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 A Microlocal Version of Bochner' s
 Tube Theorem

 M. S. BAOUENDI & F. TREVES

 Introduction. The classical Bochner's theorem states that any holomorphic
 function in a tube R" + i Ü C C", with H a domain in R", extends holomorphically
 to R" + i ch il (ch : convex hull).
 This result has been generalized to "tuboïds" IT + iil (with ft' also a domain

 in R") by H. Komatsu [9] (of course, in this case one cannot extend the holo
 morphic functions to convex hulls). A different generalization, in which ft +
 i R" is replaced by M + i'R", with M a submanifold of R", has been obtained by
 Kazlow [8], This, needless to say, is a very small portion of the literature of the
 so-called CR functions. Noteworthy in this area are the paper of H. Lewy [10]
 and the book of Hörmander [6] (see also Hill [3], Hunt-Wells [7], etc.).
 The present article contains a microlocal version of Bochner's theorem. Al

 though we prefer to reason on the analytic wave-front set of the CR-functions,
 our results can be rephrased in terms of holomorphic extensions inside "short"
 cones with vertices at points of the "tubo'id manifold." In the tube case the geo
 metric equivalent of analytic hypoellipticity (see below) has been announced in
 Hill-Kazlow [4].

 Actually we analyze a somewhat more general situation: we study the functions
 (or distributions) annihilated by systems of pairwise commuting vector fields
 whose coefficients reflect the tube aspect of the situation. In this setup we com
 pletely characterize the analytic wave-front set of those solutions. Among other
 things this yields necessary and sufficient conditions for analytic hypoellipticity
 of the systems under consideration.

 I. The basic result and its corollaries. We shall denote by t = ,,tm)
 the variable in Rm and by x = («p.. .,x„) the variable in R". Let U denote an open
 and connected subset of Rm, <j> a Lipschitz continuous mapping U —* R". We shall
 use the notation

 (1.1) z = x + i 4>(r), I = V-1,

 and z = (z,,... ,z„) £ C\ z, = x, + i<j>,(r). We consider the associated complex
 vector fields in U x R":

 a a<t>, a
 (1.2) = — — (t)-~, j = I,

 dtj 0f,- ax,

 885
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 886 M. S. BAOUENDI & F. TREVES

 We have

 (1.3) LjZk = 0 j = \, ...,m,k = \,

 Let V be an open subset of R". We shall write

 (1.4) a = U XV.

 If A is a Lipschitz continuous solution in fl of the system of equations

 (1.5) Ljh = 0, j = 1, ..m,

 and t° 6 U, we are interested in the analytic wave-front set of the function x
 h(t°,x). More precisely if x° 6 V and £° E R"\0, we shall give a sufficient con
 dition insuring that (x°,^°) is not in the analytic wave-front set of h(t°,x).
 It is convenient to assume in the sequel that the central point (t°,x°) is the origin

 of Rm X R" and that V is an open ball centered at the origin of R" of radius
 r > 0. If h is a Lipschitz solution in O of (1.5), we shall write

 (1.6) h0(x) = h(0,x).

 We also assume that <j>(0) = 0.

 Theorem 1.1. Let £° £ R"\0 and assume there are t* G CA0 and a Lipschitz
 curve y in U with 0 and t* as its endpoints satisfying:

 (1.7) -<Mf*)-Ê°>o,

 (1.8) sup |<(>(0| < r,
 re-/

 (1.9) |c(>(t*)|2 sup «KO • e < [r2 ~ sup |c|>(t)|2][-(J)(t*) • £°]
 rE-y t&y

 Then if h is any Lipschitz continuous solution of (1.5) in (I, (Of") is not in the
 analytic wave-front set of h0 defined by (1.6).

 Proof. For the sake of simplicity we shall assume |£°| = 1. Let e, 0 < e < 1,
 and K > 0 to be determined later. Let g G Cq(V), g(x) = 1 for |x| < (1 - e)r.
 If h is a Lipschitz solution of (1.5) in fI and (x,£) G R2", consider the integral

 (1.10) /(*,©= L{g(y)h(tiy)]dtdy.

