ei�·�x−t�������1�t��u�t� �����
m dt d��
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and we are free to choose a > 0 as small as we wish, so we may assume that 2a < �,
i.e., supp �1 ⊂ B�. Choose functions ����, ���� ∈ C���m� such that

(i) ���� and ���� are positively homogeneous of degree 0 for ��� ≥ 1;
(ii) ����+ ���� = 1, � ∈ �m;
(iii) supp � ∩ ���� ≥ 1� ⊂ � ;
(iv) there exists an open subcone �0 ∈ �1 ⊂ � such that supp � ∩ �1 = ∅.
Next, we write u1���x� = A��x�+ B��x� with

�a� A��x� =
∫
B�×�

ei�·�x−t� ����������1�t��u�t� �����
m dt d��

�b� B��x� =
∫
B�×�m

ei�·�x−t� ����������1�t��u�t� �����
m dt d��

Using estimates (3.6) and letting � → 0 in (a) we see that A��x� converges in
C���m� to a smooth function A�x�. Hence, B� converges in �′���x� < a/2�� to a
distribution B�x� and we must show that �0� �0� 
 WF�B�. We may write

B��x� =
〈
u�x′��

∫
B×�m

�����1�t�e
i�·�x−x′������	

(���
�t − x′�
)���
m d� dt

〉
=
∫
�m

ei�·x������������
m
〈
u�x′�� e−i�·x′

∫
B
�1�t�	

(���
�t − x′�
)
dt

〉
d�

which may be written as

B��x� =
∫
�m

ei�·x������������
m
〈
u�x′�� e−i�·x′b�x′� ��

〉
d�� (3.7)

Notice that b�x′� �� = ∫
�1�t�	

(���
�t − x′�
)
dt and its derivatives with respect to x′

have tempered growth in � uniformly in x′, so for fixed 0 < � ≤ 1

������������
m〈u�x′�� e−i�·x′b�x′� ��
〉

is an integrable function and (3.7) means that

B̂���� = �2
�m������������
m〈u�x′�� e−i�·x′b�x′� ��
〉
�

This shows that B̂���� vanishes on �1. Let ��x� ∈ C�
c

(
��x� < a/2�

)
satisfy ��0� =

1 and let ���� ∈ C���m� be positively homogeneous for ��� ≥ 2, with ��2�0� = 1
and supp � ∩ supp � = ∅. Then the pseudodifferential operator p�x�D� ∈ S0

1�0 with
symbol p�x� �� = ��x����� is microlocally elliptic at �0� �0� and p�x�D�B� = 0.
We now consider a properly supported pseudodifferential operator P�x�D� in
��t� < a/2� with symbol p�x� �� (so P�x�D� = p�x�D�+ R�x�D�, with R�x�D� a
regularizing operator) and we let � ↘ 0 to get P�x�D�B� → P�x�D�B = R�x�D�B ∈
C�. This implies that �0� �0� 
 WF�B�.

We now prove ii). We may write u = �u+ �1− ��u = u1 + u2 with � ∈
C�

c ��
m� such that (3.1) holds for some open cone � around �0. We are allowed to

choose ��x� ≡ 1 for �x − x0� small and we do so, in particular, x0 
 supp u2. Since
�u2�t� �� decreases rapidly off the support of u2 it is enough to focus on the decay
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of �u1�t� ��. In other words, we may assume from the start and without loss of
generality that û��� decreases rapidly on � . Choose functions ����, ���� ∈ C���m�

such that

(i) ���� and ���� are positively homogeneous of degree 0 for ��� ≥ 1;
(ii) ����+ ���� = 1, � ∈ �m;
(iii) supp � ∩ ���� ≥ 1� ⊂ � ;
(iv) there exists an open subcone �0 ∈ �1 ⊂ � such that supp � ∩ �1 = ∅.
By the Fourier inversion formula,