 We have used the notation z2 = zj, and

 Lf(t,y)dt = Yj Ljf(t,y)dtj
 7=1

 which is a one-form on U depending on y.
 Integrating (1.10) by parts with respect to t and y and using (1.3) we obtain

 (1.11) /(*,© =/*(*.© "/o(*,0
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 BOCHNER'S TUBE THEOREM 887

 with

 (1.12) /*(*,©= I g(y)h(t*,y)dy
 lRn

 (1.13) /„(*,©= | g(y)h0(y)dy.
 Rn

 In order to show that (0,^°) is not in the analytic wave-front set of h0 it suffices
 to show that the estimate

 (1.14) \l0(x,®\<Ce-®/c,

 with C > 0, holds for (*,£) in a conic neighborhood of (0,£°) (see Sjöstrand [11]).
 In view of (1.11) we shall actually prove similar estimates for /(*,£) and /*(*,£).

 First note that we have

 Je»'Cc—y—«"«}>(»))■€—*(*—y—i<J>(t))2l€lJ _ g-EU.x.y.tM

 with

 (1.16) E(t,x,y,Q = -<t>(01| + K[\x - y|2 - |4>(r)|2].
 On the other hand if y 6 supp g, we have

 E(t,x,y,Q ^ — <t>(0 * €° + *(|y|2 - |4>(0|2)

 (1.17)
 f

 - 2Kr\x\. - I<K0|

 If r0 > 0, p0 > 0 we write

 to

 lei

 r(r0,p0) = \ (x& : \x\ < r0,
 _2 to

 1*1
 < Po •

 Making use of (1.8) we have for (jc,Q G r(r0,p0) and t G 7,

 (1.18) E{t,x,yX) a ~<K0 ■ e + K(\y\2 - |<|>(0|2) - rp0 - 2Krr0.

 Estimate of /*(*,£). It follows from (1.18) that we have

 (1.19) E{t*,x,y,0 > —4>(r*) • f - K\<$>(t*)\2 - r(p0 + 2Kr0).

 Therefore if

 —4»(/*) • C°
 (1.20) 0<K< V V

 l<t>(f*)l

 and r0, p0 are small enough we get
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 M. S. BAOUENDI & F. TREVES

 E(t*,x,y,i) > c > 0

 for (*,£) G r(r0,p0) and y G supp g, which proves an estimate of the type (1.14)
 for /#(*,£).

 Estimate of I(x,Ç). Since h satisfies (1.5) and g(y) = 1 for |y| < (1 - e)r, in
 integral (1.10) we have (1 - e)r < |y| < r, and from (1.18) we get

 (1 21) E(t,x,y,i) > -4>(r) • |° + K[(\ - e)V - |4>(t)|2]
 - r(p0 + 2Kr0).

 Now using (1.8) and (1.9) we can choose e, 0 < e < 1, satisfying

 sup|<t>(f)| < (1 - e)r,
 •e 7

 |<{,(r*)|2 sup cf>(0 • i? < [r2( 1 - e)2 - sup |<}>(0|2][-<f>('*) • €°],
 /E-y tGy

 and then K > 0 satisfying

 (L22) Al-e)!-sup|«l)|!<Ar< WW '
 t&y

 Note that (1.22) implies (1.20). Again choosing r0 and p0 small enough we obtain
 from (1.21) and (1.22) that for t 6 y, (x,Ç) E r(r0,p0) and (1 - e)r < \y\ ^ r,

 E{t,x,y&) > c> 0,

 which yields an estimate of the type (1.14) for I(x,£). Q.E.D.

 We give some corollaries of Theorem 1.1.

 Corollary 1.1. Let (j° E R„\0 and assume there is a Lipschitz curve y0 in U
 with 0 as its endpoint satisfying

 (1.23) 4>(0-4° < 0 for all t E y0\0.

 Then for any Lipschitz continuous solution h of (1.5) defined in some neighbor
 hood of the origin ofW X R", (0,£°) is not in the analytic wave-front set of h0.

 Proof. Possibly by shrinking U we can assume that h is defined in U x V,
 where V is a ball centered at the origin of radius r > 0.

 We claim that the assumptions of Theorem 1.1 are satisfied. Indeed we can
 choose t* £ IAO close enough to 0 so that if y is the portion of y0 joining 0 and
 t* we have (1.8). Condition (1.7) follows from (1.23). Condition (1.9) is valid
 since sup <)>(r) * ü0 = 0 (which also follows from (1.23) and the fact that <t> (0) =

 <£•y

 0). Corollary 1.1 is then a consequence of Theorem 1.1. Q.E.D.
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 BOCHNER'S TUBE THEOREM 889

 Corollary 1.2. Let £° 6 R"\0. Assume there is t* 6 U such that (1.7) holds.
 Then if h is a Lipschitz continuous solution of (1.5) in U X R" then (0,£°) is not
 in the wave-front set of h0.

 Proof. Let y be any Lipschitz curve connecting 0 and t*. Choosing r large
 enough so that (1.8) and (1.9) hold, Theorem 1.1 can be used. Q.E.D.

 If (av) and (bv) are two sequences of real numbers, bv > 0, we write

 a„ << b„

 It

 lim
 V—>cc

 max I 0, —  = 0.

 Corollary 1.3. Let £° G R"\0. Assume there is a sequence tv G U\0,
 lim tv — 0 and a sequence ofLipschitz curves yv with endpoints 0 and tv satisfying
 V—

 (1.24) <J»(O-e°<0,

 (1.25) lim [sup !<}>(f)|] = 0,
 v—>oo rG*yv

 •0 (1.26) |<M'v)|2 sup <|>(0 • C° « - <KO ■ £

 Then the conclusion of Corollary 1.1 holds.

 Proof. Possibly by contracting U we can assume that h is defined in U x V
 where V is a ball centered at the origin of R" with radius r > 0. In view of (1.25)
 there is v0 G Z+ such that if v > v0, tv G U and

 (1.27) sup |<t>(0| < —-=■
 »e* V 2

 Making use of (1.26) there is v, > v0 such that

 (1.28) l4>(fv,)l2 sup [<K0 -a<r~ [-<KO • €°].
 7vi 2

 Choosing t* = tVi, y = yvi, (1.7), (1.8) and (1.9) follow immediately from (1.24),
 (1.27) and (1.28), therefore Theorem 1.1 can be applied Q.E.D.

 Remark 1.1. The sign conditions of the type (1.7), (1.23) are essential in the
 previous results. If 4>(0 • £° ^ 0 for all t E U then there is a Lipschitz function
 h satisfying (1.5) such that (0,^°) is in the analytic wave-front set of h0. Indeed
 take

 0x3/2
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 890 M. S. BAOUENDI & F. TREVES

 with the principal determination of £3/2 for £ 6 C, Iml ^ 0. It is easy to check
 that (0,£°) belongs to the analytic wave-front set of h0(x) = (x • £°)3/2.

 If 4> is a real-analytic function, we can give a complete characterization of the
 analytic wave front set of h0. We have

 Corollary 1.4. Let £j° G R"\0 and assume (|> to be real analytic in U. Then
 the following conditions are equivalent:

 i) The origin of R" is not a local minimum of the function t cb (?) • £°.
 ii) For every distribution h defined in some neighborhood of 0 in R"+m and

 satisfying (1.5), (0,4°) is not in the analytic wave-front set of h0.

 Proof. The fact that ii) implies i) follows from Remark 1.1. It remains to
 show that i) implies ii). Assume that i) holds. Consider the set

 S = {re u : <t>(0£° < 0}.