u�x′� = 1
�2
�m

∫
eix

′ ·�û���d�

= 1
�2
�m

∫
eix

′ ·�����û���d�+ 1
�2
�m

∫
eix

′ ·�����û���d�

= u1�x
′�+ u2�x

′��

Since û��� decreases rapidly on � , (iii) implies that the integral that defines u1 is
absolutely convergent and repeated differentiation under the integral sign shows
that u1 ∈ C���m�. Note also that u1 ∈ L���m� ∩ L2��m�. Since u is of compact
support, ��u�x� ��� is bounded for ��� ≤ 1 and so in the rest of the proof we may
assume that ��� ≥ 1. Let u11� u12 be smooth functions such that u1 = u11 + u12, u11�x�

has a compact support, and u12�x� is supported on �x � �x� ≥ 2a� for some a > 0.
Clearly �u11�t� �� decreases rapidly. Consider next

�u12�x� �� =
∫

ei�x−x′�·� 	����
�x − x′��u12�x
′�dx′�

For �x� ≤ a and x′ in the support of u12, and for any integer k ≥ 1, there is a constant
Ck > 0 such that

�	����
�x − x′��� ≤ Ck���−k
�x′�−k whenever ��� ≥ 1�

Hence for �x� ≤ a and ��� ≥ 1,

��u12�x� ��� ≤ Ck���−k

∫ u12�x

′�
�x′�k dx′�

Hence �u1�x� �� decays rapidly for x near the origin and it is enough to focus on
�u2�t� ��. Take a function ��x� ∈ C�

c ��
m� with

∫
��x�dx = 1. For � > 0 let

�u2���x� �� =
∫ ∫

eix·�eix
′ ·��−��	����
�x − x′���̂��������û���d� dx′� (3.8)

By (i) and (iv), there is a constant c > 0 such that

� ∈ �1� � ∈ supp � �⇒ ��− �� ≥ c���� (3.9)
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Using the formula �−�x′�
k
(
eix

′ ·��−��
) = ��− ��2keix′ ·��−�� to integrate by parts in (3.8),

we get for large k in view of (3.9):

��u2���x� ��� ≤ Ck

∫
��−��≥c���

���2k

��− ��2k d� ≤ C ′

k���m+2k�
−1�� � ∈ �1

where the constants Ck and C ′
k are independent of �. Since �u2���x� �� converges to

�u2�x� ��, we conclude that �u2�x� �� decreases rapidly as ��� → � in �1. �

4. Characterization of the Analytic Wave Front Set

Taking as a starting point the transform in Example 1.1 we consider next a subclass
of FBI transforms that may be used to characterize not only microlocal smoothness
but also microlocal analyticity as the usual FBI does. Let p�x�, x ∈ �m, be a real,
homogeneous, positive elliptic polynomial of degree 2k, k ∈ 	, i.e.,

p�x� = ∑
���=2k

a�x
�� a� ∈ ��

satisfies

c�x�2k ≤ p�x� ≤ C�x�2k

for some positive constants 0 < c ≤ C. Note that p�
x� = 
2kp�x�, x ∈ �m, 
 ∈ �.
We now take 	�x� = e−p�x� as a generating function and 
 = 1/�2k� as a

parameter and consider the FBI transform

�u�t� �� = cp

∫
�m

ei�·�t−x′�e−���p�t−x′�u�x′�dx′� x� � ∈ �m�

We have dropped any reference to 	 and 
 in the notation of � because they will
be kept fixed throughout this section. The inversion formula is thus

u�x� = lim
�→0

∫
�m×�m

ei�·�x−t� ������u�t� �����m/2kdt d�� (4.1)

We need to recall a fact [6, Theorem V.2.9] and two definitions. In what follows, for
an open set � ∈ �m, 
��� will denote the space of holomorphic functions on �.

Theorem 4.1. Any u ∈ �′��m� can be expressed as a finite sum
∑n

j=1 bfj where each
fj ∈ 
��m + i� ′

j� for some cones � ′
j ⊆ �m, and the fj are of tempered growth.

Definition 4.2. Let u ∈ �′��m�, x0 ∈ �m, �0 ∈ �m\�0�. We say that u is microlocally
analytic at �x0� �

0� if there exist a neighborhood V of x0, cones �
1� � � � � �N in �m\�0�

and holomorphic functions fj ∈ 
�V + i�
j
�� (for some � > 0) of tempered growth

such that u =∑N
j=1 bfj near x0 and �0 · �j < 0 ∀j.