 Since <))(0) = 0 and the origin is not a local minimum of <|>(/) • £° we conclude
 that S is not empty and that the origin is in the closure of S. Because 5 is a
 subanalytic set, we can find an analytic curve y0 starting from the origin such that
 {-y0\0} C S (see for example Hironaka [5]). If h is a C1 solution of (1.5) defined
 in a neighborhood of the origin, the conclusion (i.e. condition ii)) follows from
 Corollary 1.1. If h is a distribution solution of (1.5) in some neighborhood of the
 origin Cl', it is shown in [1] that, possibly after shrinking ft', we can write

 " d2
 h = A "J where Ax = ^ Tr

 ;=1 3xj

 qE Z+ and/E C'(fi') satisfying (1.5). From the preceding step we conclude
 that (0,£°) is not in the analytic wave-front set of /(0,x); since h0(x) =
 A*/(0,x), the sought conclusion (i.e. condition ii)) immediately follows.

 Q.E.D.

 II. Application to analytic hypoellipticity. We assume in this section that
 (j> is real analytic in an open connected set U of Rm. We denote by L the family
 of vector fields Lx, ..., Lm defined by (1.2) in U x R". As in [1] we introduce
 the following definition.

 Definition 2.1. We say that L is analytic hypoelliptic at (t°,jc°) 6 U X R" if
 any distribution u in some open neighborhood w of (t°,x°), such that LjU is analytic
 in to, for y = 1 m, is itself analytic in a possibly smaller open neighborhood
 w' of (r°,jc°).

 We say that L is analytic hypoelliptic in a subset of U X R" if L is analytic
 hypoelliptic at each point of that subset. Since the coefficients of Lj are indepen
 dent of x, it is clear that L is analytic hypoelliptic at (t°,x°) £ [/ x R" if and only
 if L is analytic hypoelliptic in {f0} x R". We have:
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 BOCHNER'S TUBE THEOREM 891

 Proposition 2.1. The system L is analytic hypoelliptic at (t ,x ) £ U x R" if
 and only if for every distribution h defined in some neighborhood of (t°,x°) and
 satisfying (1.5), the distribution h(t0,-) is analytic in some neighborhood of x°.

 Proof. It is clear that the condition given above is necessary for the analytic
 hypoellipticity of L at (t°,x°). Let us prove that it is sufficient. Assume that u is

 a distribution in an open neighborhood of (t°,v°) such that LjU = f is analytic
 near (t°,x°) for j = 1, ..m. We can find an analytic function v near (r°,jc°) such
 that

 LjV =f j = 1, ...,m\

 therefore, L;(« - v) = 0 for j = I, m. Assuming that the condition stated in
 the proposition holds, we conclude that u(t0,-) is analytic in some neighborhood
 of x°. By a standard argument (Cauchy-Kovalevky and Holmgren type theorems
 easily derived for the system L) we conclude that u itself is analytic in some
 neighborhood of (/°,jc°). Q.E.D.

 The following result is an immediate consequence of Corollary 1.4 and Prop
 osition 2.1.

 Theorem 2.1. The systemL is analytic hypoelliptic at (t°,x°) EUX R" if and
 only if for every Ç G R"\0, t° is not a local extremum of the function t h>
 <K *)•€•

 Example 2.1. Maire's example. Take m = n = 2,

 <t>,(0 = -3 tu

 4*2(0 = (hh "f" 1) h'

 It is shown in [1] (by different methods) that the corresponding system (LVL2)
 is analytic hypoelliptic in R4. Making use of Theorem 2.1 such a result is now
 straightforward.

 Case of a single vector field. Take m = 1. Let <j> be an analytic function in an
 open set U of R, valued in R" and

 (2.1) L = - ~ i Y — « —
 dt ffi. dh dxt

 Let t° G U, the Taylor expansion of <|> at t° can be written
 oo

 (2.2) <mo-<=  *'V
 p= 1

 with vp G R". We have:

 Corollary 2.1. Let t° G U and x° G R", the vector field L is analytic hy
 poelliptic at (t°,x°) if and only if the vectors v's given in (2.2) satisfy:
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 892 M. S. BAOUENDI & F. TREVES

 i) The vp's span all of R".
 ii) If p is even then vp is a linear combination of vk, 1 <i<p - 1.

 Proof. Making use of Theorem 2.1 we must show that i) and ii) are equivalent
 to the fact that for every £ 6 R"\0, t° is not a local extremum of <f>(7) * £. Assume
 i) and ii) hold and let £ E R"\0. We have

 oo

 (2.3) <ko • i - <t>e°) • € = 2 « ~ • *•
 p=i

 There is at least one p such that vp • £ ¥" 0, and the first such p is necessarily odd,
 which proves that t0 is not a local extremum of 4>(r) • Conversely, if t0 is not
 a local extremum, then the series (2.3) must start with a nonzero odd term for
 every choice of ^ E R"\0, which easily implies i) and ii). Q.E.D.

 Example 2.2. Let pk G Z+ for k = I, ..., n. The vector field

 d A d
 - + I y —
 dt £ d**

 is analytic hypoelliptic at the origin of R"+1 if and only if the pk's are even and
 distinct.

 III. Extendability of CR functions. Let U be an open set of Rm and 4> a
 Lipschitz continuous mapping U —* R". Let V be an open set of R". We shall
 denote by z(U x V) the image of U x V under the mapping z defined by (1.1),
 regarded as a subset of C".

 Definition 3.1. A function u defined on the set z(U x L) is said to be Lip
 schitz continuous, if its pull-back via z, û = u 0 z, is Lipschitz continuous on
 (7xL. Moreover u is said to satisfy the induced Cauchy-Riemann equations, or
 to be a CR function, if ü satisfies Equation (1.5) in U x V.

 Some justification for this definition is needed. We observe that the push via
 z of Lj, 1 < j < m, regarded as a complex vector field tangent to U x V at (t,x)
 is equal to

 " d d A ô<t>*(r) d
 (3.1) 2 {L> z*> T + (Lj z~0 TT = "2/ 2 k=1 dzk dzk dtj dzk

 where we have used (1.3). If <j> is, say of class C1, and the image of U is an
 immersed submanifold of R", the vector fields (3.1) span the entire Cauchy-Rie
 mann operator tangent to z(U x V) as (t,x) varies in U x V. In this case a is a
 CR function according to our definition if and only if u satisfies the usual induced
 Cauchy-Riemann equations, i.e. u is annihilated by all complex vector fields tan
 gent to z(U x V) which are linear combinations of d/dzk, k = 1, ..., n.
 If / is a holomorphic function in an open neighborhood of z(U X V) in C",

 clearly the restriction of/to z(U x V) is a CR function, in the sense of Definition
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 BOCHNER'S TUBE THEOREM 893

 3.1. We shall investigate the following local extendability question. Let
 (t°,x°) G U x V and m be a CR function defined on z(U x V), when does u extend
 holomorphically to a neighborhood of z(t0,x°)1 We have the following result:

 Proposition 3.1 Let u be a CR function defined on z(U x V) and (t°,x°) E
 [/XV. The function u extends holomorphically to a neighborhood of z(t°,x°) if
 and only if the function

 x—*ü (t°,x) = u(z(t°,x))

 is (real) analytic at x°.

 Proof. Clearly the condition stated in Proposition 3.1 is necessary. Let us
 show that it is sufficient. Assume that ü(t°,x) is analytic in some neighborhood
 of x°. Set h0(x) = ü(t°,x). The functions ü(t,x) and h0(x + /[<()(/) - 4>(t0)]) are
 both solutions of (1.5) in some neighborhood of (f°,x°) in U x V, and they are
 equal for t = t0, by uniqueness in the Cauchy problem for the system (1.5) (see
 footnote at end of paper). We obtain that

 (3.2) ü(t,x) = u(z(t,x)) = h0(x + /[<K0 - 4>(f0)])

 near (t°,x°).
 We easily conclude from (3.2) that, in some neighborhood of z(t°,x°) in C",

 u is the restriction to z(U x V) of the holomorphic function

 z I-» h0(z - i«t)(r0))

 defined for z near z(t°,x°) in C". Q.E.D.
 Making use of Proposition 3.1, it is clear that each result of Sections I and II

 can yield a local extendability result for CR functions defined on z(U x V). In
 fact, according to the general result in [1, Theorem 2.2], locally all solutions of
 (1.5) are of the form h° z where A is a CR function. To avoid several repetitions,
 we restrict ourselves to restating Theorem 2.1 in this context.