Here we are using the notation �� = �v ∈ � � �v� < ��, and bfj denotes the
boundary value of fj .
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Definition 4.3. The analytic wave front set of a distribution u, denoted WFa�u� is
defined by

WFa�u� = ��x� �� � u is not microlocally analytic at �x� ����

The main result of this section is

Theorem 4.4. Let u ∈ �′��m�, x0 ∈ �m, �0 ∈ �m and ��0� = 1. Then �x0� �
0� 


WFa�u� if and only if there are a neighborhood V of x0, a conic neighborhood � of �0

and constants c1� c2 > 0, such that

��u�t� ��� ≤ c1e
−c2���� �t� �� ∈ V × �� (4.2)

Proof. We may assume that x0 = 0. Suppose �0� �0� 
 WFa�u�. Then to establish
(4.2) we may assume, without loss of generality, that u is the boundary value of a
function f which is holomorphic on a truncated wedge U + i�� where �� = �v ∈ � �
�v� < ��, � is an open cone in �m satisfying

v · �0 < 0� ∀v ∈ � (4.3)

and U is a neighborhood of the origin in �m. Let r > 0 so that B2r = �x ∈ �m �
�x� < 2r� ⊂⊂ U , and 	 ∈ C�

0 �B2r �, 	 ≡ 1 on Br . Fix v ∈ ��. Let

Q�x′� �� x� = i� · �x′ − x�− ���p�x′ − x��

Modulo an exponential decay for x′ near the origin and � ∈ �m, we have:

�u�x′� �� � ��	u��x′� ��

��	u��x′� �� = lim
t→0+

∫
B2r

eQ�x′���x�	�x�f�x + itv�dx

= lim
t→0+

∫
B2r

eQ�x′���x+itv�	�x�f�x + itv�dx�

For 
 > 0 to be determined later, and 0 < t < 
, let

Dt = �x + isv ∈ �m � x ∈ B2r � t ≤ s ≤ 
��

Consider the m-form

eQ�x′���z�	�z�f�z�dz1 ∧ · · · ∧ dzm�

where for z = x + iy, 	�z� = 	�x�. Since 	 ∈ C�
0 �B2r �, by Stokes’ theorem,∫

B2r

eQ�x′���x+itv�	�x�f�x + itv�dx

=
∫
B2r

eQ�x′���x+i
v�	�x�f�x + i
v�dx

+
m∑
j=1

∫
Dt

eQ�x′���x+isv� �	

�zj
�x�f�x + isv�dzj ∧ dz1 ∧ · · · ∧ dzm� (4.4)



48 Berhanu and Hounie

We will estimate the two integrals on the right hand side of equation (4.4). Since
�0 · v < 0, we can get an open cone � containing �0 such that for some c0 > 0, � · v ≤
−c0����v� whenever � ∈ �. To estimate the first integral, observe that for � ∈ �,

�Q�x′� �� x + i
v� = 
�� · v�− c�����x′ − x�2k + O�
2��v�2�
≤ −c0
�v���� + O�
2�����

We can therefore choose 
 small enough such that in the first integral,

�Q�x′� �� x + i
v� ≤ −c0
2

�v���� ∀� ∈ �� (4.5)

For the second integral, we have

�Q�x′� �� x + isv� = s�� · v�− c�x′ − x�2k��� + O�
2����
≤ −c�x′ − x�2k��� + O�
2�����

In this integral, when x ∈ supp ��	/�zj�, �x� ≥ r and so for �x′� ≤ r/2 and 
 small
enough, we can get � > 0 such that

�Q�x′� �� x + isv� ≤ −���� whenever � ∈ �� (4.6)

From (4.4), (4.5) and (4.6), it follows that there exist constants a� b > 0 independent
of t, a neighborhood V of the origin, and a conic neighborhood � of �0 such that∣∣∣∣∫