 Theorem 3.1. Assume <}> to be analytic in U and let (t°,x°) G V X V. Any
 CR function defined on z(U X V) extends holomorphically to a neighborhood of
 z(t°,x°) if and only if for every i G R"\0, t° is not a local extremum of the function
 t -> <(>(0 • £•

 In fact the microlocal results of Sections I and II can yield holomorphic ex
 tendability of CR functions not only to a full neighborhood of a point in z(U x V)
 in C", but also to open sets of C" whose boundary contains part of z(U x V).
 This observation is based on the description of the analytic wave-front set of the
 solution of (1.5) given in the previous sections and the following lemma.

 If T is a convex cone of R" we set

 r° = {y6R":yi>0,V^er},

 and if 8 > 0
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 894 M. S. BAOUENDI & F. TREVES

 r° = {yer°,M<s}.

 Lemma 3.1. Let Y be a closed convex cone of R"\{0} and u a continuous
 function defined in an open set to of R", whose analytic wave-front is contained
 in to x T. Then for every w' relatively compact open subset of w and every open
 convex cone I ' containing T, there is 8 > 0 such that u extends holomorphically
 to to' + V-1 int (I^0).

 Proof. Assume co' and F to be as given in the lemma. By multiplying u with
 a cut-off function we may assume that u has compact support in R". Let T" be
 an open convex cone of R" containing F and whose closure is contained in T'.
 Making use of Lemma 1.6, Chapter 5, of Treves [12] there is a C°° function g
 in R"\0 such that g(f) = 1 for Ç G F, g(f) = 0 outside T' and

 J  e^(i -g(0)û(0di

 is analytic in an open neighborhood of w' in w. For x 6 w' we have

 (3.3) u{x) 8(0 û(0 ^ I (1 - g(0)û(0d0
 Since g(£) = 0 outside f, the first integral can be holomorphically extended to

 R" + V_1 int(r'°). Therefore the conclusion of the leinma follows from the an
 alyticity of the second integral in a neighborhood of w'.

 Remark 3.1. It should be mentioned that other extendability results general
 izing Bochner's tube theorem appear in the literature: Hörmander [6], Komatsu
 [9], Kazlow [8]. The basic ingredient in these papers is the so-called folding
 screen lemma. A local version of such a lemma can easily be proved using Lemma
 3.1 and Theorem 1.1 in this paper.

 Remark 3.2. An almost converse of Lemma 3.1 holds: If u is continuous in
 co and extends holomorphically to co + V~1 (int I^J), (T closed and convex cone,
 8 > 0) then the analytic wave-front set of u is contained in co x T. This can be
 proved, for example, by using Sjöstrand's definition of the analytic wave-front
 set and a deformation of the contour of integration. It should be noted that the
 basic ideas of Lemma 3.1 and this remark can be found in Bony [2],

 Footnote. We have used the following uniqueness result: If h is a Lipschitz
 continuous function satisfying (1.5) in U X V and if for (t°,x°) G U X V,
 h(t°,x) = 0 for x in some neighborhood of jc0 in V, then h{t,x) = 0 for (t,x) in
 some neighborhood of (t°,x°) in U x V. If <}) were real analytic this result would
 essentially be Holmgren's theorem. Here 4> is assumed to be only Lipschitz con
 tinuous. This uniqueness result follows from Remark 2.2 in [1] (the fact that the
 coefficients of L- s are only L°° or equivalently that z is Lipschitz in t, does not
 affect the conclusion nor the proof in [1]).
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