B2r

eQ�x′���x+itv�	�x�f�x + itv�dx

∣∣∣∣ ≤ ae−b��� for all �x′� �� ∈ V ×�

which implies the same decay for �u�x′� �� on V ×� and proves (4.2).
To prove the converse implication, suppose now that

��u�t� ��� ≤ c1e
−c2��� for �x� �� ∈ V × �

for some conic neighborhood V × � of �0� �0�. We start by invoking the inversion
formula (4.1) and write u�x� = lim�→0 u��x�, x ∈ �m, with

u��z� =
∫
�m×�m

ei�·�z−t�������u�t� �����m/2k dt d�� z ∈ �m� (4.7)

so u��z� is an entire holomorphic function of z. Write the integral in (4.7) as the
sum of two integrals

u��z� = u�
0�z�+ u�

1�z�

by decomposing the domain of integration �m ×�m into two sets:

u�
0�z� = the integral over��t� �� � �t� ≤ a� � ∈ �m��

u�
1�z� = the integral over��t� �� � �t� ≥ a� � ∈ �m��
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We will prove below in Lemma 4.1 that for any choice of a > 0 sufficiently small,
the entire functions u�

1�z� converge to a holomorphic function on some ball B� ⊂ �m

as � → 0. Thus, assuming this fact momentarily and choosing ���� = e−���2 , modulo
the boundary value of a holomorphic function, we have

u�x� � lim
�→0+

∫
�m

∫
�t��t�≤a�

ei�·�x−t�−����2 �u�t� �����m/2k dt d�

where we will assume that �t ∈ �m � �t� ≤ a� ⊆ V . Let �j , 1 ≤ j ≤ N be open, acute
cones such that

�m =
N⋃
j=1

�j and �j ∩�k

has measure zero for j �= k. We can arrange it so that �0 ∈ �1, �1 ⊆ � , �0 
 �j when
j ≥ 2. For 2 ≤ j ≤ N , let �j be open cones such that

�0 · �j < 0 and for some c > 0� v · � ≥ c�v���� ∀v ∈ �j� ∀� ∈ �j �

For each 1 ≤ j ≤ N , and � > 0, define

f�
j �x + iy� =

∫
�j

∫
�t��t�≤a�

ei�·�x+iy−t�−����2�u�t� �����m/2k dt d��

Observe that for 2 ≤ j ≤ N , each f�
j is entire and as � → 0, the f�

j converge
uniformly on compact subsets of the wedge �m + i�j to

fj�x + iy� =
∫
�j

∫
�t��t�≤a�

ei�·�x+iy−t��u�t� �����m/2k dt d�

which is also holomorphic on �m + i�j . Because of the exponential decay of �u�t� ��
on �1 × �t � �t� ≤ a�, in a neighborhood of the origin in �m, the functions f�

1 �x + iy�
converge, as � → 0, uniformly to

f1�x + iy� =
∫
�1

∫
�t��t�≤a�

ei�·�x+iy−t��u�t� �����m/2k dt d��

It is easy to see that in the sense of distributions, for any j,

lim
y→0

fj�x + iy� = lim
�→0

f�
j �x��

Therefore, modulo the boundary value of a holomorphic function,

u�x� = lim
�→0

N∑
j=1

f�
j �x� = lim

y→0

N∑
j=1

fj�x + iy��

Since for j ≥ 2 each fj�x + iy� is of tempered growth on �m + i�j , we conclude that
�0� �0� 
 WFa�u�. The proof is finished except for the claim that the functions u�

1�z�
converge to a holomorphic function, which will be proved below. �
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Lemma 4.1. There exist � > 0 and a holomorphic function U�z� ∈ 
�B�� ⊂ �m such
that lim�→0 u

�
1�z� = U�z�, z ∈ B�.

Proof. It is enough to show that there exist � > 0 and M > 0 such that �u�
1�z�� ≤ M

for any �z� ≤ � and 0 < � ≤ 1. Indeed, in this case �u�
1�0<�<1 will be a normal family

on the ball B� ⊂ �m and we will be able to choose a sequence �k ↘ 0 so that the
sequence �u

�k
1 � converges to a holomorphic function U�z� ∈ 
�B��.

Write u�
1�z�, z = x + iy, as the sum of the three functions

u�
1�z� = I�2 �z�+ I�3 �z�+ I�4 �z�

by decomposing the domain of integration ��t� ≥ a�×� into three sets:

I�2 �z� = the integral over X2
�= ��t� �� � a ≤ �t� ≤ A� ��� ≤ 1��

I�3 �z� = the integral over X3
�= ��t� �� � �t� ≥ A� � ∈ �m��

I�4 �z� = the integral over X4
�= ��t� �� � a ≤ �t� ≤ A� ��� ≥ 1��

where the constant A will be chosen later. We will show that �I�j �z��, j = 1� 2� 3,
remain bounded for 0 < � < 1 and �z� < � if � is small.

Since X2 is a bounded set and �u is a continuous function, it is clear that for,
say, �y� ≤ 1, I�2 �z� is bounded by a constant independent of �.

To bound I�3 �z�, pick some r ≥ 1 such that the ball Br contains the support of u.
Choose A = 2r, so for �t� ≥ A and �x′� ≤ r, �t − x′� ≥ �t�/2 and e−���p�t−x′� ≤ e−c����t�2k ≤
e−c����t�. Hence, ��u�t� ��� ≤ Ce−�t���� for �t� ≥ A and

�I�3 �z�� ≤ C
∫
�t�≥A

e�y����e−�t����/2���m/2k dt d�

≤ C
∫
�t�≥A

e�y����e−A���/4e−�t����/4���m/2k dt d�

≤ C
∫
�m

e�y����e−A���/4���− m�2k−1�
2k d� ≤ C ′

if �y� ≤ A/8. Finally, to estimate I�4 �z�, we write for z = x + iy ∈ �m,

I�4 �z� =
∫
a≤�t�≤A

dt
∫
�x′ �≤r

dx′
∫
���≥1

ei�z−x′�·�−p�t−x′����−����2u�x′����m/2k d��

Let s > 0 be a small number to be chosen later. Note that the function � 	→ log ���
has a holomorphic extension log��� in the region �Im �� < ����, where

log��� = 1
2
log

(
m∑
j=1

�2j

)
= log

(
m∑
j=1

�2j

)1/2

and an appropriate branch of the log is taken. In particular, the functions � 	→
���1/�2k� and � 	→ ��� are holomorphic on that region and the latter extends � 	→ ���.
For x� x′ fixed, we will change the integration in � from the m-cycle ���� ≥ 1� ⊂
�m ⊂ �m to the cycle in �m formed by the union of the finite cylinder

��+ i�s�x − x′� � ��� = 1� 0 ≤ � ≤ 1�
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with the graph of the map

���� = �+ is����x − x′�� � ∈ �m� 1 ≤ ��� < ��

The result of the integral does not change because the form

���m/�2k� exp
(
i�z− x′� · �− p�t − x′���� − ����2

)
d�

is exact (we have used the notation ���2 =∑m
j=1 �

2
j ). The integral over the cylinder

is easily bounded by a constant independent of �. To estimate the integral over the
second portion of the cycle we observe that the real part of the exponent is, for
�x�� �y� < �,

�(i�z− x′� · �− p�t − x′���� − ����2
)

≤ −(�x − x′�2s − �y� + p�t − x′�
)��� + ����2(1− s2�x − x′�2)

≤ (
�− s�x − x′�2 − p�t − x′�

)���
assuming that we take s = s��� r� sufficiently small to guarantee that s2�x − x′�2 ≤
1/2 for �x� ≤ � and �x′� ≤ r. Note that the function

x′ 	→ �− s�x − x′�2 − p�t − x′� ≤ �+min
(−s�x − x′�2�−p�t − x′�

)
is clearly bounded by

�− c�t − x′�2k ≤ �− c
(a
2

)2k
for �x′� ≤ a/2

(recall that �t� ≥ a) and by

�− s�a/4�2 for �x′� ≥ a/2�

provided that we take � < a/4. Hence, choosing � > 0 sufficiently small, we may
bound the integrand on the second portion of the cycle by e−c��� for some
c > 0. This shows that �I�4 �z�� ≤ C for �z� < �. Summing up, we have shown that
sup0<�≤1 �u�

1�x + iy�� < � if �x� + �y� < � provided � > 0 is small enough, as we
wished to prove. �

5. Applications and Examples

Let x = �x1� � � � � xm� and t = �t1� � � � � tn� denote the variables in �m and �n

respectively. Let U ⊂ �n be a connected open set and � = ��1� � � � � �m� � U → �m

be a Lipschitz continuous map. Let

Z�x� t� = �Z1�x� t�� � � � � Zm�x� t��� where Zj�x� t� = xj + i�j�t��

Consider the system of associated vector fields on �m × U defined by

Lj =
�

�tj
− i

m∑
k=1

��k�t�

�tj

�

�xk
� 1 ≤ j ≤ n�
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Note that LjZk = 0 for j = 1� � � � � n and k = 1� � � � � m. Let Br�0� ⊂ �m denote the
open ball of radius r > 0 and set � = Br�0�× U . If h�x� t� is a Lipschitz continuous
solution in � of the system of equations

Ljh = 0� 1 ≤ j ≤ n� (5.1)

we are interested in the analytic wave-front set of the function h0�x� = h�x� 0� that
will be denoted by WFa�h0�. We will assume that 0 ∈ U and ��0� = 0.

Theorem 5.1. Let �0 ∈ �m\0, ��0� = 1, t∗ ∈ U\0 and � ⊂ U be a Lipschitz curve with
0 and t∗ as its endpoints satisfying for some � > 0

(1) −��t∗� · �0 ≥ �7,
(2) ���t�� ≤ �2 for t ∈ �.

There exists �0 > 0 such that if 0 < � ≤ �0 and h is any Lipschitz continuous solution
of (5.1) in � = Br�0�× U , then �0� �0� 
 WFa�h0�.

Proof. Since we are allowed to shrink Br�0� and � > 0 will be taken small, there is
no loss of generality in assuming that r2 = � and we will do so. Let g ∈ C�

0 �Br�0��,
g�x� ≡ 1 for �x� ≤ r

2 . For �x� �� ∈ �m ×�m, consider the integral

F�x� t� �� =
∫
�m

eQ�x�y�t���g�y�h�y� t�dy�

where

Q�x� y� t� �� = i�x − Z�y� t�� · �− K����x − Z�y� t��4�

where K > 0 will be determined later. Here for z ∈ �m, we have used the notation

z4 =
(

m∑
j=1

z2j

)2

�

Let

I�x� �� =
∫
�m

∫
�
eQ�x�y�t���L

(
g�y�h�y� t�

)
dt dy�

where

Lf�y� t�dt =
n∑

j=1

Ljf�y� t�dtj

is a one-form on U depending on the variable y. Integration by parts and the fact
that LjZk = 0 lead to

I�x� �� = F�x� t∗� ��− F�x� 0� ��� (5.2)
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Note that choosing p�x� = �x�4 and 	�x� = e−���p�x� we have 	����1/4x� = e−���p�x� and
we may write

F�x� 0� �� =
∫
�m

ei�x−y�·�	����1/4�x − y��g�y�h�y� 0�dy�

=
∫
�m

ei�x−y�·�e−���p�x−y�g�y�h�y� 0�dy�

which means that F�x� 0� �� = ��gh0��x� �� is the FBI transform of gh0 with � in
the class considered in Section 4. Hence, to prove the theorem, it will be enough to
show that for some constants C1 > 0, c2 > 0, the estimate

�F�x� 0� ��� ≤ C1e
−c2���

holds for �x� �� in a conic neighborhood of �0� �0� and then the result will follow
from Theorem 4.4. By (5.2), such an estimate will follow if we show that I�x� �� and
F�x� t∗� �� decay exponentially as ��� → � in some conic neighborhood of �0� �0�.

Let E�x� y� t� �� = −�Q�x� y� t� ��. Observe that

�eQ�x�y�t���� = e−E�x�y�t����

We will first estimate E�x� y� t� �� at x = 0 and � = �0. We have:

E�0� y� t� �0� = −��t� · �0 + K��Z�y� t�4�� (5.3)

Note next that if z = �z1� � � � � zm� with zj = xj + iyj for each j, then

��z2� = �
( m∑

j=1

z2j

)
= �x�2 − �y�2 and ��z2� = �

( m∑
j=1

z2j

)
= 2�x · y��

Therefore, setting w = z2 =∑m
j=1 z

2
j , we have

��z4� = ��w2�

= ��w�2 − ��w�2
= ��x�2 − �y�2�2 − 4�x · y�2
≥ �x�4 + �y�4 − 6�x�2�y�2� (5.4)

From the latter inequality, it follows that

��Z�y� t�4� ≥ �y�4 + ���t��4 − 6�y�2���t��2� (5.5)

From (5.3) and (5.5) it follows that

E�0� y� t� �0� ≥ −��t� · �0 + K��y�4 + ���t��4 − 6�y�2���t��2�� (5.6)

In particular, when t = t∗, for any �y� ≤ r, using the assumptions in the theorem,
we have:

E�0� y� t∗� �0� ≥ �7 + K��y�4 − 6�4�y�2�� (5.7)
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The expression �y�4 − 6�4�y�2 is a quadratic expression in s = �y�2 which attains a
minimum value of −9�8 and hence we conclude that

E�0� y� t∗� �0� ≥ �7 − 9K�8 = �7�1− 9K��� (5.8)

Observe that in the integrand of F�x� t� ��, since h�y� t� is a solution, and g ≡ 1 for
�y� ≤ r

2 , the term L�g�y�h�y� t�� is supported in the ball �y� ≤ r
2 . We will estimate the

quantity E�0� y� t� �0� when �y� ≥ r
2 and t ∈ �. For such y and t, using (5.6) and the

assumptions of the theorem, we get for any � > 0 sufficiently small (� < 1/�192�1/3

will do):

E�0� y� t� �0� ≥ −��t� · �� + K��y�4 + ���t��4 − 6�y�2���t��2�

≥ −�2 + K

(
r4

16
− 6r2�4

)
= −�2 + K

(
�2

16
− 6�5

)
≥ �2

(
K

32
− 1

)
and hence, for K ≥ 64,

E�0� y� t� �0� ≥ �2� (5.9)

Thus, if we choose K = 64 to grant (5.9) and pick �0 < 1/576, for any 0 < � < �0,
the right hand side of (5.8) will also be positive. Observe next that since the function
E�x� y� t� �� is homogeneous of degree one in �, (5.8) and (5.9) imply that there is a
neighborhood V of the origin in �m, and an open cone � ⊂ �m containing �0 such
that for some C > 0,

E�x� y� t∗� �� ≥ C ∀�x� �� ∈ V × �� y ∈ supp g� (5.10)

and

E�x� y� t� �� ≥ C ∀�x� �� ∈ V × �� t ∈ � and �y� ≥ r

2
� (5.11)

The theorem follows from estimates (5.10) and (5.11). �

Remark 5.1. The theorem above holds under the weaker assumption that h�x� t� is
just continuous and essentially the same proof works; in that case the integral that
defines the auxiliary function I�x� �� can be given a sense by integrating by parts. In
the case ��t� is smooth, the theorem holds for distribution solutions h�x� t�.

Next we indicate why it does not seem to be easy to use the usual FBI in order
to prove the preceding theorem. Let

F2�x� t� �� =
∫
�m

eQ2�x�y�t���g�y�h�y� t�dy�

where

Q2�x� y� t� �� =
√−1�x − Z�y� t�� · �− K����x − Z�y� t��2�
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Here for z ∈ �m, we are using the notation

�z�2 =
m∑
j=1

z2j �

Let E2�x� y� t� �� = �Q2�x� y� t� ��. Assuming as before that ��0� = 1, we have

E2�x� y� t
∗� �0� = −��t∗� · �0 + K��x − y�2 − ���t∗��2��

Suppose now that −��t∗� · �0 = �7 and ���t∗�� = �2 so

E2�x� y� t
∗� �0� = �7 + K��x − y�2 − �4��

In particular,

E2�x� x� t
∗� �0� = �7 − K�4�

a quantity which will be negative unless K < �3. However, if K < �3, when �y� ≥ r
2 ,

the term E2�x� y� t� �
0� may become negative. In fact, this will actually occur if say

sup���t� · �0 ≥ C�3 for some C > 0.
Microlocal analyticity results for solutions of the system (5.1) were proved in

the work [4]. For comparison with the theorem in this section, we recall the main
result, [4, Theorem 1.1].

Theorem 5.2 (Theorem 1.1 in [4]). Let �0 ∈ �m\0 and assume that there are t∗ ∈
U\0 and a Lipschitz curve � ⊂ U with 0 and t∗ as its endpoints satisfying:

(1) −��t∗� · �0 > 0,
(2) supt∈����t�� < r,
(3) ���t∗��2supt∈���t� · �0 < �r2 − supt∈� ���t��2��−��t∗� · �0�.
If h is any Lipschitz continuous solution of �1�1� in � = Br�0�× U , then �0� �0� 

WFa�h0� (h0�x� = h�x� 0�.

Observe that in a situation in which conditions (1) and (2) of Theorem 5.1 are
fulfilled, conditions (1) and (2) of Theorem 5.2 will be satisfied as well. However,
in general, condition (3) of Theorem 5.2 may fail to be satisfied. For example if in
addition to the conditions of Theorem 5.1, we have that

sup���t� · �0 = �2�

then the third condition in Theorem 5.2 will not be satisfied.

Example 5.1. Let ��t� � �−1� 1� −→ � be a nondecreasing smooth function, with
derivative �′�t� = b�t� ≥ 0. Consider the vector field

L = �

�t
− ib�t�

�

�x

defined on � = �−1� 1�× �−1� 1� ⊂ �2. Then L is known to be smoothly globally
solvable on �. Recall that the vector field L is said to be globally hypoelliptic on �
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if and only any u ∈ �′��� that satisfies Lu ∈ C���� is necessarily smooth. It is also
known that

L is globally hypoelliptic if and only if

(♣) for every −1 < t < 1 there exist points −1 < t1 < t < t2 such that b�t1� > 0 and
b�t2� > 0.

We will show how Theorem 5.1 can be used to prove that �♣� implies the global
hypoellipticity of L. If Lu = f ∈ C����, we may find v ∈ C���� such that Lv = f ,
which is the same as saying that h = u− v satisfies Lh = 0. Hence, L is globally
hypoelliptic if and only if all distribution solutions h of Lh = 0 are smooth. Assume
without loss of generality that ��0� = 0 and sup ��� < 1. Obviously, �♣� implies that
we may find a point 0 < t∗ < 1 such that ��t∗� > 0 and since ��t� is monotonic (1)
and (2) of Theorem 5.1 are fulfilled with �0 = −1, �7 = ��t∗� < �2 and � = �0� t∗�
(see Remark 5.1 about distribution solutions). It follows that �0�−1� 
 WFa�h0�.
Similarly, we may find a point −1 < t∗ < 0 with ��t∗� < 0 and conclude that �0� 1� 

WFa�h0�. It follows that h0�x� is real analytic at the origin, say h0�x� =

∑�
j=1 ajx

j

near the origin. Consider then the function

H�x� t� =
�∑
j=1

aj�x + i��t��j

which satisfies LH = 0 near �0� 0� and H�x� 0� = h0�x� = h�x� 0�. By uniqueness in
the Cauchy problem for locally integrable vector fields, it follows that h�x� t� =
H�x� t� near the origin. The same reasoning may be applied to any point �x0� t0�
by considering the trace at t = t0 of h�x� t� which leads to the conclusion that
h ∈ C����.

Remark 5.2. The situation in Example 5.1 is quite simple and the fact that
�♣� implies the global hypoellipticity of L can be (and has been) proved in
many different ways (construction of parametrices, propagation of singularities,
representation of homogeneous solutions by means of a global first integral, etc.).
The point of including it here is to illustrate in a very simple setting that FBI
transforms can be powerful tools.
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